This patch reworks the whole completion machinery, and prepares it
for later enhancements.
Adds a new "completion_tracker" class that is meant to hold everything
about the state of the current completion operation.
This class now has the responsibility of tracking the list of
completion matches, and checking whether the max completions limit has
been reached. You can look at this as this patch starting out by
C++fying the existing "completion_tracker" in symtab.c (it's just an
htab_t typedef currently), moving it to completer.h/c, and then making
it a class/generalizing/enhancing it.
Unlike with the current tracking, completion_tracker now checks
whether the limit has been reached on each completion match list
insertion. This both simplifies the max-completions handling code
(maybe_add_completion_enum is gone, for example), and is a
prerequisite for follow up patches.
The current completion_tracker is only used for symbol completions,
and the symbol code gets at the current instance via globals. This
patch cleans that up by adding a completion_tracker reference to the
signature of the completion functions, and passing the tracker around
everywhere necessary.
Then, the patch changes how the completion match list is handed over
to readline. Currently, we're using the rl_completion_entry_function
readline entry point, and the patch switches to
rl_attempted_completion_function. A following patch will want to let
GDB itself decide the common completion prefix between all matches
(what readline calls the "lowest common denominator"), instead of
having readline compute it, and that's not possible with the
rl_completion_entry_function entry point. Also,
rl_attempted_completion_function lets GDB hand over the match list to
readline as an array in one go instead of passing down matches one by
one, so from that angle it's a nicer entry point anyway.
Lastly, the patch catches exceptions around the readline entry points,
because we can't let C++ exceptions cross readline. We handle that in
the readline input entry point, but the completion entry point isn't
guarded, so GDB can abort if completion throws. E.g., in current
master:
(gdb) b -function "fun<tab>
terminate called after throwing an instance of 'gdb_exception_RETURN_MASK_ERROR'
Aborted (core dumped)
This patch fixes that. This will be exercised in the new tests added
later on in the series.
gdb/ChangeLog:
2017-07-17 Pedro Alves <palves@redhat.com>
* ada-lang.c (symbol_completion_match): Adjust comments.
(symbol_completion_add): Replace vector parameter with
completion_tracker parameter. Use it.
(ada_make_symbol_completion_list): Rename to...
(ada_collect_symbol_completion_matches): ... this. Add
completion_tracker parameter and use it.
(ada_language_defn): Adjust.
* break-catch-syscall.c (catch_syscall_completer): Adjust
prototype and work with completion_tracker instead of VEC.
* breakpoint.c (condition_completer): Adjust prototype and work
with completion_tracker instead of VEC.
* c-lang.c (c_language_defn, cplus_language_defn)
(asm_language_defn, minimal_language_defn): Adjust to renames.
* cli/cli-cmds.c (complete_command): Rework using
completion_tracker. Catch exceptions when completing.
* cli/cli-decode.c (integer_unlimited_completer)
(complete_on_cmdlist, complete_on_enum): Adjust prototype and work
with completion_tracker instead of VEC.
* command.h (struct completion_tracker): Forward declare.
(completer_ftype, completer_handle_brkchars_ftype): Change
types.
(complete_on_cmdlist, complete_on_enum): Adjust.
* completer.c: Include <algorithm>.
(struct gdb_completer_state): New.
(current_completion): New global.
(readline_line_completion_function): Delete.
(noop_completer, filename_completer)
(filename_completer_handle_brkchars, complete_files_symbols)
(linespec_location_completer): Adjust to work with a
completion_tracker instead of a VEC.
(string_or_empty): New.
(collect_explicit_location_matches): Adjust to work with a
completion_tracker instead of a VEC.
(explicit_location_completer): Rename to ...
(complete_explicit_location): ... this and adjust to work with a
completion_tracker instead of a VEC.
(location_completer): Adjust to work with a completion_tracker
instead of a VEC.
(add_struct_fields): Adjust to work with a completion_list instead
of VEC.
(expression_completer): Rename to ...
(complete_expression): ... this and adjust to work with a
completion_tracker instead of a VEC. Use complete_files_symbols.
(expression_completer): Reimplement on top of complete_expression.
(symbol_completer): Adjust to work with a completion_tracker
instead of a VEC.
(enum complete_line_internal_reason): Add describing comments.
(complete_line_internal_normal_command): Adjust to work with a
completion_tracker instead of a VEC.
(complete_line_internal): Rename to ...
(complete_line_internal_1): ... this and adjust to work with a
completion_tracker instead of a VEC. Assert TEXT is NULL in the
handle_brkchars phase.
(new_completion_tracker): Delete.
(complete_line_internal): Reimplement as TRY/CATCH wrapper around
complete_line_internal_1.
(free_completion_tracker): Delete.
(INITIAL_COMPLETION_HTAB_SIZE): New.
(completion_tracker::completion_tracker)
(completion_tracker::~completion_tracker): New.
(maybe_add_completion): Delete.
(completion_tracker::maybe_add_completion)
(completion_tracker::add_completion)
(completion_tracker::add_completions): New.
(throw_max_completions_reached_error): Delete.
(complete_line): Adjust to work with a completion_tracker instead
of a VEC. Don't create a completion_tracker_t or check for max
completions here.
(command_completer, command_completer_handle_brkchars)
(signal_completer, reg_or_group_completer_1)
(reg_or_group_completer, default_completer_handle_brkchars):
Adjust to work with a completion_tracker.
(gdb_completion_word_break_characters_throw): New.
(gdb_completion_word_break_characters): Reimplement.
(line_completion_function): Delete.
(completion_tracker::recompute_lowest_common_denominator)
(expand_preserving_ws)
(completion_tracker::build_completion_result)
(completion_result::completion_result)
(completion_result::completion_result)
(completion_result::~completion_result)
(completion_result::completion_result)
(completion_result::release_match_list, compare_cstrings)
(completion_result::sort_match_list)
(completion_result::reset_match_list)
(gdb_rl_attempted_completion_function_throw)
(gdb_rl_attempted_completion_function): New.
* completer.h (completion_list, struct completion_result)
(class completion_tracker): New.
(complete_line): Add completion_tracker parameter.
(readline_line_completion_function): Delete.
(gdb_rl_attempted_completion_function): New.
(noop_completer, filename_completer, expression_completer)
(location_completer, symbol_completer, command_completer)
(signal_completer, reg_or_group_completer): Update prototypes.
(completion_tracker_t, new_completion_tracker)
(make_cleanup_free_completion_tracker): Delete.
(enum maybe_add_completion_enum): Delete.
(maybe_add_completion): Delete.
(throw_max_completions_reached_error): Delete.
* corefile.c (complete_set_gnutarget): Adjust to work with a
completion_tracker instead of a VEC.
* cp-abi.c (cp_abi_completer): Adjust to work with a
completion_tracker instead of a VEC.
* d-lang.c (d_language_defn): Adjust.
* disasm.c (disassembler_options_completer): Adjust to work with a
completion_tracker instead of a VEC.
* f-lang.c (f_make_symbol_completion_list): Rename to ...
(f_collect_symbol_completion_matches): ... this. Adjust to work
with a completion_tracker instead of a VEC.
(f_language_defn): Adjust.
* go-lang.c (go_language_defn): Adjust.
* guile/scm-cmd.c (cmdscm_add_completion, cmdscm_completer):
Adjust to work with a completion_tracker instead of a VEC.
* infrun.c (handle_completer): Likewise.
* interps.c (interpreter_completer): Likewise.
* interps.h (interpreter_completer): Likewise.
* language.c (unknown_language_defn, auto_language_defn)
(local_language_defn): Adjust.
* language.h (language_defn::la_make_symbol_completion_list):
Rename to ...
(language_defn::la_collect_symbol_completion_matches): ... this
and adjust to work with a completion_tracker instead of a VEC.
* m2-lang.c (m2_language_defn): Adjust.
* objc-lang.c (objc_language_defn): Adjust.
* opencl-lang.c (opencl_language_defn): Adjust.
* p-lang.c (pascal_language_defn): Adjust.
* python/py-cmd.c (cmdpy_completer_helper): Handle NULL word.
(cmdpy_completer_handle_brkchars, cmdpy_completer): Adjust to work
with a completion_tracker.
* rust-lang.c (rust_language_defn): Adjust.
* symtab.c (free_completion_list, do_free_completion_list)
(return_val, completion_tracker): Delete.
(completion_list_add_name, completion_list_add_symbol)
(completion_list_add_msymbol, completion_list_objc_symbol)
(completion_list_add_fields, add_symtab_completions): Add
completion_tracker parameter and use it.
(default_make_symbol_completion_list_break_on_1): Rename to...
(default_collect_symbol_completion_matches_break_on): ... this.
Add completion_tracker parameter and use it instead of allocating
a completion tracker here.
(default_make_symbol_completion_list_break_on): Delete old
implementation.
(default_make_symbol_completion_list): Delete.
(default_collect_symbol_completion_matches): New.
(make_symbol_completion_list): Delete.
(collect_symbol_completion_matches): New.
(make_symbol_completion_type): Rename to ...
(collect_symbol_completion_matches_type): ... this. Add
completion_tracker parameter and use it instead of VEC.
(make_file_symbol_completion_list_1): Rename to...
(collect_file_symbol_completion_matches): ... this. Add
completion_tracker parameter and use it instead of VEC.
(make_file_symbol_completion_list): Delete.
(add_filename_to_list): Use completion_list instead of a VEC.
(add_partial_filename_data::list): Now a completion_list.
(make_source_files_completion_list): Work with a completion_list
instead of a VEC.
* symtab.h: Include "completer.h".
(default_make_symbol_completion_list_break_on)
(default_make_symbol_completion_list, make_symbol_completion_list)
(make_symbol_completion_type, make_file_symbol_completion_list)
(make_source_files_completion_list): Delete.
(default_collect_symbol_completion_matches_break_on)
(default_collect_symbol_completion_matches)
(collect_symbol_completion_matches)
(collect_symbol_completion_matches_type)
(collect_file_symbol_completion_matches)
(make_source_files_completion_list): New.
* top.c (init_main): Don't install a rl_completion_entry_function
hook. Install a rl_attempted_completion_function hook instead.
* tui/tui-layout.c (layout_completer): Adjust to work with a
completion_tracker.
* tui/tui-regs.c (tui_reggroup_completer):
* tui/tui-win.c (window_name_completer, focus_completer)
(winheight_completer): Adjust to work with a completion_tracker.
* value.c: Include "completer.h".
(complete_internalvar): Adjust to work with a completion_tracker.
* value.h (complete_internalvar): Likewise.
This patch cleans up "completer_handle_brkchars" callback handling:
- Renames the function typedef to better match its intent:
completer_ftype_void -> completer_handle_brkchars_ftype
- Factors out common code in complete_line_internal handling the
"handle_brkchars" callback to a separate function.
- Centralizes all the "completer method" to "handle_brkchars method"
mapping in a single function.
gdb/ChangeLog:
2017-07-17 Pedro Alves <palves@redhat.com>
* cli/cli-decode.c (set_cmd_completer_handle_brkchars): Adjust to
renames.
* cli/cli-decode.h (struct cmd_list_element) <completer>: Move
comments to completer_ftype's declaration.
<completer_handle_brkchars>: Change type to
completer_handle_brkchars_ftype.
* command.h (completer_ftype): Add describing comment and give
names to parameters.
(completer_ftype_void): Rename to ...
(completer_handle_brkchars_ftype) ... this. Add describing comment.
(set_cmd_completer_handle_brkchars): Adjust.
* completer.c (filename_completer_handle_brkchars): New function.
(complete_line_internal_normal_command): New function, factored
out from ...
(complete_line_internal): ... here.
(command_completer_handle_brkchars)
(default_completer_handle_brkchars)
(completer_handle_brkchars_func_for_completer): New functions.
* completer.h (set_gdb_completion_word_break_characters): Delete
declaration.
(completer_handle_brkchars_func_for_completer): New declaration.
* python/py-cmd.c (cmdpy_completer_handle_brkchars): Adjust to use
completer_handle_brkchars_func_for_completer.
"make_symbol_completion_list_fn" is odly named when you look at a list
of "standard" completers, like the Python/Guile completer lists
adjusted by this patch. Rename / move it to completers.h/c, for
consistency.
gdb/ChangeLog:
2017-07-17 Pedro Alves <palves@redhat.com>
* completer.c (symbol_completer): New function, based on
make_symbol_completion_list_fn.
* completer.h (symbol_completer): New declaration.
* guile/scm-cmd.c (cmdscm_completers): Adjust.
* python/py-cmd.c (completers): Adjust.
* symtab.c (make_symbol_completion_list_fn): Delete.
* symtab.h (make_symbol_completion_list_fn): Delete.
* cli/cli-decode.c (add_cmd): Adjust.
Tab completion when debugging a program binary that uses GDB index is
surprisingly much slower than when GDB uses psymtabs instead. Around
1.5x/3x slower. That's surprising, because the whole point of GDB
index is to speed things up...
For example, with:
set pagination off
set $count = 0
while $count < 400
complete b string_prin # matches gdb's string_printf
printf "count = %d\n", $count
set $count = $count + 1
end
$ time ./gdb --batch -q ./gdb-with-index -ex "source script.cmd"
real 0m11.042s
user 0m10.920s
sys 0m0.042s
$ time ./gdb --batch -q ./gdb-without-index -ex "source script.cmd"
real 0m4.635s
user 0m4.590s
sys 0m0.037s
Same but with:
- complete b string_prin
+ complete b zzzzzz
to exercise the no-matches worst case, master currently gets you
something like:
with index without index
real 0m11.971s 0m8.413s
user 0m11.912s 0m8.355s
sys 0m0.035s 0m0.035s
Running gdb under perf shows 80% spent inside
maybe_add_partial_symtab_filename, and 20% spent in the lbasename
inside that.
The problem that tab completion walks over all compunit symtabs, and
for each, walks the contained file symtabs. And there a huge number
of file symtabs (each included system header, etc.) that appear in
each compunit symtab's file symtab list. As in, when debugging GDB, I
have 367381 symtabs iterated, when of those only 5371 filenames are
unique...
This was a regression from the earlier (nice) split of symtabs in
compunit symtabs + file symtabs.
The fix here is to add a cache of unique filenames per objfile so that
the walk / uniquing is only done once. There's already a abstraction
for this in symtab.c; this patch moves that code out to a separate
file and C++ifies it bit.
This makes the worst-case scenario above consistently drop to ~2.5s
(1.5s for the "string_prin" hit case), making it over 3.3x times
faster than psymtabs in this use case (7x in the "string_prin" hit
case).
gdb/ChangeLog:
2017-07-17 Pedro Alves <palves@redhat.com>
* Makefile.in (COMMON_OBS): Add filename-seen-cache.o.
* dwarf2read.c: Include "filename-seen-cache.h".
* dwarf2read.c (dwarf2_per_objfile) <filenames_cache>: New field.
(dw2_map_symbol_filenames): Build and use a filenames_seen_cache.
* filename-seen-cache.c: New file.
* filename-seen-cache.h: New file.
* symtab.c: Include "filename-seen-cache.h".
(struct filename_seen_cache, INITIAL_FILENAME_SEEN_CACHE_SIZE)
(create_filename_seen_cache, clear_filename_seen_cache)
(delete_filename_seen_cache, filename_seen): Delete, parts moved
to filename-seen-cache.h/filename-seen-cache.c.
(output_source_filename, sources_info)
(maybe_add_partial_symtab_filename)
(make_source_files_completion_list): Adjust to use
filename_seen_cache.
This makes dwarf2_per_objfile a class with cdtors.
A following patch will add a non-trivial field to struct
dwarf2_per_objfile, making dwarf2_per_objfile itself non-trivial.
Since dwarf2_per_objfile is allocated in an obstack, we need to run
its cdtors manually.
Tested on x86-64 GNU/Linux.
gdb/ChangeLog:
2017-07-17 Pedro Alves <palves@redhat.com>
* dwarf2read.c (dwarf2_per_objfile): In-class initialize all
fields.
(dwarf2_per_objfile::dwarf2_per_objfile(objfile*, const
dwarf2_debug_sections*)): New.
(dwarf2_per_objfile::dwarf2_per_objfile(const
dwarf2_per_objfile&)): Declare as deleted.
(dwarf2_per_objfile::operator=): Declare as deleted.
(dwarf2_per_objfile::dwarf2_per_objfile)
(dwarf2_per_objfile::~dwarf2_per_objfile)
(dwarf2_per_objfile::free_cached_comp_units): New.
(dwarf2_has_info): dwarf2_per_objfile initialization code moved to
ctor. Call dwarf2_per_objfile's ctor manually.
(dwarf2_locate_sections): Deleted/refactored as ...
(dwarf2_per_objfile::locate_sections): ... this new method.
(free_cached_comp_units): Defer to
dwarf2_per_objfile::free_cached_comp_units.
(dwarf2_free_objfile): Call dwarf2_per_objfile's dtor manually.
My 2017-01-24 patch (commit f0158f44) wrongly applied an optimization
of GOT entries for the __tls_get_addr_opt stub, to shared libraries.
When the TLS segment layout is known, as it is for the executable and
shared libraries loaded at initial program start, powerpc supports a
__tls_get_addr optimization. On the first call to __tls_get_addr for
a given __tls_index GOT entry, the DTPMOD word is set to zero and the
DTPREL word to the thread pointer offset to the thread variable. This
allows the __tls_get_addr_opt stub to return that value immediately
without making a call into glibc for any subsequent __tls_get_addr
calls using that __tls_index GOT entry.
That's all fine, but I thought I'd be clever and when the thread
variable is local, set up the GOT entry as if __tls_get_addr had
already been called. Which is good only for the executable, since ld
cannot know the TLS layout for shared libraries.
Of course, if this only applies to executables there isn't much point
to the optimization. Normally, GD and LD code in an executable will
be converted to IE or LE, losing the __tls_get_addr call. So the only
time it will trigger is with --no-tls-optimize. Thus, revert all
support.
* elf64-ppc.c (ppc64_elf_relocate_section): Don't optimize
__tls_index GOT entries when using __tls_get_addr_opt stub.
* elf32-ppc.c (ppc_elf_relocate_section): Likewise.
Make sure all of the tests have unique names in
gdb.mi/mi-vla-fortran.exp.
gdb/testsuite/ChangeLog:
* gdb.mi/mi-vla-fortran.exp: Make test names unique.
PR rust/21764 notes that "sizeof" does not work correctly for all types
in Rust. The bug turns out to be an error in the conversion of the AST
to gdb expressions. This patch fixes the bug and also avoids generating
incorrect expressions in another case.
Tested on the buildbot. I'm checking this in.
2017-07-14 Tom Tromey <tom@tromey.com>
PR rust/21764:
* rust-exp.y (convert_ast_to_expression): Add "want_type"
parameter.
<UNOP_SIZEOF>: Split into separate case.
<UNOP_VAR_VALUE>: Handle want_type. Add error case.
2017-07-14 Tom Tromey <tom@tromey.com>
PR rust/21764:
* gdb.rust/simple.exp: Add tests.
PR rust/21763 points out that gdb.lookup_typename does not work properly
for (some) Rust types. I tracked this down to a missing case in
symbol_matches_domain.
Tested by the buildbot.
2017-07-14 Tom Tromey <tom@tromey.com>
PR rust/21763:
* symtab.c (symbol_matches_domain): Add language_rust to special
case.
* rust-exp.y (convert_ast_to_expression) <OP_VAR_VALUE>: Don't
treat LOC_TYPEDEF symbols as variables.
2017-07-14 Tom Tromey <tom@tromey.com>
* gdb.rust/simple.exp: Add regression test for PR rust/21763.
This is the same patch as posted at
<https://sourceware.org/ml/gdb-patches/2017-02/msg00644.html>, with
the test at
<https://sourceware.org/ml/gdb-patches/2017-02/msg00687.html> squashed
in.
This patch fixes:
-FAIL: gdb.base/completion.exp: tab complete break break.c:ma (timeout)
-FAIL: gdb.base/completion.exp: complete break break.c:ma
+PASS: gdb.base/completion.exp: tab complete break break.c:ma
+PASS: gdb.base/completion.exp: delete breakpoint for tab complete break break.c:ma
+PASS: gdb.base/completion.exp: complete break break.c:ma
When run with --target_board=dwarf4-gdb-index.
The issue here is that make_file_symbol_completion_list_1, used when
completing a symbol restricted to a given source file, uses
lookup_symtab to look up the symtab with the given name, and search
for matching symbols inside. This assumes that there's only one
symtab for the given source file. This is an incorrect assumption
with (for example) -fdebug-types-section, where we'll have an extra
extra symtab containing the types. lookup_symtab finds that symtab,
and inside that symtab there are no functions...
gdb/ChangeLog:
2017-07-14 Pedro Alves <palves@redhat.com>
* symtab.c (make_file_symbol_completion_list_1): Iterate over
symtabs matching all symtabs with SRCFILE as file name instead of
only considering the first hit, with lookup_symtab.
gdb/testsuite/ChangeLog:
2017-07-14 Pedro Alves <palves@redhat.com>
* gdb.linespec/base/one/thefile.cc (z1): New function.
* gdb.linespec/base/two/thefile.cc (z2): New function.
* gdb.linespec/linespec.exp: Add tests.
When elf section size is beyond unsigned int max value, objdump fails
to disassemble from that section. Ex on PowerPC,
$ objdump -h /proc/kcore
Idx Name Size VMA
4 load2 100000000 c000000000000000
Here, size of load2 section is 0x100000000. Also note that, 0xc00....
address range is kernel space for PowerPC. Now let's try to disassemble
do_sys_open() using /proc/kcore.
$ cat /proc/kallsyms | grep -A1 -w do_sys_open
c00000000036c000 T do_sys_open
c00000000036c2d0 T SyS_open
Before patch:
$ objdump -d --start-address=0xc00000000036c000 --stop-address=0xc00000000036c2d0 /proc/kcore
/proc/kcore: file format elf64-powerpcle
Disassembly of section load2:
c00000000036c000 <load2+0x36c000>:
c00000000036c000: Address 0xc00000000036c000 is out of bounds.
Fix this by changing type of 'buffer_length' from unsigned int to
size_t. After patch:
$ objdump -d --start-address=0xc00000000036c000 --stop-address=0xc00000000036c2d0 /proc/kcore
/proc/kcore: file format elf64-powerpcle
Disassembly of section load2:
c00000000036c000 <load2+0x36c000>:
c00000000036c000: fc 00 4c 3c addis r2,r12,252
c00000000036c004: 00 53 42 38 addi r2,r2,21248
c00000000036c008: a6 02 08 7c mflr r0
include/
* dis-asm.h (struct disassemble_info): Change type of buffer_length
field to size_t.
opcodes/
* dis-buf.c (buffer_read_memory): Change type of end_addr_offset,
max_addr_offset and octets variables to size_t.
These all were odd in that they used r13 as the GOT pointer. That
didn't matter for the purpose of testing, but would never occur in
practice. Also, the tlsopt5 tests could have their global dynamic
sequences optimized to initial exec, so link with -shared.
* testsuite/ld-powerpc/powerpc.exp: Add -shared to tlsop5 tests.
* testsuite/ld-powerpc/tlsopt5.d: Adjust.
* testsuite/ld-powerpc/tlsopt1_32.s: Use r30 as GOT pointer.
* testsuite/ld-powerpc/tlsopt2_32.s: Likewise.
* testsuite/ld-powerpc/tlsopt3_32.s: Likewise.
* testsuite/ld-powerpc/tlsopt4_32.s: Likewise.
* testsuite/ld-powerpc/tlsopt5_32.s: Rewrite.
* testsuite/ld-powerpc/tlsopt1_32.d: Adjust.
* testsuite/ld-powerpc/tlsopt2_32.d: Adjust.
* testsuite/ld-powerpc/tlsopt3_32.d: Adjust.
* testsuite/ld-powerpc/tlsopt5_32.d: Adjust.
Complement commit d9409498813c ("Add a testcase for PR ld/21529") and
use a linker script to prevent an inter-segment gap arranged by the
default linker script associated with some targets such as `rx-elf':
$ ld -e main -o tmpdir/dump-elf tmpdir/pr21529.o
$ readelf -l tmpdir/dump-elf
Elf file type is EXEC (Executable file)
Entry point 0x10000004
There are 2 program headers, starting at offset 52
Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x001000 0x10000000 0x10000000 0x00008 0x00008 R E 0x1000
LOAD 0x001ffc 0xbffffffc 0xbffffffc 0x00004 0x00004 RW 0x1000
Section to Segment mapping:
Segment Sections...
00 .text
01 .stack
$
and converted to padding with the use of the binary BFD for output from
producing unreasonably large files.
ld/
* testsuite/ld-unique/pr21529.ld: New test linker script.
* testsuite/ld-unique/pr21529.d: Use it.
In multiple places, we pass the gdbarch as an argument to some
functions, even though it's available in the agent_expr structure also
passed to the same functions. Remove these arguments and replace their
usage with accesses to agent_expr::gdbarch.
gdb/ChangeLog:
* dwarf2loc.h (dwarf2_compile_expr_to_ax): Remove gdbarch
parameter.
* symtab.h (struct symbol_computed_ops::tracepoint_var_ref):
Likewise.
* dwarf2loc.c (dwarf2_compile_expr_to_ax): Remove gdbarch
parameter, use agent_expr::gdbarch instead, update function
calls.
(locexpr_tracepoint_var_ref): Likewise.
(loclist_tracepoint_var_ref): Likewise.
* ax-gdb.c (gen_trace_static_fields): Likewise.
(gen_traced_pop): Likewise.
(gen_frame_args_address): Likewise.
(gen_frame_locals_address): Likewise.
(gen_var_ref): Likewise.
(gen_struct_ref_recursive): Likewise.
(gen_static_field): Likewise.
(gen_maybe_namespace_elt): Likewise.
(gen_expr): Likewise.
(gen_trace_for_var): Likewise.
(gen_trace_for_expr): Likewise.
(gen_trace_for_return_address): Likewise.
In many ax generation functions, the "expression *exp" parameter is only
used to access the gdbarch. The same value can be found in the
"agent_expr *ax" parameter, which needs to be passed in any case. By
using ax->gdbarch instead of exp->gdbarch, we can avoid passing exp in
many of these functions.
gdb/ChangeLog:
* ax-gdb.c (gen_usual_unary): Remove exp parameter, get gdbarch
from ax, update calls.
(gen_usual_arithmetic): Likewise.
(gen_integral_promotions): Likewise.
(gen_bitfield_ref): Likewise.
(gen_primitive_field): Likewise.
(gen_struct_ref_recursive): Likewise.
(gen_struct_ref): Likewise.
(gen_maybe_namespace_elt): Likewise.
(gen_struct_elt_for_reference): Likewise.
(gen_namespace_elt): Likewise.
(gen_aggregate_elt_ref): Likewise.
(gen_expr): Get gdbarch from ax, update calls.
(gen_expr_binop_rest): Likewise.
In the test gdb.mi/mi-vla-fortran.exp the parameters passed to
mi_create_breakpoint are passed in the wrong order. By good luck the
tests still passes, however the wrong test name is used. All fixed in
this commit.
A previous commit fixed most of these, but I missed this last one.
gdb/testsuite/ChangeLog:
* gdb.mi/mi-vla-fortran.exp: Correct even more parameter passing
to mi_create_breakpoint.
Ref: https://sourceware.org/ml/gdb-patches/2017-07/msg00162.html
Debugging x86-64 GNU/Linux programs currently crashes GDB in
tdesc_use_registers during gdbarch initialization:
Program received signal SIGSEGV, Segmentation fault.
0x0000000001093eaf in htab_remove_elt_with_hash (htab=0x2ef9fa0, element=0x26af960, hash=557151073) at src/libiberty/hashtab.c:728
728 if (*slot == HTAB_EMPTY_ENTRY)
(top-gdb) p slot
$1 = (void **) 0x0
(top-gdb) bt
#0 0x0000000001093eaf in htab_remove_elt_with_hash (htab=0x2ef9fa0, element=0x26af960, hash=557151073) at src/libiberty/hashtab.c:728
#1 0x0000000001093e79 in htab_remove_elt (htab=0x2ef9fa0, element=0x26af960) at src/libiberty/hashtab.c:714
#2 0x00000000009121b0 in tdesc_use_registers (gdbarch=0x3001240, target_desc=0x2659cb0, early_data=0x2881cb0)
at src/gdb/target-descriptions.c:1328
#3 0x000000000047c93e in i386_gdbarch_init (info=..., arches=0x0) at src/gdb/i386-tdep.c:8634
#4 0x0000000000818d5f in gdbarch_find_by_info (info=...) at src/gdb/gdbarch.c:5394
#5 0x00000000007198a8 in set_gdbarch_from_file (abfd=0x2f48250) at src/gdb/arch-utils.c:618
#6 0x00000000007f21cb in exec_file_attach (filename=0x7fffffffddb0 "/home/pedro/gdb/tests/threads", from_tty=1) at src/gdb/exec.c:380
#7 0x0000000000865c18 in catch_command_errors_const (command=0x7f1d83 <exec_file_attach(char const*, int)>, arg=0x7fffffffddb0 "/home/pedro/gdb/tests/threads",
from_tty=1) at src/gdb/main.c:403
#8 0x00000000008669cf in captured_main_1 (context=0x7fffffffd860) at src/gdb/main.c:1035
#9 0x0000000000866de2 in captured_main (data=0x7fffffffd860) at src/gdb/main.c:1142
#10 0x0000000000866e24 in gdb_main (args=0x7fffffffd860) at src/gdb/main.c:1160
#11 0x000000000041312d in main (argc=3, argv=0x7fffffffd968) at src/gdb/gdb.c:32
The direct cause of the crash is that we tried to remove an element
from the hash which supposedly exists, but does not. (htab_remove_elt
shouldn't really crash in this case, but that's secondary.)
The real problem is that early_data passed to tdesc_use_registers
includes regs from a target description that is not the target_desc,
which violates its assumptions. The registers in question are the
fs_base/gs_base registers, added by amd64_init_abi:
tdesc_numbered_register (feature, tdesc_data_segments,
AMD64_FSBASE_REGNUM, "fs_base");
tdesc_numbered_register (feature, tdesc_data_segments,
AMD64_GSBASE_REGNUM, "gs_base");
and that happens because amd64_linux_init_abi uses amd64_init_abi as
helper, but they don't coordinate on which fallback tdesc to use.
amd64_init_abi does:
if (! tdesc_has_registers (tdesc))
tdesc = tdesc_amd64;
and then adds the fs_base/gs_base registers of the "tdesc_amd64" tdesc
to the tdesc_arch_data.
After amd64_init_abi returns, amd64_linux_init_abi does:
if (! tdesc_has_registers (tdesc))
tdesc = tdesc_amd64_linux;
tdep->tdesc = tdesc;
and we end up tdesc_amd64_linux installed in tdep->tdesc.
The fix is to make sure that amd64_linux_init_abi and amd64_init_abi
agree on default tdesc, by adding a "default tdesc" parameter to
amd64_init_abi, instead of having amd64_init_abi hardcode a default.
With this, amd64_init_abi creates the fs_base/gs_base registers using
the tdesc_amd64_linux tdesc.
Tested on x86-64 GNU/Linux, -m64. I don't have an x32 setup handy.
Thanks to John Baldwin, Yao Qi and Simon Marchi for the investigation.
gdb/ChangeLog:
2017-07-13 Pedro Alves <palves@redhat.com>
* amd64-darwin-tdep.c (x86_darwin_init_abi_64): Pass tdesc_amd64
as default tdesc.
* amd64-dicos-tdep.c (amd64_dicos_init_abi):
* amd64-fbsd-tdep.c (amd64fbsd_init_abi):
* amd64-linux-tdep.c (amd64_linux_init_abi): Pass
tdesc_amd64_linux as default tdesc. Get final tdesc from the
tdep.
(amd64_x32_linux_init_abi): Pass tdesc_x32_linux as default tdesc.
Get final tdesc from the tdep.
* amd64-nbsd-tdep.c (amd64nbsd_init_abi): Pass tdesc_amd64 as
default tdesc.
* amd64-obsd-tdep.c (amd64obsd_init_abi): Likewise.
* amd64-sol2-tdep.c (amd64_sol2_init_abi): Likewise.
* amd64-tdep.c (amd64_init_abi): Add 'default_tdesc' parameter.
Use it as default tdesc.
(amd64_x32_init_abi): Add 'default_tdesc' parameter, and pass it
down to amd_init_abi. No longer handle fallback tdesc here.
* amd64-tdep.h (tdesc_x32): Declare.
(amd64_init_abi, amd64_x32_init_abi): Add 'default_tdesc'
parameter.
* amd64-windows-tdep.c (amd64_windows_init_abi): Pass tdesc_amd64
as default tdesc.
In the test gdb.mi/mi-vla-fortran.exp the parameters passed to
mi_create_breakpoint are passed in the wrong order. By good luck the
tests still passes, however the wrong test name is used. All fixed in
this commit.
gdb/testsuite/ChangeLog:
* gdb.mi/mi-vla-fortran.exp: Correct parameter passing to
mi_create_breakpoint.
Support record/replay of the z/Architecture instructions that were
introduced with arch12.
gdb/ChangeLog:
* s390-linux-tdep.c (s390_process_record): Add support for
instructions new in arch12.
bfd * elf32-xtensa.c (elf_xtensa_get_plt_section): Increase length of
plt_name buffer.
(elf_xtensa_get_gotplt_section): Increase length of got_name
buffer.
* mach-o-arm.c (bfd_mach_o_arm_canonicalize_one_reloc): Add a
default return of FALSE.
* mach-o-i386.c (bfd_mach_o_i386_canonicalize_one_reloc): Add a
default return of FALSE.
binutils * dwarf.c (dwarf_vmatoa_1): Do not pass a NULL string pointer to
sprintf.
* srconv.c (walk_tree_type): Initialise the spare field of the
IT_dty structure.
gas * config/tc-pru.c (md_assemble): Add continue statement after
handling 'E' operand character.
* config/tc-v850.c (md_assemble): Initialise the 'insn' variable.
The problem is caused by the fact that gold is relocating the stubs
for an entire output section when it processes the relocations for a
particular input section that happened to be designated as the stub
table "owner". The Relocate_task for that input section may or may not
run before the Relocate_task for another input section that contains
the code that needs the erratum fix, but doesn't "own" the stub
table. If it runs before (or might even race with) that other task, it
ends up with a copy of the unrelocated original instruction.
In other words - when calling fix_errata() from
do_relocate_sections(), gold is going through the list of errata stubs
that are associated only with that object. This routine updates the
stored original instruction and replaces it in the output view with a
branch to the stub. Later, as gold is going through the object file's
input sections, it then checks for stub tables "owned" by each input
section, and writes out all the stubs from that stub table, regardless
of what object file each stub is associated with.
Fixed by relocating the erratum stub only after the corresponding
errata spot is fixed. That is to have fix_errata() call
Stub_table::relocate_erratum_stub() for each stub.
gold/ChangeLog
2017-07-06 Han Shen <shenhan@google.com>
PR gold/21491
* aarch64.cc (Erratum_stub::invalidate_erratum_stub): New method.
(Erratum_stub::is_invalidated_erratum_stub): New method.
(Stub_table::relocate_reloc_stub): Renamed from "relocate_stub".
(Stub_table::relocate_reloc_stubs): Renamed from "relocate_stubs".
(Stub_table::relocate_erratum_stub): New method.
(AArch64_relobj::fix_errata_and_relocate_erratum_stubs): Renamed from
"fix_errata".
(Target_aarch64::relocate_reloc_stub): Renamed from "relocate_stub".
Use ptrace operations to fetch and store the fs_base and gs_base registers
for FreeBSD/amd64 processes. Note that FreeBSD does not currently store the
value of these registers in core dumps, so these registers are only
available when inspecting a running process.
gdb/ChangeLog:
* amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers): Use
PT_GETFSBASE and PT_GETGSBASE.
(amd64bsd_store_inferior_registers): Use PT_SETFSBASE and
PT_SETGSBASE.
On Fedora 26, "g++ -dumpversion" displays "7", instead of "7.1.1".
Update selective.exp to support single digit GCC version. Also
remove duplicated [4-9] version check.
* testsuite/ld-selective/selective.exp: Support single digit
GCC version.
Rationale behind the change instead of adding a `.init$' postfix being
that "initializer for symbol" is much more informative when inspecting D
runtime type information in gdb, which is the only place where you would
encounter references to this compiler-generated symbol.
gdb/testsuite/ChangeLog:
* gdb.dlang/demangle.exp: Update for demangling changes.