Implement RFC 1210: impl specialization
This PR implements [impl specialization](https://github.com/rust-lang/rfcs/pull/1210),
carefully following the proposal laid out in the RFC.
The implementation covers the bulk of the RFC. The remaining gaps I know of are:
- no checking for lifetime-dependent specialization (a soundness hole);
- no `default impl` yet;
- no support for `default` with associated consts;
I plan to cover these gaps in follow-up PRs, as per @nikomatsakis's preference.
The basic strategy is to build up a *specialization graph* during
coherence checking. Insertion into the graph locates the right place
to put an impl in the specialization hierarchy; if there is no right
place (due to partial overlap but no containment), you get an overlap
error. Specialization is consulted when selecting an impl (of course),
and the graph is consulted when propagating defaults down the
specialization hierarchy.
You might expect that the specialization graph would be used during
selection -- i.e., when actually performing specialization. This is
not done for two reasons:
- It's merely an optimization: given a set of candidates that apply,
we can determine the most specialized one by comparing them directly
for specialization, rather than consulting the graph. Given that we
also cache the results of selection, the benefit of this
optimization is questionable.
- To build the specialization graph in the first place, we need to use
selection (because we need to determine whether one impl specializes
another). Dealing with this reentrancy would require some additional
mode switch for selection. Given that there seems to be no strong
reason to use the graph anyway, we stick with a simpler approach in
selection, and use the graph only for propagating default
implementations.
Trait impl selection can succeed even when multiple impls can apply,
as long as they are part of the same specialization family. In that
case, it returns a *single* impl on success -- this is the most
specialized impl *known* to apply. However, if there are any inference
variables in play, the returned impl may not be the actual impl we
will use at trans time. Thus, we take special care to avoid projecting
associated types unless either (1) the associated type does not use
`default` and thus cannot be overridden or (2) all input types are
known concretely.
r? @nikomatsakis
danger of inference variables floating around without their inference
context.
The main insight here is that, when we are translating substitutions
between two impls, *we already know that the more specific impl holds*,
so we do not need to add its obligations to the parameter
environment. Instead, we can just thread through the inference context
we used to show select the more specific impl in the first place.
projection sensitive to "mode" (most importantly, trans vs middle).
This commit introduces several pieces of iteration infrastructure in the
specialization graph data structure, as well as various helpers for
finding the definition of a given item, given its kind and name.
In addition, associated type projection is now *mode-sensitive*, with
three possible modes:
- **Topmost**. This means that projection is only possible if there is a
non-`default` definition of the associated type directly on the
selected impl. This mode is a bit of a hack: it's used during early
coherence checking before we have built the specialization
graph (and therefore before we can walk up the specialization
parents to find other definitions). Eventually, this should be
replaced with a less "staged" construction of the specialization
graph.
- **AnyFinal**. Projection succeeds for any non-`default` associated
type definition, even if it is defined by a parent impl. Used
throughout typechecking.
- **Any**. Projection always succeeds. Used by trans.
The lasting distinction here is between `AnyFinal` and `Any` -- we wish
to treat `default` associated types opaquely for typechecking purposes.
In addition to the above, the commit includes a few other minor review fixes.
This commit leverages the specialization graph infrastructure to allow
specializing trait implementations to leave off associated types for
which their parents have provided defaults.
It also modifies the type projection code to avoid projecting associated
types unless either (1) all input types are fully known or (2) the
available associated type is "final", i.e. not marked `default`.
This restriction is required for soundness, due to examples like:
```rust
trait Foo {
type Assoc;
}
impl<T> Foo for T {
default type Assoc = ();
}
impl Foo for u8 {
type Assoc = String;
}
fn generic<T>() -> <T as Foo>::Assoc {
() //~ ERROR
}
fn main() {
let s: String = generic::<u8>();
println!("{}", s); // bad news
}
```
This commit leverages the specialization graph infrastructure to allow
specializing trait implementations to leave off methods for which their
parents have provided defaults.
It does not yet check that the `default` keyword is appropriately used
in such cases.
- Rewrites the overlap checker to instead build up a specialization
graph, checking for overlap errors in the process.
- Use the specialization order during impl selection.
This commit does not yet handle associated types correctly, and assumes
that all items are `default` and are overridden.
The module contains a few important components:
- The `specialize` function, which determines whether one impl is a
specialization of another.
- The `SpecializationGraph`, a per-trait graph recording the
specialization tree. The main purpose of the graph is to allow
traversals upwards (to less specialized impls) for discovering
un-overridden defaults, and for ensuring that overridden items are
allowed to be overridden.
typestrong const integers
~~It would be great if someone could run crater on this PR, as this has a high danger of breaking valid code~~ Crater ran. Good to go.
----
So this PR does a few things:
1. ~~const eval array values when const evaluating an array expression~~
2. ~~const eval repeat value when const evaluating a repeat expression~~
3. ~~const eval all struct and tuple fields when evaluating a struct/tuple expression~~
4. remove the `ConstVal::Int` and `ConstVal::Uint` variants and replace them with a single enum (`ConstInt`) which has variants for all integral types
* `usize`/`isize` are also enums with variants for 32 and 64 bit. At creation and various usage steps there are assertions in place checking if the target bitwidth matches with the chosen enum variant
5. enum discriminants (`ty::Disr`) are now `ConstInt`
6. trans has its own `Disr` type now (newtype around `u64`)
This obviously can't be done without breaking changes (the ones that are noticable in stable)
We could probably write lints that find those situations and error on it for a cycle or two. But then again, those situations are rare and really bugs imo anyway:
```rust
let v10 = 10 as i8;
let v4 = 4 as isize;
assert_eq!(v10 << v4 as usize, 160 as i8);
```
stops compiling because 160 is not a valid i8
```rust
struct S<T, S> {
a: T,
b: u8,
c: S
}
let s = S { a: 0xff_ff_ff_ffu32, b: 1, c: 0xaa_aa_aa_aa as i32 };
```
stops compiling because `0xaa_aa_aa_aa` is not a valid i32
----
cc @eddyb @pnkfelix
related: https://github.com/rust-lang/rfcs/issues/1071
Define AVX compare and blend intrinsics
This defines the following intrinsics:
* `_mm256_blendv_pd`
* `_mm256_blendv_ps`
* `_mm256_cmp_pd`
* `_mm256_cmp_ps`
I verified these locally.