gdb/
2013-10-09 Jan Kratochvil <jan.kratochvil@redhat.com>
New flag OBJF_NOT_FILENAME.
* auto-load.c (auto_load_objfile_script): Check also OBJF_NOT_FILENAME.
* jit.c (jit_object_close_impl): Use OBJF_NOT_FILENAME for
allocate_objfile.
(jit_bfd_try_read_symtab): Use OBJF_NOT_FILENAME for
symbol_file_add_from_bfd.
* jv-lang.c (get_dynamics_objfile): Use OBJF_NOT_FILENAME for
allocate_objfile.
* objfiles.c (allocate_objfile): Assert OBJF_NOT_FILENAME if NAME is
NULL.
* objfiles.h (OBJF_NOT_FILENAME): New.
This patch fixes gdb PR symtab/15597.
The bug is that the .gnu_debugaltlink section includes the build-id of
the alt file, but gdb does not use it.
This patch fixes the problem by changing gdb to do what it ought to
always have done: verify the build id of the file found using the
filename in .gnu_debugaltlink; and if that does not match, try to find
the correct debug file using the build-id and debug-file-directory.
This patch touches BFD. Previously, gdb had its own code for parsing
.gnu_debugaltlink; I changed it to use the BFD functions after those
were introduced. However, the BFD functions are incorrect -- they
assume that .gnu_debugaltlink is formatted like .gnu_debuglink.
However, it it is not. Instead, it consists of a file name followed
by the build-id -- no alignment, and the build-id is not a CRC.
Fixing this properly is a bit of a pain. But, because
separate_alt_debug_file_exists just has a FIXME for the build-id case,
I did not fix it properly. Instead I introduced a hack. This leaves
BFD working just as well as it did before my patch.
I'm willing to do something better here but I could use some guidance
as to what. It seems that the build-id code in BFD is largely punted
on.
FWIW gdb is the only user of bfd_get_alt_debug_link_info outside of
BFD itself.
I moved the build-id logic out of elfread.c and into a new file.
This seemed cleanest to me.
Writing a test case was a bit of a pain. I added a couple new
features to the DWARF assembler to handle this.
Built and regtested on x86-64 Fedora 18.
* bfd-in2.h: Rebuild.
* opncls.c (bfd_get_alt_debug_link_info): Add buildid_len
parameter. Change type of buildid_out. Update.
(get_alt_debug_link_info_shim): New function.
(bfd_follow_gnu_debuglink): Use it.
* Makefile.in (SFILES): Add build-id.c.
(HFILES_NO_SRCDIR): Add build-id.h.
* build-id.c: New file, largely from elfread.c. Modified
most functions.
* build-id.h: New file.
* dwarf2read.c (dwarf2_get_dwz_file): Update for change to
bfd_get_alt_debug_link_info. Verify dwz file's build-id.
Search for dwz file using build-id.
* elfread.c (build_id_bfd_get, build_id_verify)
(build_id_to_debug_filename, find_separate_debug_file): Remove.
* gdb.dwarf2/dwzbuildid.exp: New file.
* lib/dwarf.exp (Dwarf::_section): Add "flags" and "type"
parameters.
(Dwarf::_defer_output): Change "section" parameter to
"section_spec"; update.
(Dwarf::gnu_debugaltlink, Dwarf::_note, Dwarf::build_id): New
procs.
2013-10-08 Jan Beulich <jbeulich@suse.com>
* i386-opc.tbl (invlpg): Use Anysize instead of Unspecified.
(clflush): Use Anysize instead of Byte|Unspecified.
(prefetch*): Likewise.
* i386-tbl.h: Re-generate.
Upon trying to print the value of a variant record, a user noticed
the following problem:
(gdb) print rt
warning: Unknown upper bound, using 1.
warning: Unknown upper bound, using 1.
$1 = (a => ((a1 => (4), a2 => (4)), (a1 => (8), a2 => (8))))
The expected output is:
(gdb) print rt
$1 = (a => ((a1 => (4, 4), a2 => (8, 8)), (a1 => (4, 4),
a2 => (8, 8))))
The problems comes from the fact that components "a1" and "a2" are
defined as arrays whose upper bound is dynamic. To determine the value
of that upper bound, GDB relies on the GNAT encoding and searches
for the parallel ___U variable. Unfortunately, the search fails
while doing a binary search inside the partial symtab of the unit
where the array and its bound (and therefore the parallel ___U variable)
are defined.
It fails because partial symbols are sorted using strcmp_iw_ordered,
while Ada symbol lookups are performed using a different comparison
function (ada-lang.c:compare_names). The two functions are supposed
to be compatible, but a change performed in April 2011 modified
strcmp_iw_ordered, introducing case-sensitivity issues. As a result,
the two functions would now disagree when passed the following
two arguments:
string1="common__inner_arr___SIZE_A_UNIT"
string2="common__inner_arr__T4s___U"
The difference starts at "_SIZE_A_UNIT" vs "T4s___U". So, it's mostly
a matter of comparing '_' with 'T'.
On the one hand, strcmp_iw_ordered would return -1, while compare_names
returned 11. The change that made all the difference is that
strcmp_iw_ordered now performs a case-insensitive comparison,
and only resorts to case-sentitive comparison if the first comparison
finds an equality. This changes everything, because while 'T' (84)
and 't' (116) are on opposite sides of '_' (95).
This patch aims at restoring the compatibility between the two
functions, by adding case-sensitivity handling in the Ada comparison
function.
gdb/ChangeLog:
* ada-lang.c (compare_names_with_case): Renamed from
compare_names, adding a new parameter "casing" and its handling.
New function documentation.
(compare_names): New function, implemented using
compare_names_with_case.
for "<foo>a". Issue error messages for unrecognised or corrrupt
size extensions.
* gas/msp430/bad.s: New test: Checks erroneous size extensions.
* gas/msp430/bad.d: New test command file.
* gas/msp430/bad.l: New file: Expected error messages.
* gas/msp430/msp430.exp: Run the new test.
* gas/msp430/msp430x.s: Add "<foo>.a" aliases of "<foo>a"
instructions.
* gas/msp430/msp430x.d: Update expected disassembly.
This moves the demangled_names_hash from the objfile into the per-BFD
object. This is part of the objfile splitting project.
The demangled names hash is independent of the program space. And, it
is needed by the symbol tables. Both of these things indicate that it
must be pushed into the per-BFD object, which this patch does.
Built and regtested on x86-64 Fedora 18.
* objfiles.c (free_objfile_per_bfd_storage): Delete the
demangled_names_hash.
(free_objfile): Don't delete the demangled_names_hash.
* objfiles.h (struct objfile_per_bfd_storage)
<demangled_names_hash>: New field.
(struct objfile) <demangled_names_hash>: Move to
objfile_per_bfd_storage.
* symfile.c (reread_symbols): Don't delete the
demangled_names_hash.
* symtab.c (create_demangled_names_hash): Update.
(symbol_set_names): Update.
Right now we always share per-BFD data across objfiles, if there is a
BFD. This works fine. However, we're going to start sharing more
data, and sometimes this data will come directly from sections of the
BFD. If such a section has SEC_RELOC set, then the data coming from
that section will not be truly sharable -- the section will be
program-space-dependent, and re-read by gdb for each objfile.
This patch disallows per-BFD sharing in this case. This is a bit
"heavy" in that we could in theory examine each bit of shared data for
suitability. However, that is more complicated, and SEC_RELOC is rare
enough that I think we needn't bother.
Note that the "no sharing" case is equivalent to "gdb works as it
historically did". That is, the sharing is a new(-ish) optimization.
Built and regtested on x86-64 Fedora 18.
* gdb_bfd.c (struct gdb_bfd_data) <relocation_computed,
needs_relocations>: New fields.
(gdb_bfd_requires_relocations): New function.
* gdb_bfd.h (gdb_bfd_requires_relocations): Declare.
* objfiles.c (get_objfile_bfd_data): Disallow sharing if
the BFD needs relocations applied.
We recently made GDB auto-delete thread-specific breakpoints when the
corresponding thread is removed from the thread list, but we hadn't
mentioned it in the manual.
gdb/
2013-10-07 Pedro Alves <palves@redhat.com>
PR breakpoints/11568
* gdb.texinfo (Thread-Specific Breakpoints): Mention what happens
when the thread is removed from the thread list.
It seems "gone" may confuse people, while that was exactly what it was
trying to avoid. Switch to saying "no longer in the thread list",
which is really the predicate GDB uses.
gdb/
2013-10-07 Pedro Alves <palves@redhat.com>
PR breakpoints/11568
* breakpoint.c (remove_threaded_breakpoints): Say "no longer in
the thread list" instead of "gone".
will hold the signal number when the inferior terminates due to the
uncaught signal.
I've made modifications on infrun.c:handle_inferior_event such that
$_exitcode gets cleared when the inferior signalled, and vice-versa.
This assumption was made because the variables are mutually
exclusive, i.e., when the inferior terminates because of an uncaught
signal it is not possible for it to return. I have also made modifications
such that when a corefile is loaded, $_exitsignal gets set to the uncaught
signal that "killed" the inferior, and $_exitcode is cleared.
The patch also adds a NEWS entry, documentation bits, and a testcase. The
documentation entry explains how to use $_exitsignal and $_exitcode in a
GDB script, by making use of the new $_isvoid convenience function.
gdb/
2013-10-06 Sergio Durigan Junior <sergiodj@redhat.com>
* NEWS: Mention new convenience variable $_exitsignal.
* corelow.c (core_open): Reset exit convenience variables. Set
$_exitsignal to the uncaught signal which generated the corefile.
* infrun.c (handle_inferior_event): Reset exit convenience
variables. Set $_exitsignal for TARGET_WAITKIND_SIGNALLED.
(clear_exit_convenience_vars): New function.
* inferior.h (clear_exit_convenience_vars): New prototype.
gdb/testsuite/
2013-10-06 Sergio Durigan Junior <sergiodj@redhat.com>
* gdb.base/corefile.exp: Test whether $_exitsignal is set and
$_exitcode is void when opening a corefile.
* gdb.base/exitsignal.exp: New file.
* gdb.base/segv.c: Likewise.
* gdb.base/normal.c: Likewise.
gdb/doc/
2013-10-06 Sergio Durigan Junior <sergiodj@redhat.com>
* gdb.texinfo (Convenience Variables): Document $_exitsignal.
Update entry for $_exitcode.
* NEWS: Mention support for DWP file format version 2.
* dwarf2read.c (dwarf2_section_info): Convert asection field to a
union of asection, containing_section. New fields virtual_offset
and is_virtual. Change type of readin filed from int to char.
(dwo_sections, dwo_file): Tweak comments.
(dwp_v2_section_ids): New enum.
(dwp_sections): New fields abbrev, info, line, loc, macinfo, macro,
str_offsets, types.
(virtual_v1_dwo_sections): Renamed from virtual_dwo_sections.
All uses updated.
(virtual_v2_dwo_sections): New struct.
(dwp_hash_table): New fields version, nr_columns. Change type of
section_pool field to a union.
(dwp_file): New field version.
(dwarf2_has_info): Check for virtual sections.
(get_containing_section): New function.
(get_section_bfd_owner, get_section_bfd_section): Call it.
(dwarf2_locate_sections): Update.
(dwarf2_section_empty_p): Update.
(dwarf2_read_section): Handle virtual sections.
(locate_dwz_sections): Update.
(create_dwp_hash_table): Document and handle V2 format.
(locate_v1_virtual_dwo_sections): Renamed from
locate_virtual_dwo_sections and update. All callers updated.
(create_dwo_unit_in_dwp_v1): Renamed from create_dwo_in_dwp.
Delete arg htab. Rename arg section_index to unit_index.
All callers updated.
(MAX_NR_V1_DWO_SECTIONS): Renamed from MAX_NR_DWO_SECTIONS.
All uses updated.
(create_dwp_v2_section, create_dwo_unit_in_dwp_v2): New functions.
(lookup_dwo_unit_in_dwp): Add V2 support.
(dwarf2_locate_dwo_sections): Update.
(dwarf2_locate_common_dwp_sections): Renamed from
dwarf2_locate_dwp_sections and update. All callers updated.
(dwarf2_locate_v2_dwp_sections): New function.
(open_and_init_dwp_file): Add V2 support.
(read_str_index): New locals str_section, str_offsets_section.
The ptid_t contructors, accessors and predicates are documented in
_three_ places, and each place uses a different wording.
E.g, the descriptions in the .c file of the new ptid_lwp_p, ptid_tid_p
weren't updated in the final revision like the descriptions in the .h
file were. Clearly, switching to a style that has a single central
description avoids such issues.
Worse, some of the existing descriptions are plain wrong, such as:
/* Attempt to find and return an existing ptid with the given PID, LWP,
and TID components. If none exists, create a new one and return
that. */
ptid_t ptid_build (int pid, long lwp, long tid);
The function does nothing that complicated. It's just a simple
constructor.
So this gets rid of all the unnecessary descriptions, leaving only the
ones near the function declarations in the header file, and
fixes/clarifies those that remain.
gdb/
2013-10-04 Pedro Alves <palves@redhat.com>
* common/ptid.c (null_ptid, minus_one_ptid, ptid_build)
(pid_to_ptid, ptid_get_pid, ptid_get_lwp, ptid_get_tid)
(ptid_equal, ptid_is_pid, ptid_lwp_p, ptid_tid_p): Replace
describing comments with references to ptid.h.
* common/ptid.h: Remove intro description of constructors,
accessors and predicates.
(struct ptid): Reformat.
(minus_one_ptid, ptid_build, pid_to_ptid, ptid_get_pid)
(ptid_get_lwp, ptid_get_tid, ptid_equal, ptid_is_pid): Change
describing comments.
This patch fixes a small typo after the BUILD_THREAD -> ptid_build
conversion.
gdb/ChangeLog:
* aix-thread.c (sync_threadlists): Add missing ')' in call
to ptid_build.
We're casting "addr" into "addr_ptr", but this variable is actually
a parameter with that very same type...
gdb/ChangeLog:
* aix-thread.c (ptrace32): Remove cast to addr_ptr.
gdb/ChangeLog:
* mi/mi-main.c (run_one_inferior): Add function description.
Make ARG a pointer to an integer whose value determines whether
we should "run" or "start" the program.
(mi_cmd_exec_run): Add handling of the "--start" option.
Reject all other command-line options.
* NEWS: Add entry for "-exec-run"'s new "--start" option.
gdb/doc/ChangeLog:
* gdb.texinfo (GDB/MI Program Execution): Document "-exec-run"'s
new "--start" option.
gdb/testsuite/ChangeLog:
* gdb.mi/mi-start.c, gdb.mi/mi-start.exp: New files.
This patch moves pending_event to remote_notif_state. All pending
events are destroyed in remote_notif_state_xfree. However,
discard_pending_stop_replies release pending event too, so the pending
event of stop notification is released twice, we need some refactor
here. We add a new function discard_pending_stop_replies_in_queue
which only discard events in stop_reply_queue, and let
remote_notif_state_xfree release pending event for all notif_client.
After this change, discard_pending_stop_replies is only attached to
ifnerior_exit observer, so the INF can't be NULL any more. The
NULL checking is removed too.
gdb:
2013-10-04 Yao Qi <yao@codesourcery.com>
* remote-notif.h (REMOTE_NOTIF_ID): New enum.
(struct notif_client) <pending_event>: Moved
to struct remote_notif_state.
<id>: New field.
(struct remote_notif_state) <pending_event>: New field.
(notif_event_xfree): Declare.
* remote-notif.c (handle_notification): Adjust.
(notif_event_xfree): New function.
(do_notif_event_xfree): Call notif_event_xfree.
(remote_notif_state_xfree): Call notif_event_xfree to free
each element in field pending_event.
* remote.c (discard_pending_stop_replies): Remove declaration.
(discard_pending_stop_replies_in_queue): Declare.
(remote_close): Call discard_pending_stop_replies_in_queue
instead of discard_pending_stop_replies.
(remote_start_remote): Adjust.
(stop_reply_xfree): Call notif_event_xfree.
(notif_client_stop): Adjust initialization.
(remote_notif_remove_all): Rename it to ...
(remove_stop_reply_for_inferior): ... this. Update comments.
Don't check INF is NULL.
(discard_pending_stop_replies): Return early if notif_state is
NULL. Adjust. Don't check INF is NULL.
(remote_notif_get_pending_events): Adjust.
(discard_pending_stop_replies_in_queue): New function.
(remote_wait_ns): Likewise.
Hi,
This FIXME goes into my eyes, when I am about to modify something here,
/* Name is allocated by name_of_child. */
/* FIXME: xstrdup should not be here. */
This FIXME was introduced in the python pretty-pretter patches.
Python pretty-printing [6/6]
https://sourceware.org/ml/gdb-patches/2009-05/msg00467.html
create_child_with_value is called in two paths,
1. varobj_list_children -> create_child -> create_child_with_value,
2. install_dynamic_child -> install_dynamic_child -> varobj_add_child
-> create_child_with_value
In path #1, 'name' is allocated by name_of_child, as the original
comment said, we don't have to duplicate NAME in
create_child_with_value. In path #2, 'name' is got from
PyArg_ParseTuple, and we have to duplicate NAME.
This patch removes the call to xstrdup in create_child_with_value
and call xstrudp in update_dynamic_varobj_children (path #2).
gdb:
2013-10-04 Yao Qi <yao@codesourcery.com>
* varobj.c (create_child_with_value): Remove 'const' from the
type of parameter 'name'.
(varobj_add_child): Likewise.
(install_dynamic_child): Remove 'const' from the type of
parameter 'name'.
(varobj_add_child): Likewise.
(create_child_with_value): Likewise. Update comments. Don't
duplicate 'name'.
(update_dynamic_varobj_children): Duplicate 'name'
and pass it to install_dynamic_child.
* python/py-value.c (convert_value_from_python): Move PyInt_Check
conversion logic to occur after PyLong_Check. Comment on order
change significance.
* python/py-arch.c (archpy_disassemble): Comment on order of
conversion for integers and longs.
If enabling PTRACE_O_TRACEFORK fails, we never test for
PTRACE_O_TRACESYSGOOD support. Before PTRACE_O_TRACESYSGOOD is checked,
we have:
/* First, set the PTRACE_O_TRACEFORK option. If this fails, we
know for sure that it is not supported. */
ret = ptrace (PTRACE_SETOPTIONS, child_pid, (PTRACE_TYPE_ARG3) 0,
(PTRACE_TYPE_ARG4) PTRACE_O_TRACEFORK);
if (ret != 0)
{
ret = ptrace (PTRACE_KILL, child_pid, (PTRACE_TYPE_ARG3) 0,
(PTRACE_TYPE_ARG4) 0);
if (ret != 0)
{
warning (_("linux_check_ptrace_features: failed to kill child"));
return;
}
ret = my_waitpid (child_pid, &status, 0);
if (ret != child_pid)
warning (_("linux_check_ptrace_features: failed "
"to wait for killed child"));
else if (!WIFSIGNALED (status))
warning (_("linux_check_ptrace_features: unexpected "
"wait status 0x%x from killed child"), status);
return; <<<<<<<<<<<<<<<<<
}
Note that early return. If PTRACE_O_TRACEFORK isn't supported, we're
not checking PTRACE_O_TRACESYSGOOD. This didn't use to be a problem
before the unification of this whole detection business in
linux-ptrace.c. Before, the sysgood detection was completely
separate:
static void
linux_test_for_tracesysgood (int original_pid)
{
int ret;
sigset_t prev_mask;
/* We don't want those ptrace calls to be interrupted. */
block_child_signals (&prev_mask);
linux_supports_tracesysgood_flag = 0;
ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
if (ret != 0)
goto out;
linux_supports_tracesysgood_flag = 1;
out:
restore_child_signals_mask (&prev_mask);
}
So we need to get back the decoupling somehow. I think it's cleaner
to split the seperate feature detections to separate functions. This
patch does that. The new functions are named for their counterparts
that existed before this code was moved to linux-ptrace.c.
Note I've used forward declarations for the new functions to make the
patch clearer, as otherwise the patch would look like I'd be adding a
bunch of new code. A reorder can be done in a follow up patch.
Tested on x86_64 Fedora 17.
gdb/
2013-10-03 Pedro Alves <palves@redhat.com>
* common/linux-ptrace.c (linux_check_ptrace_features): Factor out
the PTRACE_O_TRACESYSGOOD and PTRACE_O_TRACEFORK to separate
functions. Always test for PTRACE_O_TRACESYSGOOD even if
PTRACE_O_TRACEFORK is not supported.
(linux_test_for_tracesysgood): New function.
(linux_test_for_tracefork): New function, factored out from
linux_check_ptrace_features, and also don't kill child_pid here.
Currently, in some scenarios, GDB prints <optimized out> when printing
outer frame registers. An <optimized out> register is a confusing
concept. What this really means is that the register is
call-clobbered, or IOW, not saved by the callee. This patch makes GDB
say that instead.
Before patch:
(gdb) p/x $rax $1 = <optimized out>
(gdb) info registers rax
rax <optimized out>
After patch:
(gdb) p/x $rax
$1 = <not saved>
(gdb) info registers rax
rax <not saved>
However, if for some reason the debug info describes a variable as
being in such a register (**), we still want to print <optimized out>
when printing the variable. IOW, <not saved> is reserved for
inspecting registers at the machine level. The patch uses
lval_register+optimized_out to encode the not saved registers, and
makes it so that optimized out variables always end up in
!lval_register values.
** See <https://sourceware.org/ml/gdb-patches/2012-08/msg00787.html>.
Current/recent enough GCC doesn't mark variables/arguments as being in
call-clobbered registers in the ranges corresponding to function
calls, while older GCCs did. Newer GCCs will just not say where the
variable is, so GDB will end up realizing the variable is optimized
out.
frame_unwind_got_optimized creates not_lval optimized out registers,
so by default, in most cases, we'll see <optimized out>.
value_of_register is the function eval.c uses for evaluating
OP_REGISTER (again, $pc, etc.), and related bits. It isn't used for
anything else. This function makes sure to return lval_register
values. The patch makes "info registers" and the MI equivalent use it
too. I think it just makes a lot of sense, as this makes it so that
when printing machine registers ($pc, etc.), we go through a central
function.
We're likely to need a different encoding at some point, if/when we
support partially saved registers. Even then, I think
value_of_register will still be the spot to tag the intention to print
machine register values differently.
value_from_register however may also return optimized out
lval_register values, so at a couple places where we're computing a
variable's location from a dwarf expression, we convert the resulting
value away from lval_register to a regular optimized out value.
Tested on x86_64 Fedora 17
gdb/
2013-10-02 Pedro Alves <palves@redhat.com>
* cp-valprint.c (cp_print_value_fields): Adjust calls to
val_print_optimized_out.
* jv-valprint.c (java_print_value_fields): Likewise.
* p-valprint.c (pascal_object_print_value_fields): Likewise.
* dwarf2loc.c (dwarf2_evaluate_loc_desc_full)
<DWARF_VALUE_REGISTER>: If the register was not saved, return a
new optimized out value.
* findvar.c (address_from_register): Likewise.
* frame.c (put_frame_register): Tweak error string to say the
register was not saved, rather than optimized out.
* infcmd.c (default_print_one_register_info): Adjust call to
val_print_optimized_out. Use value_of_register instead of
get_frame_register_value.
* mi/mi-main.c (output_register): Use value_of_register instead of
get_frame_register_value.
* valprint.c (valprint_check_validity): Likewise.
(val_print_optimized_out): New value parameter. If the value is
lval_register, print <not saved> instead.
(value_check_printable, val_print_scalar_formatted): Adjust calls
to val_print_optimized_out.
* valprint.h (val_print_optimized_out): New value parameter.
* value.c (struct value) <optimized_out>: Extend comment.
(error_value_optimized_out): New function.
(require_not_optimized_out): Use it. Use a different string for
lval_register values.
* value.h (error_value_optimized_out): New declaration.
* NEWS: Mention <not saved>.
gdb/testsuite/
2013-10-02 Pedro Alves <palves@redhat.com>
* gdb.dwarf2/dw2-reg-undefined.exp <pattern_rax_rbx_rcx_print,
pattern_rax_rbx_rcx_info>: Set to "<not saved>".
* gdb.mi/mi-reg-undefined.exp (opt_out_pattern): Delete.
(not_saved_pattern): New.
Replace use of the former with the latter.
gdb/doc/
2013-10-02 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Registers): Expand description of saved registers
in frames. Explain <not saved>.
Running catch-syscall.exp against a gdbserver that actually supports
it, we get:
FAIL: gdb.base/catch-syscall.exp: continue until exit (the program exited)
FAIL: gdb.base/catch-syscall.exp: continue until exit (the program exited)
FAIL: gdb.base/catch-syscall.exp: continue until exit (the program exited)
FAIL: gdb.base/catch-syscall.exp: continue until exit at catch syscall with unused syscall (mlock) (the program exited)
FAIL: gdb.base/catch-syscall.exp: continue until exit (the program exited)
The fail pattern is:
Catchpoint 2 (call to syscall exit_group), 0x000000323d4baa29 in _exit () from /lib64/libc.so.6
(gdb) PASS: gdb.base/catch-syscall.exp: program has called exit_group
delete breakpoints
Delete all breakpoints? (y or n) y
(gdb) info breakpoints
No breakpoints or watchpoints.
(gdb) break exit
Breakpoint 3 at 0x323d438bf0
(gdb) continue
Continuing.
[Inferior 1 (process 21081) exited normally]
That "break exit" + "continue" comes from:
> # gdb_continue_to_end:
> # The case where the target uses stubs has to be handled specially. If a
> # stub is used, we set a breakpoint at exit because we cannot rely on
> # exit() behavior of a remote target.
> #
The native-gdbserver.exp board, used to test against gdbserver in
"target remote" mode, triggers that case ($use_gdb_stub is true). So
gdb_continue_to_end doesn't work for catch-syscall.exp as here we
catch the exit_group and continue from that, expecting to see a real
program exit. I was about to post a patch that changes
catch-syscall.exp to call a new function that just always does what
gdb_continue_to_end does in the !$use_gdb_stub case. But, since
GDBserver doesn't really need this, in the end I thought it better to
teach the testsuite that there are stubs that know how to report
program exits, by adding a new "exit_is_reliable" board variable that
then gdb_continue_to_end checks.
Tested on x86_64 Fedora 17, native and gdbserver.
gdb/testsuite/
2013-10-02 Pedro Alves <palves@redhat.com>
* README (Board Settings): Document "exit_is_reliable".
* lib/gdb.exp (gdb_continue_to_end): Check whether the board says
running to exit reliably reports program exits.
* boards/native-gdbserver.exp: Set exit_is_reliable in the board
info.
* boards/native-stdio-gdbserver.exp: Likewise.
If we make gdbserver gdb_continue_to_end actually expect a process
exit with GDBserver, we get many testsuite failures with the remote
stdio board:
-PASS: gdb.arch/amd64-disp-step.exp: continue until exit at amd64-disp-step
+FAIL: gdb.arch/amd64-disp-step.exp: continue until exit at amd64-disp-step (the program exited)
-PASS: gdb.base/break.exp: continue until exit at recursive next test
+FAIL: gdb.base/break.exp: continue until exit at recursive next test (the program exited)
-PASS: gdb.base/chng-syms.exp: continue until exit at breakpoint first time through
+FAIL: gdb.base/chng-syms.exp: continue until exit at breakpoint first time through (the program exited)
... etc. ...
This is what the log shows for all of them:
(gdb) continue
Continuing.
Child exited with status 0
GDBserver exiting
[Inferior 1 (process 22721) exited normally]
(gdb) FAIL: gdb.arch/amd64-disp-step.exp: continue until exit (the program exited)
The problem is the whole "Child exited ... GDBserver exiting" output,
that comes out of GDBserver, and that the testsuite is not expecting.
I pondered somehow making the testsuite adjust to this. But,
testsuite aside, I think GDBserver should not be outputting this at
all when GDB is connected through stdio. GDBserver will be printing
this in GDB's console, but the user can already tell from the regular
output that the inferior is gone.
Again, manually:
(gdb) tar remote | ./gdbserver/gdbserver - program
Remote debugging using | ./gdbserver/gdbserver - program
Process program created; pid = 22486
stdin/stdout redirected
Remote debugging using stdio
done.
Loaded symbols for /lib64/ld-linux-x86-64.so.2
0x000000323d001530 in _start () from /lib64/ld-linux-x86-64.so.2
(gdb) c
Continuing.
Child exited with status 1
^^^^^^^^^^^^^^^^^^^^^^^^^^
GDBserver exiting
^^^^^^^^^^^^^^^^^
[Inferior 1 (process 22486) exited with code 01]
(gdb)
Suppressing those two lines makes the output be exactly like when
debugging against a remote tcp gdbserver:
(gdb) c
Continuing.
[Inferior 1 (process 22914) exited with code 01]
(gdb)
2013-10-02 Pedro Alves <palves@redhat.com>
* server.c (process_serial_event): Don't output "GDBserver
exiting" if GDB is connected through stdio.
* target.c (mywait): Likewise, be silent if GDB is connected
through stdio.