This requires adding a macro to synthesize the call
to __strto*_nan. Since this is likely to be the only
usage ever for strto* functions in generated libm
calls, a dedicated macro is defined for it.
Use the GCC builtin instead. With the exception of the
files built from a template, they are unused. This
is preparation for making the s_nanF objects generated.
This one is a little more tricky since it is built both for
libm and libc, and exports multiple aliases.
To simplify aliasing, a new macro is introduced which handles
aliasing to two symbols. By default, it just applies
declare_mgen_alias to both target symbols.
Likewise, the makefile is tweaked a little to generate
templates for shared files too, and a new rule is added
to build m_*.c objects from the objpfx directory.
Verified there are no symbol or code changes using a script
to diff the *_ldexp* object files on s390x, aarch64, arm,
x86_64, and ppc64.
This was used by --enable-omitfp, and the bulk of it was removed in this
commit:
commit bdeba1354b
Author: Ulrich Drepper <drepper@gmail.com>
Date: Sat Jan 7 11:29:31 2012 -0500
Remove --enable-omitfp support
rtld only needs shared objects, so the other patterns are pointless and
significantly increase the work make has to perform while identifying
which pattern rule to apply.
TS 18661-1 defines macros for the width of integer types, intended for
use with the fromfp functions to convert from floating-point types to
integer types of any width, in any rounding mode and with control over
whether "inexact" is raised. Such macros are, of course, more
generally useful than just with those functions.
Those macros are added to <limits.h> and <stdint.h>. This patch adds
the <limits.h> macros to glibc's header, with the <stdint.h> ones
intended to be added in a separate patch (which would add to the NEWS
entry created by this patch). I've also added these macros to GCC's
headers for GCC 7, but definitions in glibc's <limits.h> are still
useful for older GCC, for non-GNU compilers and for when it's
_GNU_SOURCE rather than __STDC_WANT_IEC_60559_BFP_EXT__ that implies
the macros should be defined since the GCC header only considers
__STDC_WANT_IEC_60559_BFP_EXT__ (and for glibc systems, the
definitions in GCC's <stdint.h> will only be used with
-ffreestanding).
Tested for x86_64 and x86.
* include/limits.h: Define
__GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION and include
<bits/libc-header-start.h> instead of including <features.h>.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (CHAR_WIDTH): New macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (SCHAR_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UCHAR_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (SHRT_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (USHRT_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (INT_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (UINT_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (LONG_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (ULONG_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (LLONG_WIDTH): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (ULLONG_WIDTH): Likewise.
* manual/lang.texi (Width of Type): Document these macros.
* stdlib/tst-width.c: New file.
* stdlib/Makefile (tests): Add tst-width.
Current sparc32 sem_init and default one only differ on sem.newsem.pad
initialization. This patch removes sparc32 and sparc32v9 sem_init arch
specific implementation and set sparc32 to use nptl default one.
The default implementation sets the required sem.newsem.pad to 0 (which
is ununsed in other architectures).
I checked on i686 and a sparc32v9 build.
* nptl/sem_init.c (sem_init): Init pad value to 0.
* sysdeps/sparc/sparc32/sem_init.c: Remove file.
* sysdeps/sparc/sparc32/sparcv9/sem_init.c: Likewise.
This patch changes shm_open to not act as a cancellation point.
Cancellation is disable at start and reenable in function exit.
It fixes BZ #18243.
Tested on x86_64 and i686.
[BZ #18243]
* rt/Makefile (test): Add tst-shm-cancel.
* rt/tst-shm-cancel.c: New file.
* sysdeps/posix/shm_open.c: Disable asynchronous cancellation.
This patch fixes both sem_wait and sem_timedwait cancellation point for
uncontended case. In this scenario only atomics are involved and thus
the futex cancellable call is not issue and a pending cancellation signal
is not handled.
The fix is straighforward by calling pthread_testcancel is both function
start. Although it would be simpler to call CANCELLATION_P directly, I
decided to add an internal pthread_testcancel alias and use it to export
less internal implementation on such function. A possible change on
how pthread_testcancel is internally implemented would lead to either
continue to force use CANCELLATION_P or to adjust its every use.
GLIBC testcase also does have tests for uncontended cases, test-cancel12
and test-cancel14.c, however both are flawed by adding another
cancellation point just after thread pthread_cleanup_pop:
47 static void *
48 tf (void *arg)
49 {
50 pthread_cleanup_push (cleanup, NULL);
51
52 int e = pthread_barrier_wait (&bar);
53 if (e != 0 && e != PTHREAD_BARRIER_SERIAL_THREAD)
54 {
55 puts ("tf: 1st barrier_wait failed");
56 exit (1);
57 }
58
59 /* This call should block and be cancelable. */
60 sem_wait (&sem);
61
62 pthread_cleanup_pop (0);
63
64 puts ("sem_wait returned");
65
66 return NULL;
67 }
So sem_{timed}wait does not act on cancellation, pthread_cleanup_pop executes
'cleanup' and then 'puts' acts on cancellation. Since pthread_cleanup_pop
removed the clean-up handler, it will ran only once and thus it won't accuse
an error to indicate sem_wait has not acted on the cancellation signal.
This patch also fixes this behavior by removing the cancellation point 'puts'.
It also adds some cleanup on all sem_{timed}wait cancel tests.
It partially fixes BZ #18243. Checked on x86_64.
[BZ #18243]
* nptl/pthreadP.h (__pthread_testcancel): Add prototype and hidden_proto.
* nptl/pthread_testcancel.c (pthread_cancel): Add internal aliais
definition.
* nptl/sem_timedwait.c (sem_timedwait): Add cancellation check for
uncontended case.
* nptl/sem_wait.c (__new_sem_wait): Likewise.
* nptl/tst-cancel12.c (cleanup): Remove wrong cancellation point.
(tf): Fix check for uncontended case.
(do_test): Likewise.
* nptl/tst-cancel13.c (cleanup): Remove wrong cancellation point.
(tf): Fix check for uncontended case.
(do_test): Likewise.
* nptl/tst-cancel14.c (cleanup): Remove wrong cancellation point.
(tf): Fix check for uncontended case.
(do_test): Likewise.
* nptl/tst-cancel15.c (cleanup): Remove wrong cancellation point.
(tf): Fix check for uncontended case.
(do_test): Likewise.
This patch removes the sparc32 sem_wait.c implementation since it is
identical to default nptl one. The sparcv9 is no longer required with
the removal.
Checked with a sparcv9 build.
* sysdeps/sparc/sparc32/sem_wait.c: Remove file.
* sysdeps/sparc/sparc32/sparcv9/sem_wait.c: Likewise.
This patch changes sem_open to not act as a cancellation point.
Cancellation is disable at start and reenable in function exit.
It fixes BZ #15765.
Tested on x86_64 and i686.
[BZ #15765]
* nptl/Makefile (tests): Add tst-sem16.
* nptl/tst-sem16.c: New file.
* nptl/sem_open.c (sem_open): Disable asynchronous cancellation.
Current sparc32 sem_open and default one only differ on:
1. Default one contains a 'futex_supports_pshared' check.
2. sem.newsem.pad is initialized to zero.
This patch removes sparc32 and sparc32v9 sem_open arch specific
implementation and instead set sparc32 to use nptl default one.
Using 1. is fine since it should always evaluate 0 for Linux
(an optimized away by the compiler). Adding 2. to default
implementation should be ok since 'pad' field is used mainly
on sparc32 code.
I checked on i686 and checked a sparc32v9 build.
* nptl/sem_open.c (sem_open): Init pad value to 0.
* sysdeps/sparc/sparc32/sem_open.c: Remove file.
* sysdeps/sparc/sparc32/sparcv9/sem_open.c: Likewise.
Nothing depends on the PTW macro anymore, so the mechanism to define
PTW for recompliations of libc routines is no longer needed. The
source files are still recompiled for the nptl directory, just without
the “ptw-” prefix.
(Reducing the number of pattern rules in sysd-rules is critical for
improving make performance.)
This runs the attached sed script against these files using
a regex which aggressively matches long double literals
when not obviously part of a comment.
Likewise, 5 digit or less integral constants are replaced
with integer constants, excepting the two cases of 0 used
in large tables, which are also the only integral values
of the form x.0*E0L encountered within these converted
files.
Likewise, -L(x) is transformed into L(-x).
Naturally, the script has a few minor hiccups which are
more clearly remedied via the attached fixup patch. Such
hiccups include, context-sensitive promotion to a real
type, and munging constants inside harder to detect
comment blocks.
This is a trivial change to add the static tests only to tests-static
and then adding all of tests-static to the tests target to make it
look consistent with some other Makefiles. This avoids having to
duplicate the test names across the two make targets.
* malloc/Makefile (tests): Remove individual static test names
and just add all of tests-static.
21ad055803 removed the function, but
missed the declaration in libc-start. Removed and verified that the
generated assembly is unchanged.
* csu/libc-start.c (__libc_csu_irel): Remove declaration.
When I added fetestexceptflag, I missed that e500 was another case
that needed its own version because saved exceptions were not directly
stored in a form that could be ANDed with exception bits (they were
stored with exceptions in SPE form, but the FE_* macros always use the
classic hard-float form). This patch adds an e500 version with the
required call to __fexcepts_from_spe to convert from one form to the
other.
Tested for e500.
* sysdeps/powerpc/powerpc32/e500/nofpu/fetestexceptflag.c: New
file.
This patch adds SPARC versions of fegetmode and fesetmode. Untested.
* sysdeps/sparc/fpu/fegetmode.c: New file.
* sysdeps/sparc/fpu/fesetmode.c: Likewise.
This patch adds SH versions of fegetmode and fesetmode. Untested.
* sysdeps/sh/sh4/fpu/fegetmode.c: New file.
* sysdeps/sh/sh4/fpu/fesetmode.c: Likewise.
This patch adds S/390 versions of fegetmode and fesetmode. Untested.
* sysdeps/s390/fpu/fegetmode.c: New file.
* sysdeps/s390/fpu/fesetmode.c: Likewise.
This patch adds M68K versions of fegetmode and fesetmode. Untested.
* sysdeps/m68k/fpu/fegetmode.c: New file.
* sysdeps/m69k/fpu/fesetmode.c: Likewise.
This patch adds IA64 versions of fegetmode and fesetmode. Untested.
* sysdeps/ia64/fpu/fegetmode.c: New file.
* sysdeps/ia64/fpu/fesetmode.c: Likewise.
This patch adds HPPA versions of fegetmode and fesetmode. Untested.
* sysdeps/hppa/fpu/fegetmode.c: New file.
* sysdeps/hppa/fpu/fesetmode.c: Likewise.
This patch adds Alpha versions of fegetmode and fesetmode. Untested.
* sysdeps/alpha/fpu/fegetmode.c: New file.
* sysdeps/alpha/fpu/fesetmode.c: Likewise.
This patch adds AArch64 versions of fegetmode and fesetmode.
Untested.
* sysdeps/aarch64/fpu/fegetmode.c: New file.
* sysdeps/aarch64/fpu/fesetmode.c: Likewise.
TS 18661-1 defines a type femode_t to represent the set of dynamic
floating-point control modes (such as the rounding mode and trap
enablement modes), and functions fegetmode and fesetmode to manipulate
those modes (without affecting other state such as the raised
exception flags) and a corresponding macro FE_DFL_MODE.
This patch series implements those interfaces for glibc. This first
patch adds the architecture-independent pieces, the x86 and x86_64
implementations, and the <bits/fenv.h> and ABI baseline updates for
all architectures so glibc keeps building and passing the ABI tests on
all architectures. Subsequent patches add the fegetmode and fesetmode
implementations for other architectures.
femode_t is generally an integer type - the same type as fenv_t, or as
the single element of fenv_t where fenv_t is a structure containing a
single integer (or the single relevant element, where it has elements
for both status and control registers) - except where architecture
properties or consistency with the fenv_t implementation indicate
otherwise. FE_DFL_MODE follows FE_DFL_ENV in whether it's a magic
pointer value (-1 cast to const femode_t *), a value that can be
distinguished from valid pointers by its high bits but otherwise
contains a representation of the desired register contents, or a
pointer to a constant variable (the powerpc case; __fe_dfl_mode is
added as an exported constant object, an alias to __fe_dfl_env).
Note that where architectures (that share a register between control
and status bits) gain definitions of new floating-point control or
status bits in future, the implementations of fesetmode for those
architectures may need updating (depending on whether the new bits are
control or status bits and what the implementation does with
previously unknown bits), just like existing implementations of
<fenv.h> functions that take care not to touch reserved bits may need
updating when the set of reserved bits changes. (As any new bits are
outside the scope of ISO C, that's just a quality-of-implementation
issue for supporting them, not a conformance issue.)
As with fenv_t, femode_t should properly include any software DFP
rounding mode (and for both fenv_t and femode_t I'd consider that
fragment of DFP support appropriate for inclusion in glibc even in the
absence of the rest of libdfp; hardware DFP rounding modes should
already be included if the definitions of which bits are status /
control bits are correct).
Tested for x86_64, x86, mips64 (hard float, and soft float to test the
fallback version), arm (hard float) and powerpc (hard float, soft
float and e500). Other architecture versions are untested.
* math/fegetmode.c: New file.
* math/fesetmode.c: Likewise.
* sysdeps/i386/fpu/fegetmode.c: Likewise.
* sysdeps/i386/fpu/fesetmode.c: Likewise.
* sysdeps/x86_64/fpu/fegetmode.c: Likewise.
* sysdeps/x86_64/fpu/fesetmode.c: Likewise.
* math/fenv.h: Update comment on inclusion of <bits/fenv.h>.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fegetmode): New function
declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fesetmode): Likewise.
* bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (femode_t): New
typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/aarch64/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/alpha/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/arm/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/hppa/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/ia64/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/m68k/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/microblaze/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/mips/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/nios2/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/powerpc/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (__fe_dfl_mode): New variable
declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/s390/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/sh/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/sparc/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/tile/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/x86/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* manual/arith.texi (FE_DFL_MODE): Document macro.
(fegetmode): Document function.
(fesetmode): Likewise.
* math/Versions (fegetmode): New libm symbol at version
GLIBC_2.25.
(fesetmode): Likewise.
* math/Makefile (libm-support): Add fegetmode and fesetmode.
(tests): Add test-femode and test-femode-traps.
* math/test-femode-traps.c: New file.
* math/test-femode.c: Likewise.
* sysdeps/powerpc/fpu/fenv_const.c (__fe_dfl_mode): Declare as
alias for __fe_dfl_env.
* sysdeps/powerpc/nofpu/fenv_const.c (__fe_dfl_mode): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fenv_const.c
(__fe_dfl_mode): Likewise.
* sysdeps/powerpc/Versions (__fe_dfl_mode): New libm symbol at
version GLIBC_2.25.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
There is transition penalty when SSE instructions are mixed with 256-bit
AVX or 512-bit AVX512 load instructions. Since _dl_runtime_resolve_avx
and _dl_runtime_profile_avx512 save/restore 256-bit YMM/512-bit ZMM
registers, there is transition penalty when SSE instructions are used
with lazy binding on AVX and AVX512 processors.
To avoid SSE transition penalty, if only the lower 128 bits of the first
8 vector registers are non-zero, we can preserve %xmm0 - %xmm7 registers
with the zero upper bits.
For AVX and AVX512 processors which support XGETBV with ECX == 1, we can
use XGETBV with ECX == 1 to check if the upper 128 bits of YMM registers
or the upper 256 bits of ZMM registers are zero. We can restore only the
non-zero portion of vector registers with AVX/AVX512 load instructions
which will zero-extend upper bits of vector registers.
This patch adds _dl_runtime_resolve_sse_vex which saves and restores
XMM registers with 128-bit AVX store/load instructions. It is used to
preserve YMM/ZMM registers when only the lower 128 bits are non-zero.
_dl_runtime_resolve_avx_opt and _dl_runtime_resolve_avx512_opt are added
and used on AVX/AVX512 processors supporting XGETBV with ECX == 1 so
that we store and load only the non-zero portion of vector registers.
This avoids SSE transition penalty caused by _dl_runtime_resolve_avx and
_dl_runtime_profile_avx512 when only the lower 128 bits of vector
registers are used.
_dl_runtime_resolve_avx_slow is added and used for AVX processors which
don't support XGETBV with ECX == 1. Since there is no SSE transition
penalty on AVX512 processors which don't support XGETBV with ECX == 1,
_dl_runtime_resolve_avx512_slow isn't provided.
[BZ #20495]
[BZ #20508]
* sysdeps/x86/cpu-features.c (init_cpu_features): For Intel
processors, set Use_dl_runtime_resolve_slow and set
Use_dl_runtime_resolve_opt if XGETBV suports ECX == 1.
* sysdeps/x86/cpu-features.h (bit_arch_Use_dl_runtime_resolve_opt):
New.
(bit_arch_Use_dl_runtime_resolve_slow): Likewise.
(index_arch_Use_dl_runtime_resolve_opt): Likewise.
(index_arch_Use_dl_runtime_resolve_slow): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_runtime_setup): Use
_dl_runtime_resolve_avx512_opt and _dl_runtime_resolve_avx_opt
if Use_dl_runtime_resolve_opt is set. Use
_dl_runtime_resolve_slow if Use_dl_runtime_resolve_slow is set.
* sysdeps/x86_64/dl-trampoline.S: Include <cpu-features.h>.
(_dl_runtime_resolve_opt): New. Defined for AVX and AVX512.
(_dl_runtime_resolve): Add one for _dl_runtime_resolve_sse_vex.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve_avx_slow):
New.
(_dl_runtime_resolve_opt): Likewise.
(_dl_runtime_profile): Define only if _dl_runtime_profile is
defined.
on s390x the test elf/check-localplt is failing after recent commits:
"elf: Do not use memalign for TCB/TLS blocks allocation [BZ #17730]"
"elf: Avoid using memalign for TLS allocations [BZ #17730]"
"elf: dl-minimal malloc needs to respect fundamental alignment"
due to "Missing required PLT reference: ld.so: __libc_memalign".
After the commits __libc_memalign is only called in elf/dl-minimal.c in
malloc() function in ld.so and gcc -O2/-O3 leads to R_390_GLOB_DAT
instead of R_390_JMP_SLOT. __libc_memalign is called via
function-pointer loaded from GOT instead of calling via a plt-stub. In
this case there is the R_390_GLOB_DAT relocation in section .rela.dyn
instead of R_390_JMP_SLOT in .rela.plt.
This patch marks ld.so: __libc_memalign with R_390_GLOB_DAT in
localplt.data to allow both relocations.
If build with -fno-optimize-sibling-calls or on s390(31bit) a
R_390_JMP_SLOT is generated.
ChangeLog:
* sysdeps/unix/sysv/linux/s390/localplt.data: Mark
ld.so: __libc_memalign with "+ RELA R_390_GLOB_DAT".
Historically perl includes the current directory in the module search
path. Over the time this has been considered as a security issue and
the recent vulnerabilities [1] made people to reconsider this behaviour.
It is almost sure that this will be removed in the future [2], possibly
for the 5.26 release, although this is not yet firmly decided.
Debian has decided to backport the patches [3], so the perl binary in
unstable do not have '.' in @INC anymore.
This behaviour is used in the conform perl scripts to include the
GlibcConform module. This patch fixes that by calling perl with '-I.'.
This is not a security issue in this case as make ensures that the
current directory is $(srcdir)/conform/ when the scripts are called.
Passing the full path would do exactly the same.
[1] CVE-2016-1238 CVE-2016-6185
[2] https://rt.perl.org/Public/Bug/Display.html?id=127810
[3] https://lists.debian.org/debian-devel-announce/2016/08/msg00013.html
Changelog:
* conform/Makefile (conformtest-header-tests): Pass -I. to $(PERL).
(linknamespace-symlists-tests): Likewise.
(linknamespace-header-tests): Likewise.
The commit b632bdd3 moved the setting of the DF_1_NODELETE flag earlier
in the dl_open_worker function. However when calling dlopen with both
RTLD_NODELETE and RTLD_NOLOAD, the pointer returned by _dl_map_object is
NULL. This condition is checked just after setting the flag, while it
should be done before. Fix that.
Changelog:
[BZ #19810]
* elf/dl-open.c (dl_open_worker): Set DF_1_NODELETE flag later.
* elf/tst-noload.c: New test case.
* elf/Makefile (tests): Add tst-noload.
The support functions for sin and cos have a lot of identical
functionality, so inlining them gives a pretty decent jump in
functionality: ~19% in the sincos function. On SPEC2006 this
translates to about 2.1% in the tonto test.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos): Mark as inline.
(do_cos_slow): Likewise.
(do_sin): Likewise.
(do_sin_slow): Likewise.
(slow): Likewise.
(slow1): Likewise.
(slow2): Likewise.
(sloww): Likewise.
(sloww1): Likewise.
(sloww2): Likewise.
(bsloww): Likewise.
(bsloww1): Likewise.
(bsloww2): Likewise.
(cslow2): Likewise.
The only code looks slightly different from do_sin but on closer
examination, should give exactly the same result. Drop it in favour
of the do_sin function call.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Use do_sin.
All calls to do_cos are preceded by code that partitions x into a
larger double that gives an offset into the sincos table and a smaller
double that is used in a polynomial computation. Consolidate all of
them into do_cos and do_sin to reduce code duplication.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos): Accept X and DX as input
arguments. Consolidate input partitioning from callers here.
(do_cos_slow): Likewise.
(do_sin): Likewise.
(do_sin_slow): Likewise.
(do_sincos_1): Remove the no longer necessary input partitioning.
(do_sincos_2): Likewise.
(__sin): Likewise.
(__cos): Likewise.
(slow1): Likewise.
(slow2): Likewise.
(sloww1): Likewise.
(sloww2): Likewise.
(bsloww1): Likewise.
(bsloww2): Likewise.
(cslow2): Likewise.
This avoids a race condition if the process-global locale is changed
while vfscanf is running. MB_LEN_MAX is always larger than MB_CUR_MAX,
so we might realloc earlier than necessary (but even MB_CUR_MAX could
be larger than the minimum required space).
The existing length was a bit questionable because str + MB_LEN_MAX
might point past the end of the buffer.
This is only used for the float and double variants.
Instead, just add it to the type specific list of files,
and remove all stubs, and remove the declaration from
math_private.h.
I verified x86_64, i486, ia64, m68k, and ppc64 build.