Go to file
bors 40cb4478a3 Auto merge of - pnkfelix:issue-45696-dangly-paths-for-box, r=eddyb
[NLL] Dangly paths for box

Special-case `Box` in `rustc_mir::borrow_check`.

Since we know dropping a box will not access any `&mut` or `&` references, it is safe to model its destructor as only touching the contents *owned* by the box.

----

There are three main things going on here:

1. The first main thing, this PR is fixing a bug in NLL where `rustc` previously would issue a diagnostic error in a case like this:
```rust
fn foo(x: Box<&mut i32>) -> &mut i32 { &mut **x }
```

such code was accepted by the AST-borrowck in the past, but NLL was rejecting it with the following message ([playground](https://play.rust-lang.org/?gist=13c5560f73bfb16d6dab3ceaad44c0f8&version=nightly&mode=release&edition=2015))
```
error[E0597]: `**x` does not live long enough
 --> src/main.rs:3:40
  |
3 | fn foo(x: Box<&mut i32>) -> &mut i32 { &mut **x }
  |                                        ^^^^^^^^ - `**x` dropped here while still borrowed
  |                                        |
  |                                        borrowed value does not live long enough
  |
note: borrowed value must be valid for the anonymous lifetime  defined on the function body at 3:1...
 --> src/main.rs:3:1
  |
3 | fn foo(x: Box<&mut i32>) -> &mut i32 { &mut **x }
  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

error: aborting due to previous error
```

2. The second main thing: The reason such code was previously rejected was because NLL (MIR-borrowck) incorporates a fix for issue , where it models a destructor's execution as potentially accessing any borrows held by the thing being destructed. The tests with `Scribble` model this, showing that the compiler now catches such unsoundness.

However, that fix for issue  is too strong, in that NLL (MIR-borrowck) includes `Box` as one of the types with a destructor that potentially accesses any borrows held by the box. This thus was the cause of the main remaining discrepancy between AST-borrowck and MIR-borrowck, as documented in issue , specifically in [the last example of this comment](https://github.com/rust-lang/rust/issues/45696#issuecomment-345367873), which I have adapted into the `fn foo` shown above.

We did close issue  back in December of 2017, but AFAICT that example was not fixed by PR . (And we did not include a test, etc etc.)

This PR fixes that case, by trying to model the so-called `DerefPure` semantics of `Box<T>` when we traverse the type of the input to `visit_terminator_drop`.

3. The third main thing is that during a review of the first draft of this PR, @matthewjasper pointed out that the new traversal of `Box<T>` could cause the compiler to infinite loop. I have adjusted the PR to avoid this (by tracking what types we have previously seen), and added a much needed test of this somewhat odd scenario. (Its an odd scenario because the particular case only arises for things like `struct A(Box<A>);`, something which cannot be constructed in practice.)

Fix .
2018-08-02 19:42:19 +00:00
src Auto merge of - pnkfelix:issue-45696-dangly-paths-for-box, r=eddyb 2018-08-02 19:42:19 +00:00
.gitattributes Mark .fixed files as Rust syntax for GitHub 2018-05-28 11:36:13 +02:00
.gitignore Added new lines to .gitignore. 2018-07-22 14:14:39 +01:00
.gitmodules Replace libbacktrace with a submodule 2018-05-30 05:58:23 -07:00
.mailmap Add mailmap entry for Chris Vittal 2018-05-03 09:38:23 -04:00
.travis.yml Enabled core dump on Linux, and print stack trace on failure. 2018-07-13 22:11:02 +08:00
appveyor.yml Migrate the toolstate update bot to rust-highfive 2018-05-14 22:34:53 +08:00
CODE_OF_CONDUCT.md Synchronizing with code of conduct in rust-www 2018-03-07 08:58:57 -08:00
config.toml.example [RISCV] Enable CI. 2018-08-01 15:34:57 +02:00
configure rustbuild: Rewrite the configure script in Python 2017-08-27 18:53:30 -07:00
CONTRIBUTING.md Minor language change to CONTRIBUTING.md 2018-06-14 09:23:28 -04:00
COPYRIGHT Remove references to AUTHORS.txt file 2018-07-30 07:47:12 +02:00
LICENSE-APACHE
LICENSE-MIT LICENSE-MIT: Remove inaccurate (misattributed) copyright notice 2017-07-26 16:51:58 -07:00
README.md Add a link to the rustc docs 2018-07-04 17:24:43 -05:00
RELEASES.md 1.27 actually added the armv5te-unknown-linux-musleabi target 2018-08-01 08:24:18 -07:00
x.py Rename os variable in bootstrap.py to avoid shadowing os module. 2017-04-30 16:10:31 -04:00

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Quick Start

Read "Installation" from The Book.

Building from Source

Building on *nix

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or later or clang++ 3.x or later
    • python 2.7 (but not 3.x)
    • GNU make 3.81 or later
    • cmake 3.4.3 or later
    • curl
    • git
  2. Clone the source with git:

    $ git clone https://github.com/rust-lang/rust.git
    $ cd rust
    
  1. Build and install:

    $ git submodule update --init --recursive --progress
    $ ./x.py build && sudo ./x.py install
    

    Note: Install locations can be adjusted by copying the config file from ./config.toml.example to ./config.toml, and adjusting the prefix option under [install]. Various other options, such as enabling debug information, are also supported, and are documented in the config file.

    When complete, sudo ./x.py install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.

Building on Windows

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.

MinGW

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys64), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32 or msys2_shell.cmd -mingw64 from the command line instead)

  3. From this terminal, install the required tools:

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    $ pacman -Sy pacman-mirrors
    
    # Install build tools needed for Rust. If you're building a 32-bit compiler,
    # then replace "x86_64" below with "i686". If you've already got git, python,
    # or CMake installed and in PATH you can remove them from this list. Note
    # that it is important that you do **not** use the 'python2' and 'cmake'
    # packages from the 'msys2' subsystem. The build has historically been known
    # to fail with these packages.
    $ pacman -S git \
                make \
                diffutils \
                tar \
                mingw-w64-x86_64-python2 \
                mingw-w64-x86_64-cmake \
                mingw-w64-x86_64-gcc
    
  4. Navigate to Rust's source code (or clone it), then build it:

    $ ./x.py build && ./x.py install
    

MSVC

MSVC builds of Rust additionally require an installation of Visual Studio 2013 (or later) so rustc can use its linker. Make sure to check the “C++ tools” option.

With these dependencies installed, you can build the compiler in a cmd.exe shell with:

> python x.py build

Currently, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed the build system doesn't understand then you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

CALL "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64\vcvars64.bat"
python x.py build

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are:

  • GNU ABI (using GCC)
    • i686-pc-windows-gnu
    • x86_64-pc-windows-gnu
  • The MSVC ABI
    • i686-pc-windows-msvc
    • x86_64-pc-windows-msvc

The build triple can be specified by either specifying --build=<triple> when invoking x.py commands, or by copying the config.toml file (as described in Building From Source), and modifying the build option under the [build] section.

Configure and Make

While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes x.py).

$ ./configure
$ make && sudo make install

When using the configure script, the generated config.mk file may override the config.toml file. To go back to the config.toml file, delete the generated config.mk file.

Building Documentation

If youd like to build the documentation, its almost the same:

$ ./x.py doc

The generated documentation will appear under doc in the build directory for the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc, the directory will be build\x86_64-pc-windows-msvc\doc.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier stage of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform / Architecture x86 x86_64
Windows (7, 8, Server 2008 R2)
Linux (2.6.18 or later)
OSX (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs between 600MiB and 1.5GiB of RAM to build, depending on platform. If it hits swap, it will take a very long time to build.

There is more advice about hacking on Rust in CONTRIBUTING.md.

Getting Help

The Rust community congregates in a few places:

Contributing

To contribute to Rust, please see CONTRIBUTING.

Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust. And a good place to ask for help would be #rust-beginners.

The rustc guide might be a good place to start if you want to find out how various parts of the compiler work.

Also, you may find the rustdocs for the compiler itself useful.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.