The cris sim hit a few failures after the recent getopt logic, and the
expected output showed a few ways we can improve things to better match
other utils.
The compiler/C library should produce reasonable code for htonl/ntohl,
and at least glibc tries pretty hard to always produce good code for
them. This logic only had support for 32-bit x86 systems anymore, and
it's unlikely people were even opting into this, so drop it all.
Fix a long standing todo where we let getopt write directly to stderr
when an invalid option is passed. Use the sim io funcs instead as they
go through the filtered callbacks that gdb wants.
Clean up some more remains of WITH_DEVICES that escaped notice.
We also clean up GETTWI/SETTWI defines in a few ports where they
were copied & pasted and are unused as they happen to be near the
device code.
The --enable-sim-hostendian flag was purely so people had an escape route
for when cross-compiling. This is because historically, AC_C_BIGENDIAN
did not work in those cases. That was fixed a while ago though, so we can
require that macro everywhere now and simplify a good bit of code.
Rather than re-invent endian defines, as well as maintain our own list
of OS & arch-specific includes, punt all that logic in favor of the bfd
ones already set up and maintained elsewhere. We already rely on the
bfd library, so leveraging the endian aspect should be fine.
The global current_state handle to the current simulator state is a
design idea that was half implemented, but never really cleaned up.
The point was to have a global variable pointing to the state so that
funcs could more quickly & easily access the state anywhere. We've
instead moved in the direction of passing state around everywhere and
don't have any intention of moving back.
I also can't find any references to gdb using this variable, or to
cgen related "dump_regs" functions, both of which were used in the
comments related to this code.
Pretty much all targets are using this module already, so add it to the
common list of objects. The only oddball out here is cris and that's
because it supports loading via an offset for all the phdrs. We drop
support for that.
No arch is using this anymore, and we want all new ports using the
hardware framework instead. Punt WITH_DEVICES and the two callbacks
device_io_{read,write}_buffer.
We can also punt the tconfig.h file as no port is using it anymore.
This fixes in-tree builds that get confused by picking up the wrong
one (common/ vs <port>/) caused by commit ae7d0cac8c.
Any port that needs to set up a global define can use their own
sim-main.h file that they must provide regardless.
The bfin port has been using the device callback largely so it could be
passed the cpu when available. Add this logic to the common core code
so all ports get access to the active cpu.
The semantics of these buffer functions are changed slightly in that
errors halt the engine synchronously rather than returning the length
to the caller. We'll probably adjust this in a follow up commit.
The bfin code isn't updated just yet as it has a bit more logic in the
device layer that needs to be unwound at which point we can delete it
entirely.
These trace calls don't seem to add anything useful and break the cris
hw tests, so punt them. They were disabled before commit 6d519a4606
but were re-enabled as part of TRACE macro cleanups.
Rather than include this for some targets, set it up so we can build it
all the time via the common code. This makes it easier for targets to
opt into it when they're ready, increases build coverage, and allows us
to centralize much of the logic.
We also get to delete tconfig.h from two more targets -- they were
setting WITH_DEVICES to 0 which has the same behavior as not defining
it at all.
While the SIM_HAVE_MODEL knob is gone, we now have WITH_MODEL_P, but it
is only used by the common sim-model code. We use it to declare dummy
model lists when the arch hasn't created its own.
The "MACH" and "MODEL" names are a bit generic and collide with symbols
used by other sections of code (like h8300's opcodes). Since these are
sim-specific types, they really should have a "SIM_" prefix.
Only four targets implement this function, and three of them do nothing.
The 4th merely calls abort. Since calls to this function are followed
by calls to sim_hw_abort or sim_io_error, this is largely useless. In
the two places where we don't, replace the call with sim_engine_abort.
We want to kill off the WITH_DEVICES logic in favor of WITH_HW, so this
is a good first step.
We enable WITH_CALLBACK_MEMORY everywhere and don't provide a way to
turn it off, and no target does so. Make it unconditional for all
to keep things simple.
Since the core always provides CPU_INDEX, use it. The current code
doesn't actually use it even though it should since it doesn't include
the right headers.
Most targets already default to loading code via their LMA, but for
a few, this means the default changes from loading VMA to LMA. It's
better to have the different targets be consistent, and allows some
code clean up.
We've moved custom option install for other targets to sim_open, so update
cris too. It's the last one using MODULE_LIST, so we can drop that from
the common code too.
We build & bundle the watchpoint module everywhere, but we don't make
the command line flags available by default. A few targets opted in,
but most did not. Just enable the flag for everyone. Not all targets
will respect the flags (making them nops), but shouldn't be a big deal.
This is how we handle other common modules already.
No target has used this, and it's a cheap hack in place in using the
common memory module. We want everyone using that though, so drop
support for flatmem entirely.
Keeping track of the right printf formats for the various types can be
a pretty big hassle, especially in common code which has to support a
variety of bitsizes. Take a page from the existing standards and add
a set of PRI macros which hide the details in a common header.
Having this be a config option doesn't make sense: the code size is
pretty much the same (as all the logic is still active), and if it's
disabled, the sim throws an error if you try to use it. That means
we can't break sims that weren't using it before by enabling it all
the time.
Now that all arches (for the most part) have moved over, move sim-stop.o,
sim-reason.o, and sim-reg.o to the common object list and out of all the
arch ports.
Other than the nice advantage of all sims having to declare one fewer
common function, this also fixes leakage in pretty much every sim.
Many were not freeing any resources, and a few were inconsistent as
to the ones they did. Now we have a single module that takes care of
all the logic for us.
Most of the non-cgen based ones could be deleted outright. The cgen
ones required adding a callback to the arch-specific cleanup func.
The few that still have close callbacks are to manage their internal
state.
We do not convert erc32, m32c, ppc, rl78, or rx as they do not use
the common sim core.
2015-09-25 Andrew Bennett <andrew.bennett@imgtec.com>
Ali Lown <ali.lown@imgtec.com>
sim/common/
* sim-bits.h (EXTEND6): New macro.
(EXTEND12): New macro.
(EXTEND25): New macro.
sim/mips/
* Makefile.in (tmp-micromips): New rule.
(tmp-mach-multi): Add support for micromips.
* configure.ac (mips*-sde-elf* | mips*-mti-elf*): Made a multi sim
that works for both mips64 and micromips64.
(mipsisa32r2*-*-*): Made a multi sim that works for mips32 and
micromips32.
Add build support for micromips.
* dsp.igen (do_ph_s_absq, do_w_s_absq, do_qb_s_absq, do_addsc,
do_addwc, do_bitrev, do_extpv, do_extrv, do_extrv_s_h, do_insv,
do_lxx do_modsub, do_mthlip, do_mulsaq_s_w_ph, do_ph_packrl, do_qb_pick
do_ph_pick, do_qb_ph_precequ, do_qb_ph_preceu, do_w_preceq
do_w_ph_precrq, do_ph_qb_precrq, do_w_ph_rs_precrq do_qb_w_raddu,
do_rddsp, do_repl, do_shilov, do_ph_shl, do_qb_shl do_w_s_shllv,
do_ph_shrlv, do_w_r_shrav, do_wrdsp, do_qb_shrav, do_append,
do_balign, do_ph_w_mulsa, do_ph_qb_precr, do_prepend): New functions.
Refactored instruction code to use these functions.
* dsp2.igen: Refactored instruction code to use the new functions.
* interp.c (decode_coproc): Refactored to work with any instruction
encoding.
(isa_mode): New variable
(RSVD_INSTRUCTION): Changed to 0x00000039.
* m16.igen (BREAK16): Refactored instruction to use do_break16.
(JALX32): Add mips32, mips64, mips32r2 and mips64r2 models.
* micromips.dc: New file.
* micromips.igen: New file.
* micromips16.dc: New file.
* micromipsdsp.igen: New file.
* micromipsrun.c: New file.
* mips.igen (do_swc1): Changed to work with any instruction encoding.
(do_add do_addi do_andi do_dadd do_daddi do_dsll32 do_dsra32
do_dsrl32, do_dsub, do_break, do_break16, do_clo, do_clz, do_dclo
do_dclz, do_lb, do_lh, do_lwr, do_lwl, do_lwc, do_lw, do_lwu, do_lhu
do_ldc, do_lbu, do_ll, do_lld, do_lui, do_madd, do_dsp_madd, do_maddu
do_dsp_maddu, do_dsp_mfhi, do_dsp_mflo, do_movn, do_movz, do_msub
do_dsp_msub, do_msubu, do_dsp_msubu, do_mthi, do_dsp_mthi, do_mtlo
do_dsp_mtlo, do_mul, do_dsp_mult, do_dsp_multu, do_pref, do_sc, do_scd
do_sub, do_sw, do_teq, do_teqi, do_tge, do_tgei, do_tgeiu, do_tgeu, do_tlt
do_tlti, do_tltiu, do_tltu, do_tne, do_tnei, do_abs_fmt, do_add_fmt
do_alnv_ps, do_c_cond_fmt, do_ceil_fmt, do_cfc1, do_ctc1, do_cvt_d_fmt
do_cvt_l_fmt, do_cvt_ps_s, do_cvt_s_fmt, do_cvt_s_pl, do_cvt_s_pu
do_cvt_w_fmt, do_div_fmt, do_dmfc1b, do_dmtc1b, do_floor_fmt, do_luxc1_32
do_luxc1_64, do_lwc1, do_lwxc1, do_madd_fmt, do_mfc1b, do_mov_fmt, do_movtf
do_movtf_fmt, do_movn_fmt, do_movz_fmt, do_msub_fmt, do_mtc1b, do_mul_fmt
do_neg_fmt, do_nmadd_fmt, do_nmsub_fmt, do_pll_ps, do_plu_ps, do_pul_ps
do_puu_ps, do_recip_fmt, do_round_fmt, do_rsqrt_fmt, do_prefx, do_sdc1
do_suxc1_32, do_suxc1_64, do_sqrt_fmt, do_sub_fmt, do_swc1, do_swxc1
do_trunc_fmt): New functions, refactored from existing instructions.
Refactored instruction code to use these functions.
(RSVD): Changed to use new reserved instruction.
(loadstore_ea, not_word_value, unpredictable, check_mt_hilo, check_mf_hilo,
check_mult_hilo, check_div_hilo, check_u64, do_luxc1_32, do_sdc1, do_suxc1_32,
check_fmt_p, check_fpu, do_load_double, do_store_double): Added micromips32
and micromips64 models.
Added include for micromips.igen and micromipsdsp.igen
Add micromips32 and micromips64 models.
(DecodeCoproc): Updated to use new macro definition.
* mips3264r2.igen (do_dsbh, do_dshd, do_dext, do_dextm, do_dextu, do_di,
do_dins, do_dinsm, do_ei, do_ext, do_mfhc1, do_mthc1, do_ins, do_dinsu,
do_seb, do_seh do_rdhwr, do_wsbh): New functions.
Refactored instruction code to use these functions.
* sim-main.h (CP0_operation): New enum.
(DecodeCoproc): Updated macro.
(IMEM32_MICROMIPS, IMEM16_MICROMIPS, MICROMIPS_MINOR_OPCODE,
MICROMIPS_DELAYSLOT_SIZE_ANY, MICROMIPS_DELAYSLOT_SIZE_16, MICROMIPS_DELAYSLOT_SIZE_32,
ISA_MODE_MIPS32 and ISA_MODE_MICROMIPS): New defines.
(sim_state): Add isa_mode field.
sim/testsuite/sim/mips/
* basic.exp (run_micromips_test, run_sim_tests): New functions
Add support for micromips tests.
* hilo-hazard-4.s: New file.
* testutils.inc (_dowrite): Changed reserved instruction encoding.
(writemsg): Moved the la and li instructions before the data they are
assigned to, which prevents a bug where MIPS32 relocations are used instead
of micromips relocations when building for micromips.
The bfin/msp430 ports already had trace logic set up for reading/writing
cpu registers, albeit using different unrelated levels (core & vpu). Add
a proper register class for these and for other ports.
This helper macro has largely the same behavior as libiberty's lbasename.
There is a slight nuance related to colons, but it's not clear what the
point of that is, and the code implies that it just wants the basename.
Since --trace-debug is for people hacking on the sim sources rather than
people just using the sim, default it to off. This matches the behavior
of other debug knobs we have.
Since we always include the raw syscall number when tracing, also
including it in the name when it's unknown is redundant. Simplify
the code by using a constant string.
The new helpers for walking the maps tested the wrong value for exiting
the for loop. This caused crashes when looking up entries that were not
in the map.
Many ports have the same sim syscall logic, so add some helpers to handle
all the common details. The arches still have to deal with the unpacking
and packing of the syscall arguments, but the rest of the sim<->callback
glue is now shared.
When tracing, we often want to display the human readable name for the
various syscall/errno values. Rather than make each target duplicate
the lookup, extend the existing maps to include the string directly,
and add helper functions to look up the constants.
While most targets are autogenerated (from libgloss), the bfin/cris
targets have custom maps for the Linux ABI which need to be updated
by hand.
The Blackfin port had some TRACE_xxx macros for easily logging trace data.
Use these as a base for common ones that have a simple form and match the
existing sets of helper macros.
The cgen code declares some macros/funcs using the trace_xxx prefix, but
the code isn't generic and only works with cgen targets. This is blocking
the creation of new common trace functions.
Let's blindly add cgen_xxx prefixes to all these symbols. Some already
use this convention to avoid conflicts, so it makes sense to align them.
In the future we might want to move some to the common trace core, but
one thing at a time.
First we convert the ETRACE_P to STRACE_EVENTS_P. This means we move from
using the sim_events.trace storage to the common sim_state_base.trace_data
array. With that deleted, the common trace init code can be simplified so
the sim state works the same as the sim cpu.
Now that libgloss has a header tracking the syscalls for this arch, we
can update the database to include it for the symbolic constants/maps.
Then we can switch the mcore syscall callbacks over to the common ones.
Since newlib no longer shares the same repo as binutils/gdb, we have to go
searching further afield to locate the sources. We still look at the top
level for newlib, but if that is not found, we also try up one dir outside
of this source tree. It sucks, but better than the status quo (no workie).
Since every target typedefs this the same way, move it to the common code.
We have to leave Blackfin behind here for now because of inter-dependencies
on types and headers: sim-base.h includes sim-model.h which needs types in
machs.h which needs types in bfim-sim.h which needs SIM_CPU.
Almost every target defines sim_cia the same way -- either using the
address_word type directly, or a type of equivalent size. The only
odd one out is sh64 (who has 32bit address_word and 64bit cia), and
even that case doesn't seem to make sense. We'll put off clean up
though of sh64 and at least set up a sensible default for everyone.
The CIA_{GET,SET} macros serve the same function as CPU_PC_{GET,SET}
except the latter adds a layer of indirection via the sim state. This
lets models set up different functions at runtime and doesn't reach so
directly into the arch-specific cpu state.
It also doesn't make sense to have two sets of macros that do exactly
the same thing, so lets standardize on the one that gets us more.
Now that all the targets are utilizing CPU_PC_{FETCH,STORE}, and the
cpu state is multicore, and the STATE_CPU defines match, we can move
it all to the common code.
The old run frontend had a --version option, but the new common
sim-options file does not. Restore support for that so we can
get version info out of `run` when using the new frontend.
Now that all targets have been converted to nrun, we can finally punt
this old inconsistent interface.
A few stray references to the old run were sprinkled about; clean them
up in the process.
We leave behind the run(1) man page mostly so that we get it updated for
the new nrun interface.
With newer versions of gcc (5.x), the extern inline we're using with the
cgen-{mem,ops} modules no longer work. Since this code really wants the
gnu inline semantics, use that attribute explicitly.
With newer versions of gcc (5.x), the extern inline we're using with the
sim-arange module no longer works. Since this code really wants the gnu
inline semantics, use that attribute explicitly.
Reported-by: DJ Delorie <dj@redhat.com>
Reported-by: Joel Sherrill <joel.sherrill@oarcorp.com>
The profile code was using STATE_WATCHPOINTS to get access to the PC, but
we already have a standard method for getting the pc, so switch to that.
This assumes that sizeof_pc is the same size as sim_cia, but we already
assume this in places by way of sim_pc_{get,set}, and this is how it's
documented in the sim-base.h API.
The current default handling for the --enable-sim-hardware option ends up
forcing the value to whatever is set as the first argument when calling
the macro (by virtue of how autoconf works). Relocate the setup code to
the 4th parameter of the AC_ARG_ENABLE macro to fix it.
This was caused by the simplification work in 1517bd2742.
Reported-by: Hans-Peter Nilsson <hans-peter.nilsson@axis.com>
Since no sim is using the "always" option to SIM_AC_OPTION_HARDWARE, and
we don't want to require hw support to always be enabled, drop the option.
This leads to a slight simplification in the macro too as we can collapse
the sim_hw_p variable.
If dv-sockser is available, lets add it to the common SIM_HW_OBJS
variable so it is always included automatically. Now ports do not
have to shoe horn it in directly themselves. It does mean it will
be compiled for targets that don't explicitly use it, but that's
really what we want anyways.
This lets ports assume that the dv-sockser API is always available if
they want to. This way we don't have to do an abort at configure time
and it makes the resulting code a bit simpler.
Rather than manually include tconfig.h when we think we'll need it (which
is error prone as it can define symbols we expect from config.h), have it
be included directly by config.h. Since we know we have to include that
header everywhere already, this will make sure tconfig.h isn't missed.
It should also be fine as tconfig.h is supposed to be simple and only set
up a few core defines for the target.
This allows us to stop symlinking it in place all the time and just use
it straight out of the respective source directory.
Pull out the duplicated dv_sockser_install prototype from the tconfig.in
files and put it in the one place it gets used -- sim-module.c. This is
still arguably incorrect, but it's better than the status quo where the
tconfig.in has to include header files and duplicate the dv-sockser func.
The tconfig header is meant to be simple and contain a target defines.
This dates back to the start of the repo, but has never really been used.
The sim-inline.c file has been checked in to the source, and attempts to
build it in the build tree leads to a circular dep warning from make. It
also doesn't produce a file that is usable -- it can't be compiled. Punt!
We want people to stop using the run.c frontend, but it's hard to notice
when it's still set as the default. Lets flip things so nrun.c is the
default, and users of run.c will get an error by default. We turn that
error into a warning for existing sims so we don't break them -- this is
mostly meant for people starting new ports.
Since sim-endian.c doesn't actually use sim_io funcs, it's weird to
include the sim-io.h header here. It's doing so only for the assert
header. So lets relocate the include to the right place.
After successfully call buildargv(), the code need to be sure of calling
freeargv() in any cases.
2015-02-02 Chen Gang <gang.chen.5i5j@gmail.com>
* common/sim-options.c (sim_args_command): Call freeargv() when
failure occurs.