qemu-e2k/hw/char/escc.c

1069 lines
30 KiB
C
Raw Normal View History

/*
* QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/sysbus.h"
#include "hw/char/escc.h"
#include "sysemu/char.h"
#include "ui/console.h"
#include "ui/input.h"
#include "trace.h"
/*
* Chipset docs:
* "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
* http://www.zilog.com/docs/serial/scc_escc_um.pdf
*
* On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
* (Slave I/O), also produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
* mouse and keyboard ports don't implement all functions and they are
* only asynchronous. There is no DMA.
*
* Z85C30 is also used on PowerMacs. There are some small differences
* between Sparc version (sunzilog) and PowerMac (pmac):
* Offset between control and data registers
* There is some kind of lockup bug, but we can ignore it
* CTS is inverted
* DMA on pmac using DBDMA chip
* pmac can do IRDA and faster rates, sunzilog can only do 38400
* pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
*/
/*
* Modifications:
* 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
* serial mouse queue.
* Implemented serial mouse protocol.
*
* 2010-May-23 Artyom Tarasenko: Reworked IUS logic
*/
typedef enum {
chn_a, chn_b,
} ChnID;
#define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
typedef enum {
ser, kbd, mouse,
} ChnType;
#define SERIO_QUEUE_SIZE 256
typedef struct {
uint8_t data[SERIO_QUEUE_SIZE];
int rptr, wptr, count;
} SERIOQueue;
#define SERIAL_REGS 16
typedef struct ChannelState {
qemu_irq irq;
uint32_t rxint, txint, rxint_under_svc, txint_under_svc;
struct ChannelState *otherchn;
uint32_t reg;
uint8_t wregs[SERIAL_REGS], rregs[SERIAL_REGS];
SERIOQueue queue;
CharBackend chr;
int e0_mode, led_mode, caps_lock_mode, num_lock_mode;
int disabled;
int clock;
uint32_t vmstate_dummy;
ChnID chn; // this channel, A (base+4) or B (base+0)
ChnType type;
uint8_t rx, tx;
QemuInputHandlerState *hs;
} ChannelState;
#define ESCC(obj) OBJECT_CHECK(ESCCState, (obj), TYPE_ESCC)
typedef struct ESCCState {
SysBusDevice parent_obj;
struct ChannelState chn[2];
uint32_t it_shift;
MemoryRegion mmio;
uint32_t disabled;
uint32_t frequency;
} ESCCState;
#define SERIAL_CTRL 0
#define SERIAL_DATA 1
#define W_CMD 0
#define CMD_PTR_MASK 0x07
#define CMD_CMD_MASK 0x38
#define CMD_HI 0x08
#define CMD_CLR_TXINT 0x28
#define CMD_CLR_IUS 0x38
#define W_INTR 1
#define INTR_INTALL 0x01
#define INTR_TXINT 0x02
#define INTR_RXMODEMSK 0x18
#define INTR_RXINT1ST 0x08
#define INTR_RXINTALL 0x10
#define W_IVEC 2
#define W_RXCTRL 3
#define RXCTRL_RXEN 0x01
#define W_TXCTRL1 4
#define TXCTRL1_PAREN 0x01
#define TXCTRL1_PAREV 0x02
#define TXCTRL1_1STOP 0x04
#define TXCTRL1_1HSTOP 0x08
#define TXCTRL1_2STOP 0x0c
#define TXCTRL1_STPMSK 0x0c
#define TXCTRL1_CLK1X 0x00
#define TXCTRL1_CLK16X 0x40
#define TXCTRL1_CLK32X 0x80
#define TXCTRL1_CLK64X 0xc0
#define TXCTRL1_CLKMSK 0xc0
#define W_TXCTRL2 5
#define TXCTRL2_TXEN 0x08
#define TXCTRL2_BITMSK 0x60
#define TXCTRL2_5BITS 0x00
#define TXCTRL2_7BITS 0x20
#define TXCTRL2_6BITS 0x40
#define TXCTRL2_8BITS 0x60
#define W_SYNC1 6
#define W_SYNC2 7
#define W_TXBUF 8
#define W_MINTR 9
#define MINTR_STATUSHI 0x10
#define MINTR_RST_MASK 0xc0
#define MINTR_RST_B 0x40
#define MINTR_RST_A 0x80
#define MINTR_RST_ALL 0xc0
#define W_MISC1 10
#define W_CLOCK 11
#define CLOCK_TRXC 0x08
#define W_BRGLO 12
#define W_BRGHI 13
#define W_MISC2 14
#define MISC2_PLLDIS 0x30
#define W_EXTINT 15
#define EXTINT_DCD 0x08
#define EXTINT_SYNCINT 0x10
#define EXTINT_CTSINT 0x20
#define EXTINT_TXUNDRN 0x40
#define EXTINT_BRKINT 0x80
#define R_STATUS 0
#define STATUS_RXAV 0x01
#define STATUS_ZERO 0x02
#define STATUS_TXEMPTY 0x04
#define STATUS_DCD 0x08
#define STATUS_SYNC 0x10
#define STATUS_CTS 0x20
#define STATUS_TXUNDRN 0x40
#define STATUS_BRK 0x80
#define R_SPEC 1
#define SPEC_ALLSENT 0x01
#define SPEC_BITS8 0x06
#define R_IVEC 2
#define IVEC_TXINTB 0x00
#define IVEC_LONOINT 0x06
#define IVEC_LORXINTA 0x0c
#define IVEC_LORXINTB 0x04
#define IVEC_LOTXINTA 0x08
#define IVEC_HINOINT 0x60
#define IVEC_HIRXINTA 0x30
#define IVEC_HIRXINTB 0x20
#define IVEC_HITXINTA 0x10
#define R_INTR 3
#define INTR_EXTINTB 0x01
#define INTR_TXINTB 0x02
#define INTR_RXINTB 0x04
#define INTR_EXTINTA 0x08
#define INTR_TXINTA 0x10
#define INTR_RXINTA 0x20
#define R_IPEN 4
#define R_TXCTRL1 5
#define R_TXCTRL2 6
#define R_BC 7
#define R_RXBUF 8
#define R_RXCTRL 9
#define R_MISC 10
#define R_MISC1 11
#define R_BRGLO 12
#define R_BRGHI 13
#define R_MISC1I 14
#define R_EXTINT 15
static void handle_kbd_command(ChannelState *s, int val);
static int serial_can_receive(void *opaque);
static void serial_receive_byte(ChannelState *s, int ch);
static void clear_queue(void *opaque)
{
ChannelState *s = opaque;
SERIOQueue *q = &s->queue;
q->rptr = q->wptr = q->count = 0;
}
static void put_queue(void *opaque, int b)
{
ChannelState *s = opaque;
SERIOQueue *q = &s->queue;
trace_escc_put_queue(CHN_C(s), b);
if (q->count >= SERIO_QUEUE_SIZE)
return;
q->data[q->wptr] = b;
if (++q->wptr == SERIO_QUEUE_SIZE)
q->wptr = 0;
q->count++;
serial_receive_byte(s, 0);
}
static uint32_t get_queue(void *opaque)
{
ChannelState *s = opaque;
SERIOQueue *q = &s->queue;
int val;
if (q->count == 0) {
return 0;
} else {
val = q->data[q->rptr];
if (++q->rptr == SERIO_QUEUE_SIZE)
q->rptr = 0;
q->count--;
}
trace_escc_get_queue(CHN_C(s), val);
if (q->count > 0)
serial_receive_byte(s, 0);
return val;
}
static int escc_update_irq_chn(ChannelState *s)
{
if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
// tx ints enabled, pending
((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
s->rxint == 1) || // rx ints enabled, pending
((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
(s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
return 1;
}
return 0;
}
static void escc_update_irq(ChannelState *s)
{
int irq;
irq = escc_update_irq_chn(s);
irq |= escc_update_irq_chn(s->otherchn);
trace_escc_update_irq(irq);
qemu_set_irq(s->irq, irq);
}
static void escc_reset_chn(ChannelState *s)
{
int i;
s->reg = 0;
for (i = 0; i < SERIAL_REGS; i++) {
s->rregs[i] = 0;
s->wregs[i] = 0;
}
s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
s->wregs[W_MINTR] = MINTR_RST_ALL;
s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
if (s->disabled)
s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
STATUS_CTS | STATUS_TXUNDRN;
else
s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
s->rx = s->tx = 0;
s->rxint = s->txint = 0;
s->rxint_under_svc = s->txint_under_svc = 0;
s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
clear_queue(s);
}
static void escc_reset(DeviceState *d)
{
ESCCState *s = ESCC(d);
escc_reset_chn(&s->chn[0]);
escc_reset_chn(&s->chn[1]);
}
static inline void set_rxint(ChannelState *s)
{
s->rxint = 1;
/* XXX: missing daisy chainnig: chn_b rx should have a lower priority
than chn_a rx/tx/special_condition service*/
s->rxint_under_svc = 1;
if (s->chn == chn_a) {
s->rregs[R_INTR] |= INTR_RXINTA;
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
else
s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
} else {
s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->rregs[R_IVEC] = IVEC_HIRXINTB;
else
s->rregs[R_IVEC] = IVEC_LORXINTB;
}
escc_update_irq(s);
}
static inline void set_txint(ChannelState *s)
{
s->txint = 1;
if (!s->rxint_under_svc) {
s->txint_under_svc = 1;
if (s->chn == chn_a) {
if (s->wregs[W_INTR] & INTR_TXINT) {
s->rregs[R_INTR] |= INTR_TXINTA;
}
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
else
s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
} else {
s->rregs[R_IVEC] = IVEC_TXINTB;
if (s->wregs[W_INTR] & INTR_TXINT) {
s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
}
}
escc_update_irq(s);
}
}
static inline void clr_rxint(ChannelState *s)
{
s->rxint = 0;
s->rxint_under_svc = 0;
if (s->chn == chn_a) {
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
else
s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
s->rregs[R_INTR] &= ~INTR_RXINTA;
} else {
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->rregs[R_IVEC] = IVEC_HINOINT;
else
s->rregs[R_IVEC] = IVEC_LONOINT;
s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
}
if (s->txint)
set_txint(s);
escc_update_irq(s);
}
static inline void clr_txint(ChannelState *s)
{
s->txint = 0;
s->txint_under_svc = 0;
if (s->chn == chn_a) {
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
else
s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
s->rregs[R_INTR] &= ~INTR_TXINTA;
} else {
s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->rregs[R_IVEC] = IVEC_HINOINT;
else
s->rregs[R_IVEC] = IVEC_LONOINT;
s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
}
if (s->rxint)
set_rxint(s);
escc_update_irq(s);
}
static void escc_update_parameters(ChannelState *s)
{
int speed, parity, data_bits, stop_bits;
QEMUSerialSetParams ssp;
if (!qemu_chr_fe_get_driver(&s->chr) || s->type != ser)
return;
if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
parity = 'E';
else
parity = 'O';
} else {
parity = 'N';
}
if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
stop_bits = 2;
else
stop_bits = 1;
switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
case TXCTRL2_5BITS:
data_bits = 5;
break;
case TXCTRL2_7BITS:
data_bits = 7;
break;
case TXCTRL2_6BITS:
data_bits = 6;
break;
default:
case TXCTRL2_8BITS:
data_bits = 8;
break;
}
speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
case TXCTRL1_CLK1X:
break;
case TXCTRL1_CLK16X:
speed /= 16;
break;
case TXCTRL1_CLK32X:
speed /= 32;
break;
default:
case TXCTRL1_CLK64X:
speed /= 64;
break;
}
ssp.speed = speed;
ssp.parity = parity;
ssp.data_bits = data_bits;
ssp.stop_bits = stop_bits;
trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}
static void escc_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
ESCCState *serial = opaque;
ChannelState *s;
uint32_t saddr;
int newreg, channel;
val &= 0xff;
saddr = (addr >> serial->it_shift) & 1;
channel = (addr >> (serial->it_shift + 1)) & 1;
s = &serial->chn[channel];
switch (saddr) {
case SERIAL_CTRL:
trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
newreg = 0;
switch (s->reg) {
case W_CMD:
newreg = val & CMD_PTR_MASK;
val &= CMD_CMD_MASK;
switch (val) {
case CMD_HI:
newreg |= CMD_HI;
break;
case CMD_CLR_TXINT:
clr_txint(s);
break;
case CMD_CLR_IUS:
if (s->rxint_under_svc) {
s->rxint_under_svc = 0;
if (s->txint) {
set_txint(s);
}
} else if (s->txint_under_svc) {
s->txint_under_svc = 0;
}
escc_update_irq(s);
break;
default:
break;
}
break;
case W_INTR ... W_RXCTRL:
case W_SYNC1 ... W_TXBUF:
case W_MISC1 ... W_CLOCK:
case W_MISC2 ... W_EXTINT:
s->wregs[s->reg] = val;
break;
case W_TXCTRL1:
case W_TXCTRL2:
s->wregs[s->reg] = val;
escc_update_parameters(s);
break;
case W_BRGLO:
case W_BRGHI:
s->wregs[s->reg] = val;
s->rregs[s->reg] = val;
escc_update_parameters(s);
break;
case W_MINTR:
switch (val & MINTR_RST_MASK) {
case 0:
default:
break;
case MINTR_RST_B:
escc_reset_chn(&serial->chn[0]);
return;
case MINTR_RST_A:
escc_reset_chn(&serial->chn[1]);
return;
case MINTR_RST_ALL:
escc_reset(DEVICE(serial));
return;
}
break;
default:
break;
}
if (s->reg == 0)
s->reg = newreg;
else
s->reg = 0;
break;
case SERIAL_DATA:
trace_escc_mem_writeb_data(CHN_C(s), val);
s->tx = val;
if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
if (qemu_chr_fe_get_driver(&s->chr)) {
/* XXX this blocks entire thread. Rewrite to use
* qemu_chr_fe_write and background I/O callbacks */
qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
} else if (s->type == kbd && !s->disabled) {
handle_kbd_command(s, val);
}
}
s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
set_txint(s);
break;
default:
break;
}
}
static uint64_t escc_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
ESCCState *serial = opaque;
ChannelState *s;
uint32_t saddr;
uint32_t ret;
int channel;
saddr = (addr >> serial->it_shift) & 1;
channel = (addr >> (serial->it_shift + 1)) & 1;
s = &serial->chn[channel];
switch (saddr) {
case SERIAL_CTRL:
trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
ret = s->rregs[s->reg];
s->reg = 0;
return ret;
case SERIAL_DATA:
s->rregs[R_STATUS] &= ~STATUS_RXAV;
clr_rxint(s);
if (s->type == kbd || s->type == mouse)
ret = get_queue(s);
else
ret = s->rx;
trace_escc_mem_readb_data(CHN_C(s), ret);
qemu_chr_fe_accept_input(&s->chr);
return ret;
default:
break;
}
return 0;
}
static const MemoryRegionOps escc_mem_ops = {
.read = escc_mem_read,
.write = escc_mem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static int serial_can_receive(void *opaque)
{
ChannelState *s = opaque;
int ret;
if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
|| ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
// char already available
ret = 0;
else
ret = 1;
return ret;
}
static void serial_receive_byte(ChannelState *s, int ch)
{
trace_escc_serial_receive_byte(CHN_C(s), ch);
s->rregs[R_STATUS] |= STATUS_RXAV;
s->rx = ch;
set_rxint(s);
}
static void serial_receive_break(ChannelState *s)
{
s->rregs[R_STATUS] |= STATUS_BRK;
escc_update_irq(s);
}
static void serial_receive1(void *opaque, const uint8_t *buf, int size)
{
ChannelState *s = opaque;
serial_receive_byte(s, buf[0]);
}
static void serial_event(void *opaque, int event)
{
ChannelState *s = opaque;
if (event == CHR_EVENT_BREAK)
serial_receive_break(s);
}
static const VMStateDescription vmstate_escc_chn = {
.name ="escc_chn",
.version_id = 2,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(vmstate_dummy, ChannelState),
VMSTATE_UINT32(reg, ChannelState),
VMSTATE_UINT32(rxint, ChannelState),
VMSTATE_UINT32(txint, ChannelState),
VMSTATE_UINT32(rxint_under_svc, ChannelState),
VMSTATE_UINT32(txint_under_svc, ChannelState),
VMSTATE_UINT8(rx, ChannelState),
VMSTATE_UINT8(tx, ChannelState),
VMSTATE_BUFFER(wregs, ChannelState),
VMSTATE_BUFFER(rregs, ChannelState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_escc = {
.name ="escc",
.version_id = 2,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
ChannelState),
VMSTATE_END_OF_LIST()
}
};
MemoryRegion *escc_init(hwaddr base, qemu_irq irqA, qemu_irq irqB,
Chardev *chrA, Chardev *chrB,
int clock, int it_shift)
{
DeviceState *dev;
SysBusDevice *s;
ESCCState *d;
dev = qdev_create(NULL, TYPE_ESCC);
qdev_prop_set_uint32(dev, "disabled", 0);
qdev_prop_set_uint32(dev, "frequency", clock);
qdev_prop_set_uint32(dev, "it_shift", it_shift);
qdev_prop_set_chr(dev, "chrB", chrB);
qdev_prop_set_chr(dev, "chrA", chrA);
qdev_prop_set_uint32(dev, "chnBtype", ser);
qdev_prop_set_uint32(dev, "chnAtype", ser);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, irqB);
sysbus_connect_irq(s, 1, irqA);
if (base) {
sysbus_mmio_map(s, 0, base);
}
d = ESCC(s);
return &d->mmio;
}
static const uint8_t qcode_to_keycode[Q_KEY_CODE__MAX] = {
[Q_KEY_CODE_SHIFT] = 99,
[Q_KEY_CODE_SHIFT_R] = 110,
[Q_KEY_CODE_ALT] = 19,
[Q_KEY_CODE_ALT_R] = 13,
[Q_KEY_CODE_ALTGR] = 13,
[Q_KEY_CODE_CTRL] = 76,
[Q_KEY_CODE_CTRL_R] = 76,
[Q_KEY_CODE_ESC] = 29,
[Q_KEY_CODE_1] = 30,
[Q_KEY_CODE_2] = 31,
[Q_KEY_CODE_3] = 32,
[Q_KEY_CODE_4] = 33,
[Q_KEY_CODE_5] = 34,
[Q_KEY_CODE_6] = 35,
[Q_KEY_CODE_7] = 36,
[Q_KEY_CODE_8] = 37,
[Q_KEY_CODE_9] = 38,
[Q_KEY_CODE_0] = 39,
[Q_KEY_CODE_MINUS] = 40,
[Q_KEY_CODE_EQUAL] = 41,
[Q_KEY_CODE_BACKSPACE] = 43,
[Q_KEY_CODE_TAB] = 53,
[Q_KEY_CODE_Q] = 54,
[Q_KEY_CODE_W] = 55,
[Q_KEY_CODE_E] = 56,
[Q_KEY_CODE_R] = 57,
[Q_KEY_CODE_T] = 58,
[Q_KEY_CODE_Y] = 59,
[Q_KEY_CODE_U] = 60,
[Q_KEY_CODE_I] = 61,
[Q_KEY_CODE_O] = 62,
[Q_KEY_CODE_P] = 63,
[Q_KEY_CODE_BRACKET_LEFT] = 64,
[Q_KEY_CODE_BRACKET_RIGHT] = 65,
[Q_KEY_CODE_RET] = 89,
[Q_KEY_CODE_A] = 77,
[Q_KEY_CODE_S] = 78,
[Q_KEY_CODE_D] = 79,
[Q_KEY_CODE_F] = 80,
[Q_KEY_CODE_G] = 81,
[Q_KEY_CODE_H] = 82,
[Q_KEY_CODE_J] = 83,
[Q_KEY_CODE_K] = 84,
[Q_KEY_CODE_L] = 85,
[Q_KEY_CODE_SEMICOLON] = 86,
[Q_KEY_CODE_APOSTROPHE] = 87,
[Q_KEY_CODE_GRAVE_ACCENT] = 42,
[Q_KEY_CODE_BACKSLASH] = 88,
[Q_KEY_CODE_Z] = 100,
[Q_KEY_CODE_X] = 101,
[Q_KEY_CODE_C] = 102,
[Q_KEY_CODE_V] = 103,
[Q_KEY_CODE_B] = 104,
[Q_KEY_CODE_N] = 105,
[Q_KEY_CODE_M] = 106,
[Q_KEY_CODE_COMMA] = 107,
[Q_KEY_CODE_DOT] = 108,
[Q_KEY_CODE_SLASH] = 109,
[Q_KEY_CODE_ASTERISK] = 47,
[Q_KEY_CODE_SPC] = 121,
[Q_KEY_CODE_CAPS_LOCK] = 119,
[Q_KEY_CODE_F1] = 5,
[Q_KEY_CODE_F2] = 6,
[Q_KEY_CODE_F3] = 8,
[Q_KEY_CODE_F4] = 10,
[Q_KEY_CODE_F5] = 12,
[Q_KEY_CODE_F6] = 14,
[Q_KEY_CODE_F7] = 16,
[Q_KEY_CODE_F8] = 17,
[Q_KEY_CODE_F9] = 18,
[Q_KEY_CODE_F10] = 7,
[Q_KEY_CODE_NUM_LOCK] = 98,
[Q_KEY_CODE_SCROLL_LOCK] = 23,
[Q_KEY_CODE_KP_DIVIDE] = 46,
[Q_KEY_CODE_KP_MULTIPLY] = 47,
[Q_KEY_CODE_KP_SUBTRACT] = 71,
[Q_KEY_CODE_KP_ADD] = 125,
[Q_KEY_CODE_KP_ENTER] = 90,
[Q_KEY_CODE_KP_DECIMAL] = 50,
[Q_KEY_CODE_KP_0] = 94,
[Q_KEY_CODE_KP_1] = 112,
[Q_KEY_CODE_KP_2] = 113,
[Q_KEY_CODE_KP_3] = 114,
[Q_KEY_CODE_KP_4] = 91,
[Q_KEY_CODE_KP_5] = 92,
[Q_KEY_CODE_KP_6] = 93,
[Q_KEY_CODE_KP_7] = 68,
[Q_KEY_CODE_KP_8] = 69,
[Q_KEY_CODE_KP_9] = 70,
[Q_KEY_CODE_LESS] = 124,
[Q_KEY_CODE_F11] = 9,
[Q_KEY_CODE_F12] = 11,
[Q_KEY_CODE_HOME] = 52,
[Q_KEY_CODE_PGUP] = 96,
[Q_KEY_CODE_PGDN] = 123,
[Q_KEY_CODE_END] = 74,
[Q_KEY_CODE_LEFT] = 24,
[Q_KEY_CODE_UP] = 20,
[Q_KEY_CODE_DOWN] = 27,
[Q_KEY_CODE_RIGHT] = 28,
[Q_KEY_CODE_INSERT] = 44,
[Q_KEY_CODE_DELETE] = 66,
[Q_KEY_CODE_STOP] = 1,
[Q_KEY_CODE_AGAIN] = 3,
[Q_KEY_CODE_PROPS] = 25,
[Q_KEY_CODE_UNDO] = 26,
[Q_KEY_CODE_FRONT] = 49,
[Q_KEY_CODE_COPY] = 51,
[Q_KEY_CODE_OPEN] = 72,
[Q_KEY_CODE_PASTE] = 73,
[Q_KEY_CODE_FIND] = 95,
[Q_KEY_CODE_CUT] = 97,
[Q_KEY_CODE_LF] = 111,
[Q_KEY_CODE_HELP] = 118,
[Q_KEY_CODE_META_L] = 120,
[Q_KEY_CODE_META_R] = 122,
[Q_KEY_CODE_COMPOSE] = 67,
[Q_KEY_CODE_PRINT] = 22,
[Q_KEY_CODE_SYSRQ] = 21,
};
static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
InputEvent *evt)
{
ChannelState *s = (ChannelState *)dev;
int qcode, keycode;
InputKeyEvent *key;
assert(evt->type == INPUT_EVENT_KIND_KEY);
qapi: Don't special-case simple union wrappers Simple unions were carrying a special case that hid their 'data' QMP member from the resulting C struct, via the hack method QAPISchemaObjectTypeVariant.simple_union_type(). But by using the work we started by unboxing flat union and alternate branches, coupled with the ability to visit the members of an implicit type, we can now expose the simple union's implicit type in qapi-types.h: | struct q_obj_ImageInfoSpecificQCow2_wrapper { | ImageInfoSpecificQCow2 *data; | }; | | struct q_obj_ImageInfoSpecificVmdk_wrapper { | ImageInfoSpecificVmdk *data; | }; ... | struct ImageInfoSpecific { | ImageInfoSpecificKind type; | union { /* union tag is @type */ | void *data; |- ImageInfoSpecificQCow2 *qcow2; |- ImageInfoSpecificVmdk *vmdk; |+ q_obj_ImageInfoSpecificQCow2_wrapper qcow2; |+ q_obj_ImageInfoSpecificVmdk_wrapper vmdk; | } u; | }; Doing this removes asymmetry between QAPI's QMP side and its C side (both sides now expose 'data'), and means that the treatment of a simple union as sugar for a flat union is now equivalent in both languages (previously the two approaches used a different layer of dereferencing, where the simple union could be converted to a flat union with equivalent C layout but different {} on the wire, or to an equivalent QMP wire form but with different C representation). Using the implicit type also lets us get rid of the simple_union_type() hack. Of course, now all clients of simple unions have to adjust from using su->u.member to using su->u.member.data; while this touches a number of files in the tree, some earlier cleanup patches helped minimize the change to the initialization of a temporary variable rather than every single member access. The generated qapi-visit.c code is also affected by the layout change: |@@ -7393,10 +7393,10 @@ void visit_type_ImageInfoSpecific_member | } | switch (obj->type) { | case IMAGE_INFO_SPECIFIC_KIND_QCOW2: |- visit_type_ImageInfoSpecificQCow2(v, "data", &obj->u.qcow2, &err); |+ visit_type_q_obj_ImageInfoSpecificQCow2_wrapper_members(v, &obj->u.qcow2, &err); | break; | case IMAGE_INFO_SPECIFIC_KIND_VMDK: |- visit_type_ImageInfoSpecificVmdk(v, "data", &obj->u.vmdk, &err); |+ visit_type_q_obj_ImageInfoSpecificVmdk_wrapper_members(v, &obj->u.vmdk, &err); | break; | default: | abort(); Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1458254921-17042-13-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-03-17 23:48:37 +01:00
key = evt->u.key.data;
qcode = qemu_input_key_value_to_qcode(key->key);
trace_escc_sunkbd_event_in(qcode, QKeyCode_lookup[qcode],
key->down);
if (qcode == Q_KEY_CODE_CAPS_LOCK) {
if (key->down) {
s->caps_lock_mode ^= 1;
if (s->caps_lock_mode == 2) {
return; /* Drop second press */
}
} else {
s->caps_lock_mode ^= 2;
if (s->caps_lock_mode == 3) {
return; /* Drop first release */
}
}
}
if (qcode == Q_KEY_CODE_NUM_LOCK) {
if (key->down) {
s->num_lock_mode ^= 1;
if (s->num_lock_mode == 2) {
return; /* Drop second press */
}
} else {
s->num_lock_mode ^= 2;
if (s->num_lock_mode == 3) {
return; /* Drop first release */
}
}
}
keycode = qcode_to_keycode[qcode];
if (!key->down) {
keycode |= 0x80;
}
trace_escc_sunkbd_event_out(keycode);
put_queue(s, keycode);
}
static QemuInputHandler sunkbd_handler = {
.name = "sun keyboard",
.mask = INPUT_EVENT_MASK_KEY,
.event = sunkbd_handle_event,
};
static void handle_kbd_command(ChannelState *s, int val)
{
trace_escc_kbd_command(val);
if (s->led_mode) { // Ignore led byte
s->led_mode = 0;
return;
}
switch (val) {
case 1: // Reset, return type code
clear_queue(s);
put_queue(s, 0xff);
put_queue(s, 4); // Type 4
put_queue(s, 0x7f);
break;
case 0xe: // Set leds
s->led_mode = 1;
break;
case 7: // Query layout
case 0xf:
clear_queue(s);
put_queue(s, 0xfe);
put_queue(s, 0x21); /* en-us layout */
break;
default:
break;
}
}
static void sunmouse_event(void *opaque,
int dx, int dy, int dz, int buttons_state)
{
ChannelState *s = opaque;
int ch;
trace_escc_sunmouse_event(dx, dy, buttons_state);
ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
if (buttons_state & MOUSE_EVENT_LBUTTON)
ch ^= 0x4;
if (buttons_state & MOUSE_EVENT_MBUTTON)
ch ^= 0x2;
if (buttons_state & MOUSE_EVENT_RBUTTON)
ch ^= 0x1;
put_queue(s, ch);
ch = dx;
if (ch > 127)
ch = 127;
else if (ch < -127)
ch = -127;
put_queue(s, ch & 0xff);
ch = -dy;
if (ch > 127)
ch = 127;
else if (ch < -127)
ch = -127;
put_queue(s, ch & 0xff);
// MSC protocol specify two extra motion bytes
put_queue(s, 0);
put_queue(s, 0);
}
void slavio_serial_ms_kbd_init(hwaddr base, qemu_irq irq,
int disabled, int clock, int it_shift)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, TYPE_ESCC);
qdev_prop_set_uint32(dev, "disabled", disabled);
qdev_prop_set_uint32(dev, "frequency", clock);
qdev_prop_set_uint32(dev, "it_shift", it_shift);
qdev_prop_set_chr(dev, "chrB", NULL);
qdev_prop_set_chr(dev, "chrA", NULL);
qdev_prop_set_uint32(dev, "chnBtype", mouse);
qdev_prop_set_uint32(dev, "chnAtype", kbd);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, irq);
sysbus_connect_irq(s, 1, irq);
sysbus_mmio_map(s, 0, base);
}
static void escc_init1(Object *obj)
{
ESCCState *s = ESCC(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
unsigned int i;
for (i = 0; i < 2; i++) {
sysbus_init_irq(dev, &s->chn[i].irq);
s->chn[i].chn = 1 - i;
}
s->chn[0].otherchn = &s->chn[1];
s->chn[1].otherchn = &s->chn[0];
sysbus_init_mmio(dev, &s->mmio);
}
static void escc_realize(DeviceState *dev, Error **errp)
{
ESCCState *s = ESCC(dev);
unsigned int i;
s->chn[0].disabled = s->disabled;
s->chn[1].disabled = s->disabled;
memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
ESCC_SIZE << s->it_shift);
for (i = 0; i < 2; i++) {
if (qemu_chr_fe_get_driver(&s->chn[i].chr)) {
s->chn[i].clock = s->frequency / 2;
qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
serial_receive1, serial_event,
&s->chn[i], NULL, true);
}
}
if (s->chn[0].type == mouse) {
qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
"QEMU Sun Mouse");
}
if (s->chn[1].type == kbd) {
s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
&sunkbd_handler);
}
}
static Property escc_properties[] = {
DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0),
DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0),
DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0),
DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0),
DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0),
DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
DEFINE_PROP_END_OF_LIST(),
};
static void escc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = escc_reset;
dc->realize = escc_realize;
dc->vmsd = &vmstate_escc;
dc->props = escc_properties;
set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
}
static const TypeInfo escc_info = {
.name = TYPE_ESCC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ESCCState),
.instance_init = escc_init1,
.class_init = escc_class_init,
};
static void escc_register_types(void)
{
type_register_static(&escc_info);
}
type_init(escc_register_types)