This "fix" makes no sense, but it avoids an error from G++ about
std::is_constructible being incomplete. The real problem is elsewhere,
but this "fixes" the regression for now.
libstdc++-v3/ChangeLog:
PR libstdc++/96592
* include/std/tuple (_TupleConstraints<true, T...>): Use
alternative is_constructible instead of std::is_constructible.
* testsuite/20_util/tuple/cons/96592.cc: New test.
The current std::gcd and std::chrono::duration::_S_gcd algorithms are
both recursive. This is potentially expensive to evaluate in constant
expressions, because each level of recursion makes a new copy of the
function to evaluate. The maximum number of steps is bounded
(proportional to the number of decimal digits in the smaller value) and
so unlikely to exceed the limit for constexpr nesting, but the memory
usage is still suboptimal. By using an iterative algorithm we avoid
that compile-time cost. Because looping in constexpr functions is not
allowed until C++14, we need to keep the recursive implementation in
duration::_S_gcd for C++11 mode.
For std::gcd we can also optimise runtime performance by using the
binary GCD algorithm.
libstdc++-v3/ChangeLog:
* include/std/chrono (duration::_S_gcd): Use iterative algorithm
for C++14 and later.
* include/std/numeric (__detail::__gcd): Replace recursive
Euclidean algorithm with iterative version of binary GCD algorithm.
* testsuite/26_numerics/gcd/1.cc: Test additional inputs.
* testsuite/26_numerics/gcd/gcd_neg.cc: Adjust dg-error lines.
* testsuite/26_numerics/lcm/lcm_neg.cc: Likewise.
* testsuite/experimental/numeric/gcd.cc: Test additional inputs.
* testsuite/26_numerics/gcd/2.cc: New test.
This was copied from a test for std::lcm but I forgot to change one of
the calls to use the experimental version of the function.
libstdc++-v3/ChangeLog:
PR libstdc++/92978
* testsuite/experimental/numeric/92978.cc: Use experimental::lcm
not std::lcm.
The spaceship operator for std::array uses memcmp when the
__is_byte<value_type> trait is true, but memcmp isn't usable in
constexpr contexts. Also, memcmp should only be used for unsigned byte
types, because it gives the wrong answer for signed chars with negative
values.
We can simply check std::is_constant_evaluated() so that we don't use
memcmp during constant evaluation.
To fix the problem of using memcmp for inappropriate types, this patch
adds new __is_memcmp_ordered and __is_memcmp_ordered_with traits. These
say whether using memcmp will give the right answer for ordering
operations such as lexicographical_compare and three-way comparisons.
The new traits can be used in several places, and can also be used to
implement my suggestion in PR 93059 comment 37 to use memcmp for
unsigned integers larger than one byte on big endian targets.
libstdc++-v3/ChangeLog:
PR libstdc++/96851
* include/bits/cpp_type_traits.h (__is_memcmp_ordered):
New trait that says if memcmp can be used for ordering.
(__is_memcmp_ordered_with): Likewise, for two types.
* include/bits/deque.tcc (__lex_cmp_dit): Use new traits
instead of __is_byte and __numeric_traits.
(__lexicographical_compare_aux1): Likewise.
* include/bits/ranges_algo.h (__lexicographical_compare_fn):
Likewise.
* include/bits/stl_algobase.h (__lexicographical_compare_aux1)
(__is_byte_iter): Likewise.
* include/std/array (operator<=>): Likewise. Only use memcmp
when std::is_constant_evaluated() is false.
* testsuite/23_containers/array/comparison_operators/96851.cc:
New test.
* testsuite/23_containers/array/tuple_interface/get_neg.cc:
Adjust dg-error line numbers.
The <new> and <exception> headers each include each other, which makes
building them as header-units "exciting". The <new> header only needs
the definition of std::exception (in order to derive from it) which is
already in its own header, so just include that.
libstdc++-v3/ChangeLog:
* include/bits/stl_iterator.h: Include <bits/exception_defines.h>
for definitions of __try, __catch and __throw_exception_again.
(counted_iterator::operator++(int)): Use __throw_exception_again
instead of throw.
* libsupc++/new: Include <bits/exception.h> not <exception>.
* libsupc++/new_opvnt.cc: Include <bits/exception_defines.h>.
* testsuite/18_support/destroying_delete.cc: Include
<type_traits> for std::is_same_v definition.
* testsuite/20_util/variant/index_type.cc: Qualify size_t.
The chrono::duration constructor that converts from another duration
type is meant to be constrained so that it doesn't participate in
overload resolution if the ratio of the periods cannot be represented as
a std::ratio.
Because our std::ratio_divide is not SFINAE-friendly the evaluation of
__is_harmonic results in an error outside the immediate context when an
overflow occurs. I intend to make ratio_divide (and ratio_multiply)
SFINAE-friendly in a future patch, but for now this patch just
introduces a new SFINAE-friendly alias template for the division.
The standard doesn't require it, but it also seems right to constrain
the constructor with std::is_convertible_v<_Rep2, rep>.
libstdc++-v3/ChangeLog:
* include/std/chrono (duration::_S_gcd(intmax_t, intmax_t)):
New helper function for finding GCD of two positive intmax_t
values.
(duration::__divide): New helper alias for dividing one period
by another.
(duration::__is_harmonic): Use __divide not ratio_divide.
(duration(const duration<R2, P2>&)): Require the duration rep
types to be convertible.
* testsuite/20_util/duration/cons/dr2094.cc: New test.
* testsuite/20_util/duration/requirements/reduced_period.cc:
Fix definition of unused member functions in test type.
* testsuite/20_util/duration/requirements/typedefs_neg2.cc:
Adjust expected errors.
libstdc++-v3/ChangeLog:
* include/std/numeric (__detail::__absu(bool)): Make deleted
function a function template, so it will be chosen for calls
with an explicit template argument list.
* testsuite/26_numerics/gcd/gcd_neg.cc: Add dg-prune-output.
* testsuite/26_numerics/lcm/lcm_neg.cc: Likewise.
My recent change to implement P0548 ("common_type and duration") was not
correct. The result of common_type_t<duration<R,P>, duration<R,P>>
should be duration<common_type_t<R>, P::type>, not duration<R, P::type>.
The common_type specialization for two different duration types was
correct, but the specializations for a single duration type (which only
exist to optimize compilation time) were wrong.
This fixes the partial specializations of common_type for a single
duration type, and also the return types of duration::operator+ and
duration::operator- which are supposed to use common_type_t<duration>.
libstdc++-v3/ChangeLog:
* include/std/chrono (common_type): Fix partial specializations
for a single duration type to use the common_type of the rep.
(duration::operator+, duration::operator-): Fix return types
to also use the common_type of the rep.
* testsuite/20_util/duration/requirements/reduced_period.cc:
Check duration using a rep that has common_type specialized.
This fixes a bug with mixed signed and unsigned types, where converting
a negative value to the unsigned result type alters the value. The
solution is to obtain the absolute values of the arguments immediately
and to perform the actual GCD or LCM algorithm on two arguments of the
same type.
In order to operate on the most negative number without overflow when
taking its absolute, use an unsigned type for the result of the abs
operation. For example, -INT_MIN will overflow, but -(unsigned)INT_MIN
is (unsigned)INT_MAX+1U which is the correct value.
libstdc++-v3/ChangeLog:
PR libstdc++/92978
* include/std/numeric (__abs_integral): Replace with ...
(__detail::__absu): New function template that returns an
unsigned type, guaranteeing it can represent the most
negative signed value.
(__detail::__gcd, __detail::__lcm): Require arguments to
be unsigned and therefore already non-negative.
(gcd, lcm): Convert arguments to absolute value as unsigned
type before calling __detail::__gcd or __detail::__lcm.
* include/experimental/numeric (gcd, lcm): Likewise.
* testsuite/26_numerics/gcd/gcd_neg.cc: Adjust expected
errors.
* testsuite/26_numerics/lcm/lcm_neg.cc: Likewise.
* testsuite/26_numerics/gcd/92978.cc: New test.
* testsuite/26_numerics/lcm/92978.cc: New test.
* testsuite/experimental/numeric/92978.cc: New test.
This implements the changes from P0548 "common_type and duration". That
was a change for C++17, but as it corrects some issues introduced by DRs
I'm also treating it as a DR and changing it for all modes from C++11
up.
The main change is that duration<R,P>::period no longer denotes P, but
rather P::type, the reduced ratio. The unary operator+ and operator-
members of duration should now return a duration using that reduced
ratio.
The requirement that common_type<T>::type is the same type as
common_type<T, T>::type (rather than simply T) was already implemented
for PR 89102.
The standard says that duration::operator+() and duration::operator-()
should return common_type_t<duration>, but that seems unnecessarily
expensive to compute. This change just uses duration<rep, period> which
is the same type, so we don't need to instantiate common_type.
As an optimization, this also adds partial specializations of
common_type for two durations of the same type, a single duration, two
time_points of the same type, and a single time_point. These
specializations avoid instantiating other specializations of common_type
and one or both of __duration_common_type or __timepoint_common_type for
the cases where the answer is trivial to obtain.
libstdc++-v3/ChangeLog:
* include/std/chrono (__duration_common_type): Ensure the
reduced ratio is used. Remove unused partial specialization
using __failure_type.
(common_type): Pass reduced ratios to __duration_common_type.
Add partial specializations for simple cases involving a single
duration or time_point type.
(duration::period): Use reduced ratio.
(duration::operator+(), duration::operator-()): Return duration
type using the reduced ratio.
* testsuite/20_util/duration/requirements/typedefs_neg2.cc:
Adjust expected errors.
* testsuite/20_util/duration/requirements/reduced_period.cc: New test.
This fixes the months-based addition for year_month when the
year_month's month component is 0.
libstdc++-v3/ChangeLog:
* include/std/chrono (year_month::operator+): Properly handle a
month value of 0 by casting the month value to int before
subtracting 1 from it so that the difference is sign-extended in
the subsequent addition.
* testsuite/std/time/year_month/1.cc: Test adding months to a
year_month whose month component is below or above the
normalized range of [1,12].
We currently don't enforce a constraint on some of the calendar types'
addition/subtraction operator overloads that take a 'months' arguments:
Constraints: If the argument supplied by the caller for the months
parameter is convertible to years, its implicit conversion sequence to
years is worse than its implicit conversion sequence to months.
This constraint is relevant when adding/subtracting a duration to/from,
say, a year_month where the given duration is convertible to both
'months' and to 'years' (as in the new testcases below). The correct
behavior here in light of this constraint is to perform the operation
through the (more efficient) 'years'-based overload, but we currently
emit an ambiguous overload error.
This patch templatizes the 'months'-based addition/subtraction operator
overloads so that in the event of an implicit-conversion tie, we select
the non-template 'years'-based overload. This is the same approach
that the date library takes for enforcing this constraint.
libstdc++-v3/ChangeLog:
* include/std/chrono
(__detail::__months_years_conversion_disambiguator): Define.
(year_month::operator+=): Templatize the 'months'-based overload
so that the 'years'-based overload is selected in case of
equally-ranked implicit conversion sequences to both 'months'
and 'years' from the supplied argument.
(year_month::operator-=): Likewise.
(year_month::operator+): Likewise.
(year_month::operator-): Likewise.
(year_month_day::operator+=): Likewise.
(year_month_day::operator-=): Likewise.
(year_month_day::operator+): Likewise.
(year_month_day::operator-): Likewise.
(year_month_day_last::operator+=): Likewise.
(year_month_day_last::operator-=): Likewise.
(year_month_day_last::operator+): Likewise
(year_month_day_last::operator-): Likewise.
(year_month_day_weekday::operator+=): Likewise
(year_month_day_weekday::operator-=): Likewise.
(year_month_day_weekday::operator+): Likewise.
(year_month_day_weekday::operator-): Likewise.
(year_month_day_weekday_last::operator+=): Likewise
(year_month_day_weekday_last::operator-=): Likewise.
(year_month_day_weekday_last::operator+): Likewise.
(year_month_day_weekday_last::operator-): Likewise.
(testsuite/std/time/year_month/2.cc): New test.
(testsuite/std/time/year_month_day/2.cc): New test.
(testsuite/std/time/year_month_day_last/2.cc): New test.
(testsuite/std/time/year_month_weekday/2.cc): New test.
(testsuite/std/time/year_month_weekday_last/2.cc): New test.
Almost all of the proposed resolution for LWG 3448 is already
implemented; the only part left is to adjust the return type of
transform_view::sentinel::operator-.
libstdc++-v3/ChangeLog:
PR libstdc++/95322
* include/std/ranges (transform_view::sentinel::__distance_from):
Give this a deduced return type.
(transform_view::sentinel::operator-): Adjust the return type so
that it's based on the constness of the iterator rather than
that of the sentinel.
* testsuite/std/ranges/adaptors/95322.cc: Refer to LWG 3488.
This implements the proposed resolution for LWG 3406, and adds a
testcase for the example from P1994R1.
libstdc++-v3/ChangeLog:
* include/std/ranges (elements_view::begin): Adjust constraints.
(elements_view::end): Likewise.
(elements_view::_Sentinel::operator==): Templatize to take both
_Iterator<true> and _Iterator<false>.
(elements_view::_Sentinel::operator-): Likewise.
* testsuite/std/ranges/adaptors/elements.cc: Add testcase for
the example from P1994R1.
* testsuite/std/ranges/adaptors/lwg3406.cc: New test.
The _Tuple_impl constructor for allocator-extended construction from a
different tuple type uses the _Tuple_impl's own _Head type in the
__use_alloc test. That is incorrect, because the argument tuple could
have a different type. Using the wrong type might select the
leading-allocator convention when it should use the trailing-allocator
convention, or vice versa.
libstdc++-v3/ChangeLog:
PR libstdc++/96803
* include/std/tuple
(_Tuple_impl(allocator_arg_t, Alloc, const _Tuple_impl<U...>&)):
Replace parameter pack with a type parameter and a pack and pass
the first type to __use_alloc.
* testsuite/20_util/tuple/cons/96803.cc: New test.
A recent change altered the layout of EBO-helper base classes, resulting
in an ambiguity when the hash function and equality predicate are the
same type.
This modifies the type of one of the base classes, so that we don't get
two base classes of the same type.
libstdc++-v3/ChangeLog:
* include/bits/hashtable_policy.h (_Hash_code_base): Change
index of _Hashtable_ebo_helper base class.
* testsuite/23_containers/unordered_map/dup_types.cc: New test.
Add a static_assertions to check the result type is destructible, as in
the proposed resolution for LWG 3466 (which supersedes 3458).
libstdc++-v3/ChangeLog:
* include/std/future (future, shared_future. promise): Add
is_destructible assertion (LWG 3466). Adjust string-literal for
!is_array and !is_function assertions.
* testsuite/30_threads/future/requirements/lwg3458.cc: Check
types with no accessible destructor. Adjust expected errors.
* testsuite/30_threads/promise/requirements/lwg3466.cc:
Likewise.
* testsuite/30_threads/shared_future/requirements/lwg3458.cc:
Likewise.
This patch adds the C++20 calendar types and their methods as defined in
[time.cal] (modulo the parsing/printing support). This patch also
implements [time.hms] and [time.12], and a few more bits of
[time.clock]. The remaining C++20 additions to <chrono> from P0355 and
P1466 depend on [time.zone] and <format>, so they will come later, as
will more optimized versions of some of the algorithms added here.
The non-member operator overloads for the calendar types are defined as
namespace-scope functions in the standard, but here we instead define
these operator overloads as hidden friends. This simplifies the
implementation somewhat and lets us reap the benefits of hidden friends
for these overloads.
The bulk of this work is based on a patch from Ed Smith-Rowland, which can
be found at the Git branch users/redi/heads/calendar.
Co-authored-by: Ed Smith-Rowland <3dw4rd@verizon.net>
Co-authored-by: Jonathan Wakely <jwakely@redhat.com>
libstdc++-v3/ChangeLog:
* include/std/chrono (time_point::operator++)
(time_point::operator--): Define.
(utc_clock, tai_clock, gps_clock): Forward declare.
(utc_time, utc_seconds, tai_time, tai_seconds, gps_time)
(gps_seconds): Define.
(is_clock<utc_clock>, is_clock<tai_clock>, is_clock<gps_clock>)
(is_clock_v<utc_clock>, is_clock_v<tai_clock>)
(is_clock_v<gps_clock>): Define these specializations.
(leap_second_info): Define.
(day, month, year, weekday, weekday_indexed)
(weekday_last, month_day, month_day_last, month_weekday)
(month_weekday_last, year_month, year_month_day)
(year_month_day_last, year_month_weekday, year_month_weekday_last):
Declare and later define.
(last_spec, last, __detail::__days_per_month)
(__detail::__days_per_month, __detail::__last_day): Define.
(January, February, March, April, May, June, July, August)
(September, October, November, December, Sunday, Monday, Tuesday)
(Wednesday, Thursday, Friday, Saturday): Define.
(weekday::operator[]): Define out-of-line.
(year_month_day::_S_from_days, year_month_day::M_days_since_epoch):
Likewise.
(year_month_day::year_month_day, year_month_day::ok): Likewise.
(__detail::__pow10, hh_mm_ss): Define.
(literals::chrono_literals::operator""d)
(literals::chrono_literals::operator""y): Define.
(is_am, is_pm, make12, make24): Define.
* testsuite/20_util/time_point/4.cc: New test.
* testsuite/std/time/day/1.cc: New test.
* testsuite/std/time/hh_mm_ss/1.cc: New test.
* testsuite/std/time/is_am/1.cc: New test.
* testsuite/std/time/is_pm/1.cc: New test.
* testsuite/std/time/make12/1.cc: New test.
* testsuite/std/time/make24/1.cc: New test.
* testsuite/std/time/month/1.cc: New test.
* testsuite/std/time/month_day/1.cc: New test.
* testsuite/std/time/month_day_last/1.cc: New test.
* testsuite/std/time/month_weekday/1.cc: New test.
* testsuite/std/time/month_weekday_last/1.cc: New test.
* testsuite/std/time/weekday/1.cc: New test.
* testsuite/std/time/weekday_indexed/1.cc: New test.
* testsuite/std/time/weekday_last/1.cc: New test.
* testsuite/std/time/year/1.cc: New test.
* testsuite/std/time/year_month/1.cc: New test.
* testsuite/std/time/year_month_day/1.cc: New test.
* testsuite/std/time/year_month_day_last/1.cc: New test.
* testsuite/std/time/year_month_weekday/1.cc: New test.
* testsuite/std/time/year_month_weekday_last/1.cc: New test.
This implements the proposed resolution of LWG 3446. I'm also adding
another new constrained specialization which isn't proposed by 3446, to
resolve the ambiguity when a type has both value_type and element_type
but denoting different types.
libstdc++-v3/ChangeLog:
* include/bits/iterator_concepts.h (indirectly_readable): Add
partial specializations to resolve ambiguities (LWG 3446).
* testsuite/24_iterators/associated_types/readable.traits.cc:
Check types with both value_type and element_type.
This avoids the overflow that occurs when negating the most negative
value of an integral type.
Also prevent returning signed int when the values have lower rank and
promote to int.
libstdc++-v3/ChangeLog:
* include/std/ranges (ranges::iota_view::size()): Perform all
calculations in the right unsigned types.
* testsuite/std/ranges/iota/size.cc: New test.
These tests do not actually require TBB, because they only inspect the
feature test macros present in the headers. However, if TBB is installed
then its headers will be included, and the version will be checked. If
the version is too old, compilation fails due to a #error directive.
This change disables the tests if TBB is not present, so that we skip
them instead of failing.
libstdc++-v3/ChangeLog:
PR libstdc++/96718
* testsuite/25_algorithms/pstl/feature_test-2.cc: Require
tbb-backend effective target.
* testsuite/25_algorithms/pstl/feature_test-3.cc: Likewise.
* testsuite/25_algorithms/pstl/feature_test-5.cc: Likewise.
* testsuite/25_algorithms/pstl/feature_test.cc: Likewise.
This adds specializations of std::incrementable_traits so that 128-bit
integers are always considered incrementable (and therefore usable with
std::ranges::iota_view) even when they don't satisfy std::integral.
libstdc++-v3/ChangeLog:
* include/bits/iterator_concepts.h [__STRICT_ANSI__]
(incrementable_traits<__int128>): Define specialization.
(incrementable_traits<unsigned __int128>): Likewise.
* testsuite/std/ranges/iota/96042.cc: Test iota_view with
__int128.
As well as ensuring that numeric_limits<__int128> is defined, we need to
ensure that make-unsigned-like-t and to-unsigned-like work correctly for
128-bit integers in strict mode. This ensures that a subrange created
from an iota_view's iterator and sentinel can represent its size.
Co-authored-by: Patrick Palka <ppalka@redhat.com>
libstdc++-v3/ChangeLog:
2020-08-19 Jonathan Wakely <jwakely@redhat.com>
Patrick Palka <ppalka@redhat.com>
PR libstdc++/96042
* include/bits/range_access.h (__detail::__to_unsigned_like):
Do not use make_unsigned_t<T> in the return type, as it can
result in an error before the integral<T> constraint is checked.
[__STRICT_ANSI__]: Add overloads for 128-bit integer types.
(__detail::__make_unsigned_like_t): Define as the return type
of __to_unsigned_like.
* testsuite/std/ranges/subrange/96042.cc: New test.
Because __int128 can be used as the difference type for iota_view, we
need to ensure that it meets the requirements of an integer-class type.
The requirements in [iterator.concept.winc] p10 include numeric_limits
being specialized and giving meaningful answers. Currently we only
specialize numeric_limits for non-standard integer types in non-strict
modes. However, nothing prevents us from defining an explicit
specialization for any implementation-defined type, so it doesn't matter
whether std::is_integral<__int128> is true or not.
This patch ensures that the numeric_limits specializations for signed
and unsigned __int128 are defined whenever __int128 is available. It
also makes the __numeric_traits and __int_limits helpers work for
__int128, via a new __gnu_cxx::__is_integer_nonstrict trait.
libstdc++-v3/ChangeLog:
PR libstdc++/96042
* include/ext/numeric_traits.h (__is_integer_nonstrict): New
trait which is true for 128-bit integers even in strict modes.
(__numeric_traits_integer, __numeric_traits): Use
__is_integer_nonstrict instead of __is_integer.
* include/std/limits [__STRICT_ANSI__ && __SIZEOF_INT128__]
(numeric_limits<__int128>, (numeric_limits<unsigned __int128>):
Define.
* testsuite/std/ranges/iota/96042.cc: New test.
This implements signed and unsigned integer-class types, whose width is
one bit larger than the widest supported signed and unsigned integral
type respectively. In our case this is either __int128 and unsigned
__int128, or long long and unsigned long long.
Internally, the two integer-class types are represented as a largest
supported unsigned integral type plus one extra bit. The signed
integer-class type is represented in two's complement form with the
extra bit acting as the sign bit.
libstdc++-v3/ChangeLog:
* include/Makefile.am (bits_headers): Add new header
<bits/max_size_type.h>.
* include/Makefile.in: Regenerate.
* include/bits/iterator_concepts.h
(ranges::__detail::__max_diff_type): Remove definition, replace
with forward declaration of class __max_diff_type.
(__detail::__max_size_type): Remove definition, replace with
forward declaration of class __max_size_type.
(__detail::__is_unsigned_int128, __is_signed_int128)
(__is_int128): New concepts.
(__detail::__is_integer_like): Accept __int128 and unsigned
__int128.
(__detail::__is_signed_integer_like): Accept __int128.
* include/bits/max_size_type.h: New header.
* include/bits/range_access.h: Include <bits/max_size_type.h>.
(__detail::__to_unsigned_like): Two new overloads.
* testsuite/std/ranges/iota/difference_type.cc: New test.
* testsuite/std/ranges/iota/max_size_type.cc: New test.
Back in 2017 I removed these prehistoric members (which were deprecated
since C++98) for C++17 mode. But I didn't add deprecated attributes to
most of them, so users didn't get any warning they would be going away.
Apparently some poor souls do actually use some of these names, and so
now that GCC 11 defaults to -std=gnu++17 some code has stopped
compiling.
This adds deprecated attributes to them, so that C++98/03/11/14 code
will get a warning if it uses them. I'll also backport this to the
release branches so that users can find out about the deprecation before
they start using C++17.
In order to give deprecated warnings even in C++98 mode this patch makes
_GLIBCXX_DEPRECATED work even for C++98, adds _GLIBCXX11_DEPRECATED for
the old meaning of _GLIBCXX_DEPRECATED, and adds new macros such as
_GLIBCXX_DEPRECATED_SUGGEST for suggesting alternatives to deprecated
features.
libstdc++-v3/ChangeLog:
* include/bits/c++config (_GLIBCXX_DEPRECATED): Define for all
standard modes.
(_GLIBCXX_DEPRECATED_SUGGEST): New macro for "use 'foo' instead"
message in deprecated warnings.
(_GLIBCXX11_DEPRECATED, _GLIBCXX11_DEPRECATED_SUGGEST): New
macros for marking features derpecated in C++11.
(_GLIBCXX17_DEPRECATED_SUGGEST, _GLIBCXX20_DEPRECATED_SUGGEST):
New macros.
* include/backward/auto_ptr.h (auto_ptr_ref, auto_ptr<void>):
Use _GLIBCXX11_DEPRECATED instead of _GLIBCXX_DEPRECATED.
(auto_ptr): Use _GLIBCXX11_DEPRECATED_SUGGEST.
* include/backward/binders.h (binder1st, binder2nd): Likewise.
* include/bits/ios_base.h (io_state, open_mode, seek_dir)
(streampos, streamoff): Use _GLIBCXX_DEPRECATED_SUGGEST.
* include/std/streambuf (stossc): Replace C++11 attribute
with _GLIBCXX_DEPRECATED_SUGGEST.
* include/std/type_traits (__is_nullptr_t): Use
_GLIBCXX_DEPRECATED_SUGGEST instead of _GLIBCXX_DEPRECATED.
* testsuite/27_io/types/1.cc: Check for deprecated warnings.
Also check for io_state, open_mode and seek_dir typedefs.
libstdc++-v3/ChangeLog:
2020-08-19 Antony Polukhin <antoshkka@gmail.com>
PR libstdc++/71579
* include/std/type_traits (invoke_result, is_nothrow_invocable_r)
Add static_asserts to make sure that the argument of the type
trait is not misused with incomplete types.
(is_swappable_with, is_nothrow_swappable_with): Add static_asserts
to make sure that the first and second arguments of the type trait
are not misused with incomplete types.
* testsuite/20_util/invoke_result/incomplete_neg.cc: New test.
* testsuite/20_util/is_nothrow_invocable/incomplete_neg.cc: New test.
* testsuite/20_util/is_nothrow_swappable/incomplete_neg.cc: New test.
* testsuite/20_util/is_nothrow_swappable_with/incomplete_neg.cc: New
test.
* testsuite/20_util/is_swappable_with/incomplete_neg.cc: New test.
As was previously done for std::thread, this removes an unnecessary copy
of an rvalue of type thread::_Invoker. Instead of creating the rvalue
and then moving that into the shared state, the member of the shared
state is initialized directly from the forwarded callable and bound
arguments.
This also slightly simplifies std::thread creation to remove the
_S_make_state helper function.
libstdc++-v3/ChangeLog:
PR libstdc++/69724
* include/std/future (__future_base::_S_make_deferred_state)
(__future_base::_S_make_async_state): Remove.
(__future_base::_Deferred_state): Change constructor to accept a
parameter pack of arguments and forward them to the call
wrapper.
(__future_base::_Async_state_impl): Likewise. Replace lambda
expression with a named member function.
(async): Construct state object directly from the arguments,
instead of using thread::__make_invoker, _S_make_deferred_state
and _S_make_async_state. Move shared state into the returned
future.
* include/std/thread (thread::_Call_wrapper): New alias
template for use by constructor and std::async.
(thread::thread(Callable&&, Args&&...)): Create state object
directly instead of using _S_make_state.
(thread::__make_invoker, thread::__decayed_tuple)
(thread::_S_make_state): Remove.
* testsuite/30_threads/async/69724.cc: New test.
This fixes a number of std::tuple bugs by no longer making use of the
empty base-class optimization. By using the C++20 [[no_unique_address]]
attribute we can always store the element as a data member, while still
compressing the layout of tuples containing empty types.
Since we no longer use inheritance we could also apply the compression
optimization for final types and for tuples of tuples, but doing so
would be an ABI break.
Using [[no_unique_address]] more liberally for the unstable std::__8
configuration is left for a later date. There may be reasons not to
apply the attribute unconditionally, e.g. see the discussion about
guaranteed elision in PR 94062.
libstdc++-v3/ChangeLog:
PR libstdc++/55713
PR libstdc++/71096
PR libstdc++/93147
* include/std/tuple [__has_cpp_attribute(no_unique_address)]
(_Head_base<Idx, Head, true>): New definition of the partial
specialization, using [[no_unique_address]] instead of
inheritance.
* testsuite/libstdc++-prettyprinters/48362.cc: Adjust expected
output.
* testsuite/20_util/tuple/comparison_operators/93147.cc: New test.
* testsuite/20_util/tuple/creation_functions/55713.cc: New test.
* testsuite/20_util/tuple/element_access/71096.cc: New test.
Adds the new option -fdiagnostics-plain-output, which is an alias for
several others:
-fno-diagnostics-show-caret
-fno-diagnostics-show-line-numbers
-fdiagnostics-color=never
-fdiagnostics-urls=never
The idea is that in the future, if the default behavior of diagnostics is
changed to add some fancy feature or other, then the
-fdiagnostics-plain-output option will also be changed accordingly so that
the old behavior is preserved in the presence of this option. This allows
us to use -fdiagnostics-plain-output in in the testsuite, such that the
testsuite (specifically the setting of TEST_ALWAYS_FLAGS in prune.exp)
does not need to be touched whenever diagnostics get a new look. This also
removes the need to add workarounds to compat.exp for every new option
that may be needed in a newer version of the compiler, but is not
supported in older versions.
gcc/ChangeLog:
* common.opt: Add new option -fdiagnostics-plain-output.
* doc/invoke.texi: Document it.
* opts-common.c (decode_cmdline_options_to_array): Implement it.
(decode_cmdline_option): Add missing const qualifier to argv.
libstdc++-v3/ChangeLog:
* testsuite/lib/libstdc++.exp: Use the new option
-fdiagnostics-plain-output.
gcc/testsuite/ChangeLog:
* lib/prune.exp: Change TEST_ALWAYS_FLAGS to use -fdiagnostics-plain-output.
* lib/c-compat.exp: Adapt to the prune.exp change.
The C++ LWG recently confirmed that self-move assignment should not have
undefined behaviour for standard containers (see the proposed resolution
of LWG 2839). The result should be a valid but unspecified value, just
like other times when a container is moved from.
Our std::list, std::__cxx11::basic_string and unordered containers all
have bugs which result in undefined behaviour.
For std::list the problem is that we clear the previous contents using
_M_clear() instead of clear(). This means the _M_next, _M_prev and
_M_size members are not zeroed, and so after we "update" them (with
their existing values), we are left with dangling pointers and a
non-zero size, but no elements.
For the unordered containers the problem is similar. _Hashtable first
deallocates the existing contents, then takes ownership of the pointers
from the RHS object (which has just had its contents deallocated so the
pointers are dangling).
For std::basic_string it's a little more subtle. When the string is
local (i.e. fits in the SSO buffer) we use char_traits::copy to copy the
contents from this->data() to __rhs.data(). When &__rhs == this that
copy violates the precondition that the ranges don't overlap. We only
need to check for self-move for this case where it's local, because the
only other case that can be true for self-move is that it's non-local
but the allocators compare equal. In that case the data pointer is
neither deallocated nor leaked, so the result is well-defined.
This patch also makes a small optimization for std::deque move
assignment, to use the efficient move when is_always_equal is false, but
the allocators compare equal at runtime.
Finally, we need to remove all the Debug Mode checks which abort the
program when a self-move is detected, because it's not undefined to do
that.
Before PR 85828 can be closed we should also look into fixing
std::shuffle so it doesn't do any redundant self-swaps.
libstdc++-v3/ChangeLog:
PR libstdc++/85828
* include/bits/basic_string.h (operator=(basic_string&&)): Check
for self-move before copying with char_traits::copy.
* include/bits/hashtable.h (operator=(_Hashtable&&)): Check for
self-move.
* include/bits/stl_deque.h (_M_move_assign1(deque&&, false_type)):
Check for equal allocators.
* include/bits/stl_list.h (_M_move_assign(list&&, true_type)):
Call clear() instead of _M_clear().
* include/debug/formatter.h (__msg_self_move_assign): Change
comment.
* include/debug/macros.h (__glibcxx_check_self_move_assign):
(_GLIBCXX_DEBUG_VERIFY): Remove.
* include/debug/safe_container.h (operator=(_Safe_container&&)):
Remove assertion check for safe move and make it well-defined.
* include/debug/safe_iterator.h (operator=(_Safe_iterator&&)):
Remove assertion check for self-move.
* include/debug/safe_local_iterator.h
(operator=(_Safe_local_iterator&&)): Likewise.
* testsuite/21_strings/basic_string/cons/char/self_move.cc: New test.
* testsuite/23_containers/deque/cons/self_move.cc: New test.
* testsuite/23_containers/forward_list/cons/self_move.cc: New test.
* testsuite/23_containers/list/cons/self_move.cc: New test.
* testsuite/23_containers/set/cons/self_move.cc: New test.
* testsuite/23_containers/unordered_set/cons/self_move.cc: New test.
* testsuite/23_containers/vector/cons/self_move.cc: New test.
Respect DR 526 in implementation of std::[forward_]list remove/remove_if/unique.
[forward_]list::remove was already implementing it but the implementation has
been modified to generalize the following pattern. All nodes to remove are
collected in an intermediate [forward_]list which purpose is just to be
detroyed once out of scope.
libstdc++-v3/ChangeLog:
PR libstdc++/91620
* include/bits/forward_list.tcc (forward_list<>::remove): Collect nodes
to destroy in an intermediate forward_list.
(forward_list<>::remove_if, forward_list<>::unique): Likewise.
* include/bits/list.tcc (list<>::remove, list<>::unique): Likewise.
(list<>::remove_if): Likewise.
* include/debug/forward_list (forward_list<>::_M_erase_after): Remove.
(forward_list<>::erase_after): Adapt.
(forward_list<>::remove, forward_list<>::remove_if): Collect nodes to
destroy in an intermediate forward_list.
(forward_list<>::unique): Likewise.
* include/debug/list (list<>::remove, list<>::unique): Likewise.
(list<>::remove_if): Likewise.
* testsuite/23_containers/forward_list/operations/91620.cc: New test.
* testsuite/23_containers/list/operations/91620.cc: New test.
These two tests fail on AIX because <sys/thread.h> defines struct thread
in the global namespace (despite it not being a reserved name). That
means the using-declaration that adds it to the global namespace causes
a redeclaration error.
libstdc++-v3/ChangeLog:
* testsuite/30_threads/thread/cons/84535.cc: Use a custom
namespace.
* testsuite/30_threads/thread/cons/lwg2097.cc: Likewise.
Make the experimental Networking TS code work without std::mutex and
std::condition_variable.
libstdc++-v3/ChangeLog:
PR libstdc++/89760
* include/experimental/executor [!_GLIBCXX_HAS_GTHREADS]:
(execution_context::mutex_type): Define dummy mutex type.
(system_context): Use execution_context::mutex_type.
(system_context) [!_GLIBCXX_HAS_GTHREADS]: Define dummy
thread and condition variable types.
[!_GLIBCXX_HAS_GTHREADS] (system_context::_M_run()): Do not
define.
(system_context::_M_post) [!_GLIBCXX_HAS_GTHREADS]: Throw
an exception when threads aren't available.
(strand::running_in_this_thread()): Defer to _M_state.
(strand::_State::running_in_this_thread()): New function.
(use_future_t): Do not depend on _GLIBCXX_USE_C99_STDINT_TR1.
* include/experimental/io_context (io_context): Use the
execution_context::mutex_type alias. Replace stack of thread
IDs with counter.
* testsuite/experimental/net/execution_context/use_service.cc:
Enable test for non-pthread targets.
The only function in namespace std::this_thread that actually depends on
thread support being present is this_thread::get_id(). The other
functions (yield, sleep_for and sleep_until) can be defined for targets
without gthreads.
A small change is needed in std::this_thread::sleep_for which currently
uses the __gthread_time_t typedef. Since it just calls nanosleep
directly, it should use timespec directly instead of the typedef.
Even std::this_thread::get_id() could be made to work, the only
difficulty is that it returns a value of type std:🧵:id and
std::thread is only defined when gthreads support exists.
libstdc++-v3/ChangeLog:
* include/std/thread [!_GLIBCXX_HAS_GTHREADS] (this_thread::yield)
(this_thread::sleep_until): Define.
[!_GLIBCXX_HAS_GTHREADS] (this_thread::sleep_for): Define. Replace
use of __gthread_time_t typedef with timespec.
* src/c++11/thread.cc [!_GLIBCXX_HAS_GTHREADS] (__sleep_for):
Likewise.
* testsuite/30_threads/this_thread/2.cc: Moved to...
* testsuite/30_threads/this_thread/yield.cc: ...here.
* testsuite/30_threads/this_thread/3.cc: Moved to...
* testsuite/30_threads/this_thread/sleep_for-mt.cc: ...here.
* testsuite/30_threads/this_thread/4.cc: Moved to...
* testsuite/30_threads/this_thread/sleep_until-mt.cc: ...here.
* testsuite/30_threads/this_thread/58038.cc: Add
dg-require-sleep.
* testsuite/30_threads/this_thread/60421.cc: Likewise.
* testsuite/30_threads/this_thread/sleep_for.cc: New test.
* testsuite/30_threads/this_thread/sleep_until.cc: New test.
The support for the old std::unique_ptr implementation was failing,
because it tried to work on a typedef instead of the underlying type.
The test supposed to verify the support worked wasn't using a typedef,
so didn't notice the problem.
libstdc++-v3/ChangeLog:
* python/libstdcxx/v6/printers.py (UniquePointerPrinter.__init__):
Use gdb.Type.strip_typedefs().
* testsuite/libstdc++-prettyprinters/compat.cc: Use a typedef in
the emulated old type.
libstdc++-v3/ChangeLog:
* include/bits/stl_iterator.h (inserter): Do not deduce
iterator type (LWG 561).
* testsuite/24_iterators/insert_iterator/dr561.cc: New test.
With -pedantic the debug mode bitset has an ambiguous equality
comparison operator, because it tries to compare the non-debug base to
the debug object. The base object can be converted to another debug
bitset, making the same operator== a candidate again.
The fix is to do the comparison on both base objects, so the operator
for the derived type isn't a candidate.
For the inequality operator the same change should be done, but that
operator can be removed entirely for C++20 because it can be synthesized
by the compiler.
I don't think either equality or inequality operators are really needed,
because the public _GLIBCXX_STD_C::bitset base class cam always be
compared using its own comparison operators. I'm not changing that here
though.
libstdc++-v3/ChangeLog:
PR libstdc++/96303
* include/debug/bitset (bitset::operator==): Call _M_base() on
right operand.
(bitset::operator!=): Likewise, but don't define it at all when
default comparisons are supported by the compiler.
* testsuite/23_containers/bitset/operations/96303.cc: New test.
libstdc++-v3/ChangeLog:
* testsuite/18_support/comparisons/algorithms/partial_order.cc:
Replace VERIFY with static_assert where the compiler now
allows it.
* testsuite/18_support/comparisons/algorithms/weak_order.cc:
Likewise.
Remove ability for reserve(n) to reduce a string's capacity. Add a new
reserve() overload that makes a shrink-to-fit request, and make
shrink_to_fit() use that.
libstdc++-v3/ChangeLog:
2020-07-30 Andrew Luo <andrewluotechnologies@outlook.com>
Jonathan Wakely <jwakely@redhat.com>
* config/abi/pre/gnu.ver (GLIBCXX_3.4): Use less greedy
patterns for basic_string members.
(GLIBCXX_3.4.29): Export new basic_string::reserve symbols.
* doc/xml/manual/status_cxx2020.xml: Update P0966 status.
* include/bits/basic_string.h (shrink_to_fit()): Call reserve().
(reserve(size_type)): Remove default argument.
(reserve()): Declare new overload.
[!_GLIBCXX_USE_CXX11_ABI] (shrink_to_fit, reserve): Likewise.
* include/bits/basic_string.tcc (reserve(size_type)): Remove
support for shrinking capacity.
(reserve()): Perform shrink-to-fit operation.
[!_GLIBCXX_USE_CXX11_ABI] (reserve): Likewise.
* testsuite/21_strings/basic_string/capacity/1.cc: Adjust to
reflect new behavior.
* testsuite/21_strings/basic_string/capacity/char/1.cc:
Likewise.
* testsuite/21_strings/basic_string/capacity/char/18654.cc:
Likewise.
* testsuite/21_strings/basic_string/capacity/char/2.cc:
Likewise.
* testsuite/21_strings/basic_string/capacity/wchar_t/1.cc:
Likewise.
* testsuite/21_strings/basic_string/capacity/wchar_t/18654.cc:
Likewise.
* testsuite/21_strings/basic_string/capacity/wchar_t/2.cc:
Likewise.
Similar to the bugs I fixed recently in istream::ignore, we incorrectly
set eofbit too often in operator>>(istream&, string&) and
operator>>(istream&. char(&)[N]).
We should only set eofbit if we reach EOF but would have kept going
otherwise. If we've already extracted the maximum number of characters
(whether that's because of the buffer size or the istream's width())
then we should not set eofbit.
libstdc++-v3/ChangeLog:
* include/bits/basic_string.tcc
(operator>>(basic_istream&, basic_string&)): Do not set eofbit
if extraction stopped after in.width() characters.
* src/c++98/istream-string.cc (operator>>(istream&, string&)):
Likewise.
* include/bits/istream.tcc (__istream_extract): Do not set
eofbit if extraction stopped after n-1 characters.
* src/c++98/istream.cc (__istream_extract): Likewise.
* testsuite/21_strings/basic_string/inserters_extractors/char/13.cc: New test.
* testsuite/21_strings/basic_string/inserters_extractors/wchar_t/13.cc: New test.
* testsuite/27_io/basic_istream/extractors_character/char/5.cc: New test.
* testsuite/27_io/basic_istream/extractors_character/wchar_t/5.cc: New test.
This adjusts the overflow prevention added to operator>> so that we can
distinguish "unknown size" from "zero size", and avoid writing anything
at all in to zero sized buffers.
This also removes the incorrect comment saying extraction stops at a
null byte.
libstdc++-v3/ChangeLog:
* include/std/istream (operator>>(istream&, char*)): Add
attributes to get warnings for pointers that are null or known
to point to the end of a buffer. Request upper bound from
__builtin_object_size check and handle zero-sized buffer case.
(operator>>(istream&, signed char))
(operator>>(istream&, unsigned char*)): Add attributes.
* testsuite/27_io/basic_istream/extractors_character/char/overflow.cc:
Check extracting into the middle of a buffer.
* testsuite/27_io/basic_istream/extractors_character/wchar_t/overflow.cc: New test.