Shifting into the sign bit of a 32 bit int and then converting to a unsigned
type is less straight forward than just shifting an unsigned value.
opcodes/ChangeLog:
2016-05-31 Trevor Saunders <tbsaunde+binutils@tbsaunde.org>
* sh-opc.h (ARCH_SH_HAS_DSP): Make the shifted value an unsigned
constant.
https://sourceware.org/bugzilla/show_bug.cgi?id=19893
I've traced the main source of the problem to pieced_value_funcs.coerce_ref not being
implemented. Since gdb always assumes references are implemented as pointers, this
causes it to think that it's dealing with a NULL pointer, thus breaking any operations
involving synthetic references.
What I did here was implementing pieced_value_funcs.coerce_ref using some of the synthetic
pointer handling code from indirect_pieced_value, as Pedro suggested. I also made a few
adjustments to the reference printing code so that it correctly shows either the address
of the referenced value or (if it's non-addressable) the "<synthetic pointer>" string.
I also wrote some unit tests based on Dwarf::assemble; these took a while to make
because in most cases I needed a synthetic reference to a physical variable. Additionally,
I started working on a unit test for classes that have a vtable, but ran into a few issues
so that'll probably go in a future patch. One thing that should definitely be fixed is that
proc function_range (called for MACRO_AT_func) will always try to compile/link using gcc
with the default options instead of g++, thus breaking C++ compilations that require e.g. libstdc++.
gdb/ChangeLog:
* dwarf2loc.c (coerce_pieced_ref, indirect_synthetic_pointer,
fetch_const_value_from_synthetic_pointer): New functions.
(indirect_pieced_value): Move lower half to indirect_synthetic_pointer.
(pieced_value_funcs): Implement coerce_ref.
* valops.c (value_addr): Call coerce_ref for synthetic references.
* valprint.c (valprint_check_validity): Return true for synthetic
references. Also, don't show "<synthetic pointer>" if they reference
addressable values.
(generic_val_print_ref): Handle synthetic references. Also move some
code to print_ref_address.
(print_ref_address, get_value_addr_contents): New functions.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/implref.exp: Rename to...
* gdb.dwarf2/implref-const.exp: ...this. Also add more test statements.
* gdb.dwarf2/implref-array.c: New file.
* gdb.dwarf2/implref-array.exp: Likewise.
* gdb.dwarf2/implref-global.c: Likewise.
* gdb.dwarf2/implref-global.exp: Likewise.
* gdb.dwarf2/implref-struct.c: Likewise.
* gdb.dwarf2/implref-struct.exp: Likewise.
This patch adds tests for emit operations with 64 bit values. It takes
special care to avoid mistakes that one could make on a 32bit architecture
using 64bit values.
gdb/testsuite/ChangeLog:
* gdb.trace/trace-condition.exp: Add 64bit tests.
This patch add variable length tests for emit_ref by reading the variable
passed as argument of 8 to 64 bit.
gdb/testsuite/ChangeLog:
* gdb.trace/trace-condition.c (marker): Adapt signature to 8 to 64
bits types.
(main): Adapt to 8 to 64 bits types.
* gdb.trace/trace-condition.exp: Add new tests.
This patch moves conditional tests that were done in ftrace.exp to
trace-condition.exp.
Note that emit_ref is now tested by the anarg local variable there is no
need to test the register directly.
All emit calls have been tested using asserts before / after the move, to
ensure that the tests cover the same functions.
Note that these function were not covered before and are still not:
emit_gt_goto, emit_lt_goto, emit_pop, emit_unsigned_less.
gdb/testsuite/ChangeLog:
* gdb.trace/ftrace.exp (test_ftrace_condition): Remove.
Move condition tests...
* gdb.trace/trace-condition.exp: Here.
In trace-condition.exp, tests are done by doing a conditional tracepoint
and validating that the trace contains all the frames that could be
collected if that condition is true.
E.g. test_tracepoints $trace_command "21 + 21 == 42" 10
This will always return true and collect the 10 frames possible to collect
with the test program.
However, if the condition evaluation is broken such that the condition is
unconditional we will not notice this problem.
This patch adds counter-cases to such conditions like so:
$trace_command "21 + 11 == 42" 0
This way such a problem would be noticed.
gdb/testsuite/ChangeLog:
* gdb.trace/trace-condition.exp: Add counter-case tests.
Local variables in lambdas are not accessible
https://sourceware.org/bugzilla/show_bug.cgi?id=15231
GDB: read_lexical_block_scope
/* Ignore blocks with missing or invalid low and high pc attributes. */
[...]
if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
return;
But sometimes there is:
FAIL: gcc-5.3.1-6.fc23.x86_64
<2><92>: Abbrev Number: 11 (DW_TAG_lexical_block)
<3><9c>: Abbrev Number: 13 (DW_TAG_structure_type)
<9d> DW_AT_name : (indirect string, offset: 0x3c): <lambda()>
[...]
Where DW_TAG_lexical_block has no attributes. Such whole subtree is currently
dropped by GDB while I think it should just import all its children DIEs.
It even XFAIL->XPASSes gdb.ada/out_of_line_in_inlined.exp:
commit 0fa7fe506c
Author: Joel Brobecker <brobecker@adacore.com>
out of line functions nested inside inline functions.
So I have removed that xfail.
gdb/ChangeLog
2016-05-30 Jan Kratochvil <jan.kratochvil@redhat.com>
PR c++/15231
* dwarf2read.c (enum pc_bounds_kind): Add PC_BOUNDS_INVALID.
(process_psymtab_comp_unit_reader, read_func_scope): Adjust callers.
(read_lexical_block_scope): Import DIEs from bare DW_TAG_lexical_block.
(read_call_site_scope): Adjust callers.
(dwarf2_get_pc_bounds): Implement pc_bounds_invalid.
(dwarf2_get_subprogram_pc_bounds, get_scope_pc_bounds): Adjust callers.
gdb/testsuite/ChangeLog
2016-05-30 Jan Kratochvil <jan.kratochvil@redhat.com>
PR c++/15231
* gdb.ada/out_of_line_in_inlined.exp: Remove xfails.
* gdb.dwarf2/dw2-lexical-block-bare.exp: New file.
Make the code (maybe) more readable + primarily prepare it for [patch 2/2]
enum extension.
This change should have no code change impact.
gdb/ChangeLog
2016-05-30 Jan Kratochvil <jan.kratochvil@redhat.com>
Code cleanup: dwarf2_get_pc_bounds: -1/0/+1 -> enum
* dwarf2read.c (enum pc_bounds_kind) New.
(dwarf2_get_pc_bounds): Use it in the declaration.
(process_psymtab_comp_unit_reader): Adjust caller. Rename has_pc_info
to cu_bounds_kind.
(read_func_scope, read_lexical_block_scope, read_call_site_scope):
Adjust callers.
(dwarf2_get_pc_bounds): Use enum pc_bounds_kind in the definition.
(dwarf2_get_subprogram_pc_bounds, get_scope_pc_bounds): Adjust callers.
Standardize the QCatchSyscalls NEWS entry.
gdb/ChangeLog
2016-05-29 Jan Kratochvil <jan.kratochvil@redhat.com>
* NEWS (QCatchSyscalls): Remove the parameter. Include ...
(QCatchSyscalls:1 in qSupported) ... this separate entry which got
deleted.
Fix internal errors like:
ld: BFD (GNU Binutils) 2.26.51.20160526 internal error, aborting at .../bfd/elfxx-mips.c:10278 in _bfd_mips_elf_relocate_section
ld: Please report this bug.
triggered by the `bfd_reloc_outofrange' condition on branch relocations.
bfd/
* elfxx-mips.c (b_reloc_p): New function.
(_bfd_mips_elf_relocate_section) <bfd_reloc_outofrange>: Handle
branch relocations.
ld/
* testsuite/ld-mips-elf/unaligned-branch.d: New test.
* testsuite/ld-mips-elf/unaligned-branch.s: New test source.
* testsuite/ld-mips-elf/unaligned-text.s: New test source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new test.
The original MIPS SVR4 psABI defines the calculation for the R_MIPS_26
relocation in a complex way, as follows[1]:
Name Value Field Symbol Calculation
R_MIPS_26 4 T-targ26 local (((A << 2) | \
(P & 0xf0000000)) + S) >> 2
4 T-targ26 external (sign-extend(A << 2) + S) >> 2
This is further clarified, by correcting typos (already applied in the
excerpt above) in the 64-bit psABI extension[2]. A note is included in
both documents to specify that for the purpose of relocation processing
a local symbol is one with binding STB_LOCAL and type STT_SECTION, and
otherwise, a symbol is external.
We have both calculations implemented for the R_MIPS_26 relocation, and
by extension also for the R_MIPS16_26 and R_MICROMIPS_26_S1 relocations,
from now on collectively called jump relocations. However our code uses
a different condition to tell local and external symbols apart, that is
it only checks for the STB_LOCAL binding and ignores the symbol type,
however for REL relocations only. The external calculation is used for
all RELA jump relocations.
In reality the difference matters for jump relocations referring local
MIPS16 and, as from recent commit 44d3da2338 ("MIPS/GAS: Treat local
jump relocs the same no matter if REL or RELA"), also local microMIPS
symbols. Such relocations are not converted to refer to corresponding
section symbols instead and retain the original local symbol reference.
It can be inferred from the relocation calculation definitions that the
addend is effectively unsigned for the local case and explicitly signed
for the external case. With the REL relocation format it makes sense
given the limited range provided for by the field being relocated: the
use of an unsigned addend expands the range by one bit for the local
case, because a negative offset from a section symbol makes no sense,
and any usable negative offset from the original local symbol will have
worked out positive if converted to a section-relative reference. In
the external case a signed addend gives more flexibility as offsets both
negative and positive can be used with a symbol. Any such offsets will
typically have a small value.
The inclusion of the (P & 0xf0000000) component, ORed in the calculation
in the local case, seems questionable as bits 31:28 are not included in
the relocatable field and are masked out as the relocation is applied.
Their value is therefore irrelevant for output processing, the relocated
field ends up the same regardless of their value. They could be used
for overflow detection, however this is precluded by adding them to bits
31:28 of the symbol referred, as the sum will not correspond to the
value calculated by the processor at run time whenever bits 31:28 of the
symbol referred are not all zeros, even though it is valid as long they
are the same as bits 31:28 of P.
We deal with this problem by ignoring any overflow resulting from the
local calculation. This however makes us miss genuine overflow cases,
where 31:28 of the symbol referred are different from bits 31:28 of P,
and non-functional code is produced.
Given the situation, for the purpose of overflow detection we can change
our code to follow the original psABI and only treat the in-place addend
as unsigned in the section symbol case, permitting jumps to offsets
128MiB and above into section. Sections so large may be uncommon, but
still a reasonable use case. On the other hand such large offsets from
regular local symbols are not expected and it makes sense to support
(possibly small) negative offsets instead, also in consistency with what
we do for global symbols.
Drop the (P & 0xf0000000) component then, treat the addend as signed
with local non-section symbols and also detect an overflow in the result
of such calculation with local symbols. NB it does not affect the value
computed for the relocatable field, it only affects overflow detection.
References:
[1] "SYSTEM V APPLICATION BINARY INTERFACE, MIPS RISC Processor
Supplement, 3rd Edition", Figure 4-11: "Relocation Types", p. 4-19
<http://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf>
[2] "64-bit ELF Object File Specification, Draft Version 2.5", Table 32
"Relocation Types", p. 45
<http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf>
bfd/
* elfxx-mips.c (mips_elf_calculate_relocation): <R_MIPS16_26>
<R_MIPS_26, R_MICROMIPS_26_S1>: Drop the region bits of the
reloc location from calculation, treat the addend as signed with
local non-section symbols and enable overflow detection.
ld/
* testsuite/ld-mips-elf/jal-global-overflow-0.d: New test.
* testsuite/ld-mips-elf/jal-global-overflow-1.d: New test.
* testsuite/ld-mips-elf/jal-local-overflow-0.d: New test.
* testsuite/ld-mips-elf/jal-local-overflow-1.d: New test.
* testsuite/ld-mips-elf/jal-global-overflow.s: New test source.
* testsuite/ld-mips-elf/jal-local-overflow.s: New test source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
On RELA targets the addend can affect JALX target's alignment, so only
verify it once the whole relocation calculation has completed.
bfd/
* elfxx-mips.c (mips_elf_calculate_relocation) <R_MIPS16_26>
<R_MIPS_26, R_MICROMIPS_26_S1>: Include the addend in JALX's
target alignment verification.
ld/
* testsuite/ld-mips-elf/unaligned-jalx-addend-0.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-addend-1.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-addend-mips16-0.d: New
test.
* testsuite/ld-mips-elf/unaligned-jalx-addend-mips16-1.d: New
test.
* testsuite/ld-mips-elf/unaligned-jalx-addend-micromips-0.d: New
test.
* testsuite/ld-mips-elf/unaligned-jalx-addend-micromips-1.d: New
test.
* testsuite/ld-mips-elf/unaligned-jalx-addend-0.s: New test
source.
* testsuite/ld-mips-elf/unaligned-jalx-addend-1.s: New test
source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
Symbol table entries for section symbols are different between IRIX and
traditional MIPS ELF targets in that IRIX entries have their `st_name'
member pointing at the section's name in the string table section, while
traditional entries have 0 there and the section header string table has
to be referred via the relevant section header's `shn_name' member
instead.
This is chosen with the `elf_backend_name_local_section_symbols' backend
and can be observed with `readelf -s' output for an IRIX object:
Symbol table '.symtab' contains 12 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 00000000 0 NOTYPE LOCAL DEFAULT UND
1: 00000000 0 SECTION LOCAL DEFAULT 1 .text
2: 00000000 0 SECTION LOCAL DEFAULT 3 .data
3: 00000000 0 SECTION LOCAL DEFAULT 4 .bss
4: 00000000 0 SECTION LOCAL DEFAULT 5 .reginfo
5: 00000000 0 SECTION LOCAL DEFAULT 6 .MIPS.abiflags
6: 00000000 0 SECTION LOCAL DEFAULT 7 .pdr
7: 00000000 0 SECTION LOCAL DEFAULT 9 .gnu.attributes
8: 00002000 16 FUNC GLOBAL DEFAULT 1 foo
9: 00004008 0 FUNC LOCAL DEFAULT 1 abar
10: 00002008 0 FUNC LOCAL DEFAULT 1 afoo
11: 00004000 16 FUNC GLOBAL DEFAULT 1 bar
and a corresponding traditional object:
Symbol table '.symtab' contains 12 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 00000000 0 NOTYPE LOCAL DEFAULT UND
1: 00000000 0 SECTION LOCAL DEFAULT 1
2: 00000000 0 SECTION LOCAL DEFAULT 3
3: 00000000 0 SECTION LOCAL DEFAULT 4
4: 00004008 0 FUNC LOCAL DEFAULT 1 abar
5: 00002008 0 FUNC LOCAL DEFAULT 1 afoo
6: 00000000 0 SECTION LOCAL DEFAULT 5
7: 00000000 0 SECTION LOCAL DEFAULT 6
8: 00000000 0 SECTION LOCAL DEFAULT 7
9: 00000000 0 SECTION LOCAL DEFAULT 9
10: 00002000 16 FUNC GLOBAL DEFAULT 1 foo
11: 00004000 16 FUNC GLOBAL DEFAULT 1 bar
respectively. Consequently the right way to retrieve a section symbol's
name has to be chosen in `mips_elf_calculate_relocation' for the purpose
of error reporting.
Originally we produced symbol tables in the traditional object format
only and we handled it correctly until it was lost in a rewrite with:
commit 7403cb6305
Author: Mark Mitchell <mark@codesourcery.com>
Date: Wed Jun 30 20:13:43 1999 +0000
probably because of the extra pointer indirection added which made the
same expression have a different meaning.
With the addition of IRIX symbol table format with:
commit 174fd7f955
Author: Richard Sandiford <rdsandiford@googlemail.com>
Date: Mon Feb 9 08:04:00 2004 +0000
the bug has been partially covered and now when a relocation error is
triggered with an IRIX object the offending section symbol is correctly
reported:
tmpdir/dump0.o: In function `foo':
(.text+0x2000): relocation truncated to fit: R_MIPS_26 against `.text'
tmpdir/dump0.o: In function `bar':
(.text+0x4000): relocation truncated to fit: R_MIPS_26 against `.text'
because `bfd_elf_string_from_elf_section' retrieves the name from the
string table section. With a traditional object however the function
returns an empty string and consequently `no symbol' is printed instead:
tmpdir/dump0.o: In function `foo':
(.text+0x2000): relocation truncated to fit: R_MIPS_26 against `no symbol'
tmpdir/dump0.o: In function `bar':
(.text+0x4000): relocation truncated to fit: R_MIPS_26 against `no symbol'
Restore the original semantics so that the section name is always
correctly retrieved.
bfd/
* elfxx-mips.c (mips_elf_calculate_relocation): Also use the
section name if `bfd_elf_string_from_elf_section' returns an
empty string.
ld/
* testsuite/ld-mips-elf/reloc-local-overflow.d: New test.
* testsuite/ld-mips-elf/reloc-local-overflow.s: Source for the
new test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new test.
If the testsuite is run with a DejaGnu version that predates the fix
from last year:
[PATCH] DejaGnu kills the wrong process due to PID-reuse races
http://lists.gnu.org/archive/html/dejagnu/2015-07/msg00005.html
... gdb.threads/attach-many-short-lived-threads.exp fails randomly,
often. Other tests randomly fail due to that issue too, but this one
is _much_ more exposed.
DejaGnu 1.6 was released meanwhile, which includes that DejaGnu fix,
and also some distros backported the fix too.
So skip the test when run with older/broken DejaGnus.
gdb/testsuite/ChangeLog:
2016-05-27 Pedro Alves <palves@redhat.com>
* gdb.threads/attach-many-short-lived-threads.exp (bad_dejagnu):
New procedure.
(top level): Call it, and bail out of DejaGnu is known to be bad.
AMD64 vs CpuIntel64 ISA should be handled similar as AT&T vs Intel
syntax. Since cpu_flags isn't sorted by position, we need to check
the whole cpu_flags array for the maximum position when verifying
CpuMax.
gas/
PR gas/20154
* config/tc-i386.c (cpu_flags_match): Don't set cpuamd64 nor
cpuintel64.
(match_template): Check Intel64/AMD64 ISA.
opcodes/
PR gas/20154
* i386-gen.c (cpu_flags): Remove CpuAMD64 and CpuIntel64.
(opcode_modifiers): Add AMD64 and Intel64.
(main): Properly verify CpuMax.
* i386-opc.h (CpuAMD64): Removed.
(CpuIntel64): Likewise.
(CpuMax): Set to CpuNo64.
(i386_cpu_flags): Remove cpuamd64 and cpuintel64.
(AMD64): New.
(Intel64): Likewise.
(i386_opcode_modifier): Add amd64 and intel64.
(i386-opc.tbl): Replace CpuAMD64/CpuIntel64 with AMD64/Intel64
on call and jmp.
* i386-init.h: Regenerated.
* i386-tbl.h: Likewise.
gdb/doc/ChangeLog:
* gdb.texinfo (General Query Packets): Move the description of the
response before the long list of the specific 'read' and 'write'
requests.
CpuMax should be CpuIntel64, not CpuNo64. i386-gen.c is updated to
verify that CpuMax is correct. X86 assembler is updated to properly
set cpuamd64 and cpuintel64.
gas/
PR gas/20154
* config/tc-i386.c (intel64): New.
(cpu_flags_match): Set cpuamd64 and cpuintel64.
(md_parse_option): Set intel64 instead of cpuamd64 and
cpuintel64.
opcodes/
PR gas/20154
* i386-gen.c (main): Fail if CpuMax is incorrect.
* i386-opc.h (CpuMax): Set to CpuIntel64.
* i386-tbl.h: Regenerated.
PR target/20150
* msp430-dis.c (msp430dis_read_two_bytes): New function.
(msp430dis_opcode_unsigned): New function.
(msp430dis_opcode_signed): New function.
(msp430_singleoperand): Use the new opcode reading functions.
Only disassenmble bytes if they were successfully read.
(msp430_doubleoperand): Likewise.
(msp430_branchinstr): Likewise.
(msp430x_callx_instr): Likewise.
(print_insn_msp430): Check that it is safe to read bytes before
attempting disassembly. Use the new opcode reading functions.
When evaluating an expression with EVAL_AVOID_SIDE_EFFECTS if the value
we return is forced to be of type not_lval then GDB will be unable to
take the address of the returned value.
Instead, we should properly initialise the LVAL of the returned value.
This commit builds on two previous commits 2520f728b7 (Forward
VALUE_LVAL when avoiding side effects for STRUCTOP_STRUCT) and
ac775bf4d3 (gdb: Forward VALUE_LVAL when avoiding side effects for
STRUCTOP_PTR), which in turn build on ac1ca910d7 (Fixes for PR
exp/15364).
This commit is currently untested due to my lack of access to an OpenCL
compiler, however, if follows the same pattern as the first two commits
mentioned above and so I believe that it is correct.
gdb/ChangeLog:
* opencl-lang.c (evaluate_subexp_opencl): If
EVAL_AVOID_SIDE_EFFECTS mode, forward the VALUE_LVAL attribute to
the returned value in the STRUCTOP_STRUCT case.
Assume that we have a C program like this:
struct foo_type
{
int var;
} foo;
struct foo_type *foo_ptr = &foo;
int
main ()
{
return foo_ptr->var;
}
Then GDB should be able to evaluate the following, however, it currently
does not:
(gdb) start
...
(gdb) whatis &(foo_ptr->var)
Attempt to take address of value not located in memory.
The problem is that in EVAL_AVOID_SIDE_EFFECTS mode,
eval.c:evaluate_subexp_standard always returns a not_lval value as the
result for a STRUCTOP_PTR operation. As a consequence, the rest of
the code believes that one cannot take the address of the returned
value.
This patch fixes STRUCTOP_PTR handling so that the VALUE_LVAL
attribute for the returned value is properly initialized. After this
change, the above session becomes:
(gdb) start
...
(gdb) whatis &(foo_ptr->var)
type = int *
This commit is largely the same as commit 2520f728b7 (Forward
VALUE_LVAL when avoiding side effects for STRUCTOP_STRUCT) but applied
to STRUCTOP_PTR rather than STRUCTOP_STRUCT. Both of these commits are
building on top of commit ac1ca910d7 (Fixes for PR exp/15364).
gdb/ChangeLog:
* eval.c (evaluate_subexp_standard): If EVAL_AVOID_SIDE_EFFECTS
mode, forward the VALUE_LVAL attribute to the returned value in
the STRUCTOP_PTR case.
gdb/testsuite/ChangeLog:
* gdb.base/whatis.c: Extend the test case.
* gdb.base/whatis.exp: Add additional tests.
It contains values between 128 and 256 which fit in an unsigned char, but not a
signed char, so we should explicitly use unsigned char to not rely on how these
values are converted to signed char.
gas/ChangeLog:
2016-05-26 Trevor Saunders <tbsaunde+binutils@tbsaunde.org>
* config/tc-metag.c (metag_handle_align): Make the type of noop
unsigned char.
gas/ChangeLog:
2016-05-26 Trevor Saunders <tbsaunde+binutils@tbsaunde.org>
* config/tc-rx.c (md_convert_frag): Make the type of reloc_type
bfd_reloc_code_real_type.
Upon a `bfd_reloc_outofrange' error continue processing so that any
further issues are also reported, similarly to how `bfd_reloc_overflow'
is handled. Adjust message formatting accordingly, using `%X' to abort
processing at conclusion.
Reduce the number of test cases by grouping relocations the handling of
which can now be verified together with a single source and dump.
bfd/
* elfxx-mips.c (_bfd_mips_elf_relocate_section)
<bfd_reloc_outofrange>: Use the `%X%H' rather than `%C' format
for message. Continue processing rather than returning failure.
ld/
* testsuite/ld-mips-elf/unaligned-jalx-0.d: Fold
`unaligned-jalx-2' here.
* testsuite/ld-mips-elf/unaligned-jalx-mips16-0.d: Fold
`unaligned-jalx-mips16-2' here.
* testsuite/ld-mips-elf/unaligned-jalx-micromips-0.d: Fold
`unaligned-jalx-micromips-2' here.
* testsuite/ld-mips-elf/unaligned-jalx-0.s: Update accordingly.
* testsuite/ld-mips-elf/unaligned-jalx-1.d: Update error
message.
* testsuite/ld-mips-elf/unaligned-jalx-mips16-1.d: Likewise.
* testsuite/ld-mips-elf/unaligned-jalx-micromips-1.d: Likewise.
* testsuite/ld-mips-elf/unaligned-jalx-2.d: Remove test.
* testsuite/ld-mips-elf/unaligned-jalx-mips16-2.d: Remove test.
* testsuite/ld-mips-elf/unaligned-jalx-micromips-2.d: Remove
test.
* testsuite/ld-mips-elf/unaligned-jalx-2.s: Remove test source.
* testsuite/ld-mips-elf/unaligned-lwpc-0.d: Fold
`unaligned-lwpc-3' here.
* testsuite/ld-mips-elf/unaligned-lwpc-0.s: Update accordingly.
* testsuite/ld-mips-elf/unaligned-lwpc-1.d: Fold
`unaligned-lwpc-2' here.
* testsuite/ld-mips-elf/unaligned-lwpc-1.s: Update accordingly.
* testsuite/ld-mips-elf/unaligned-lwpc-2.d: Remove test.
* testsuite/ld-mips-elf/unaligned-lwpc-2.s: Remove test source.
* testsuite/ld-mips-elf/unaligned-lwpc-3.d: Remove test.
* testsuite/ld-mips-elf/unaligned-lwpc-3.s: Remove test source.
* testsuite/ld-mips-elf/unaligned-ldpc-0.d: Fold
`unaligned-ldpc-4' here.
* testsuite/ld-mips-elf/unaligned-ldpc-0.s: Update accordingly.
* testsuite/ld-mips-elf/unaligned-ldpc-1.d: Update error
message. Fold `unaligned-ldpc-2' and `unaligned-ldpc-3' here.
* testsuite/ld-mips-elf/unaligned-ldpc-1.s: Update accordingly.
* testsuite/ld-mips-elf/unaligned-ldpc-2.d: Remove test.
* testsuite/ld-mips-elf/unaligned-ldpc-2.s: Remove test source.
* testsuite/ld-mips-elf/unaligned-ldpc-3.d: Remove test.
* testsuite/ld-mips-elf/unaligned-ldpc-3.s: Remove test source.
* testsuite/ld-mips-elf/unaligned-ldpc-4.d: Remove test.
* testsuite/ld-mips-elf/unaligned-ldpc-4.s: Remove test source.
* testsuite/ld-mips-elf/mips-elf.exp: Delete removed tests.
The AVX512VL bit alone isn't sufficient to select a 128-bit or 256-bit
AVX512 instruction. We must match another AVX512 bit.
PR gas/20140
* config/tc-i386.c (cpu_flags_match): Require another match
for AVX512VL.
* testsuite/gas/i386/i386.exp: Run avx512vl-1, avx512vl-2,
x86-64-avx512vl-1 and x86-64-avx512vl-2.
* testsuite/gas/i386/avx512vl-1.l: New file.
* testsuite/gas/i386/avx512vl-1.s: Likewise.
* testsuite/gas/i386/avx512vl-2.l: Likewise.
* testsuite/gas/i386/avx512vl-2.s: Likewise.
* testsuite/gas/i386/x86-64-avx512vl-1.l: Likewise.
* testsuite/gas/i386/x86-64-avx512vl-1.s: Likewise.
* testsuite/gas/i386/x86-64-avx512vl-2.l: Likewise.
* testsuite/gas/i386/x86-64-avx512vl-2.s: Likewise.
A `bfd_reloc_outofrange' condition from `mips_elf_calculate_relocation'
currently triggers the warning callback, which in the case of LD prints
messages like:
foo.o: In function `foo':
(.text+0x0): warning: JALX to a non-word-aligned address
or:
foo.o: In function `foo':
(.text+0x0): warning: PC-relative load from unaligned address
and nothing else, which suggests this is a benign condition and link has
otherwise successfully run to completion. This is however not the case,
the link terminates right away with no further messages and no output
produced.
Use the general error or warning info callback then, preserving the
message format. Also set a BFD error condition so that a failure is
unambiguously reported. Complement the change with a set of suitable
test suite additions.
bfd/
* elfxx-mips.c (_bfd_mips_elf_relocate_section)
<bfd_reloc_outofrange>: Call `->einfo' rather than `->warning'.
Call `bfd_set_error'.
ld/
* testsuite/ld-mips-elf/unaligned-jalx-0.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-1.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-2.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-mips16-0.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-mips16-1.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-mips16-2.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-micromips-0.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-micromips-1.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-micromips-2.d: New test.
* testsuite/ld-mips-elf/unaligned-lwpc-0.d: New test.
* testsuite/ld-mips-elf/unaligned-lwpc-1.d: New test.
* testsuite/ld-mips-elf/unaligned-lwpc-2.d: New test.
* testsuite/ld-mips-elf/unaligned-lwpc-3.d: New test.
* testsuite/ld-mips-elf/unaligned-ldpc-0.d: New test.
* testsuite/ld-mips-elf/unaligned-ldpc-1.d: New test.
* testsuite/ld-mips-elf/unaligned-ldpc-2.d: New test.
* testsuite/ld-mips-elf/unaligned-ldpc-3.d: New test.
* testsuite/ld-mips-elf/unaligned-ldpc-4.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-0.s: New test source.
* testsuite/ld-mips-elf/unaligned-jalx-1.s: New test source.
* testsuite/ld-mips-elf/unaligned-jalx-2.s: New test source.
* testsuite/ld-mips-elf/unaligned-insn.s: New test source.
* testsuite/ld-mips-elf/unaligned-lwpc-0.s: New test source.
* testsuite/ld-mips-elf/unaligned-lwpc-1.s: New test source.
* testsuite/ld-mips-elf/unaligned-lwpc-2.s: New test source.
* testsuite/ld-mips-elf/unaligned-lwpc-3.s: New test source.
* testsuite/ld-mips-elf/unaligned-ldpc-0.s: New test source.
* testsuite/ld-mips-elf/unaligned-ldpc-1.s: New test source.
* testsuite/ld-mips-elf/unaligned-ldpc-2.s: New test source.
* testsuite/ld-mips-elf/unaligned-ldpc-3.s: New test source.
* testsuite/ld-mips-elf/unaligned-ldpc-4.s: New test source.
* testsuite/ld-mips-elf/unaligned-syms.s: New test source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.