qemu-e2k/target-cris/translate.c

3507 lines
93 KiB
C
Raw Normal View History

/*
* CRIS emulation for qemu: main translation routines.
*
* Copyright (c) 2008 AXIS Communications AB
* Written by Edgar E. Iglesias.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* FIXME:
* The condition code translation is in need of attention.
*/
#include "cpu.h"
#include "disas/disas.h"
#include "tcg-op.h"
#include "helper.h"
#include "mmu.h"
#include "crisv32-decode.h"
#define GEN_HELPER 1
#include "helper.h"
#define DISAS_CRIS 0
#if DISAS_CRIS
# define LOG_DIS(...) qemu_log_mask(CPU_LOG_TB_IN_ASM, ## __VA_ARGS__)
#else
# define LOG_DIS(...) do { } while (0)
#endif
#define D(x)
#define BUG() (gen_BUG(dc, __FILE__, __LINE__))
#define BUG_ON(x) ({if (x) BUG();})
#define DISAS_SWI 5
/* Used by the decoder. */
#define EXTRACT_FIELD(src, start, end) \
(((src) >> start) & ((1 << (end - start + 1)) - 1))
#define CC_MASK_NZ 0xc
#define CC_MASK_NZV 0xe
#define CC_MASK_NZVC 0xf
#define CC_MASK_RNZV 0x10e
static TCGv_ptr cpu_env;
static TCGv cpu_R[16];
static TCGv cpu_PR[16];
static TCGv cc_x;
static TCGv cc_src;
static TCGv cc_dest;
static TCGv cc_result;
static TCGv cc_op;
static TCGv cc_size;
static TCGv cc_mask;
static TCGv env_btaken;
static TCGv env_btarget;
static TCGv env_pc;
#include "exec/gen-icount.h"
/* This is the state at translation time. */
typedef struct DisasContext {
CPUCRISState *env;
target_ulong pc, ppc;
/* Decoder. */
unsigned int (*decoder)(CPUCRISState *env, struct DisasContext *dc);
uint32_t ir;
uint32_t opcode;
unsigned int op1;
unsigned int op2;
unsigned int zsize, zzsize;
unsigned int mode;
unsigned int postinc;
unsigned int size;
unsigned int src;
unsigned int dst;
unsigned int cond;
int update_cc;
int cc_op;
int cc_size;
uint32_t cc_mask;
int cc_size_uptodate; /* -1 invalid or last written value. */
int cc_x_uptodate; /* 1 - ccs, 2 - known | X_FLAG. 0 not uptodate. */
int flags_uptodate; /* Wether or not $ccs is uptodate. */
int flagx_known; /* Wether or not flags_x has the x flag known at
translation time. */
int flags_x;
int clear_x; /* Clear x after this insn? */
int clear_prefix; /* Clear prefix after this insn? */
int clear_locked_irq; /* Clear the irq lockout. */
int cpustate_changed;
unsigned int tb_flags; /* tb dependent flags. */
int is_jmp;
#define JMP_NOJMP 0
#define JMP_DIRECT 1
#define JMP_DIRECT_CC 2
#define JMP_INDIRECT 3
int jmp; /* 0=nojmp, 1=direct, 2=indirect. */
uint32_t jmp_pc;
int delayed_branch;
struct TranslationBlock *tb;
int singlestep_enabled;
} DisasContext;
static void gen_BUG(DisasContext *dc, const char *file, int line)
{
printf("BUG: pc=%x %s %d\n", dc->pc, file, line);
qemu_log("BUG: pc=%x %s %d\n", dc->pc, file, line);
cpu_abort(dc->env, "%s:%d\n", file, line);
}
static const char *regnames[] =
{
"$r0", "$r1", "$r2", "$r3",
"$r4", "$r5", "$r6", "$r7",
"$r8", "$r9", "$r10", "$r11",
"$r12", "$r13", "$sp", "$acr",
};
static const char *pregnames[] =
{
"$bz", "$vr", "$pid", "$srs",
"$wz", "$exs", "$eda", "$mof",
"$dz", "$ebp", "$erp", "$srp",
"$nrp", "$ccs", "$usp", "$spc",
};
/* We need this table to handle preg-moves with implicit width. */
static int preg_sizes[] = {
1, /* bz. */
1, /* vr. */
4, /* pid. */
1, /* srs. */
2, /* wz. */
4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 4,
};
#define t_gen_mov_TN_env(tn, member) \
_t_gen_mov_TN_env((tn), offsetof(CPUCRISState, member))
#define t_gen_mov_env_TN(member, tn) \
_t_gen_mov_env_TN(offsetof(CPUCRISState, member), (tn))
static inline void t_gen_mov_TN_reg(TCGv tn, int r)
{
if (r < 0 || r > 15) {
fprintf(stderr, "wrong register read $r%d\n", r);
}
tcg_gen_mov_tl(tn, cpu_R[r]);
}
static inline void t_gen_mov_reg_TN(int r, TCGv tn)
{
if (r < 0 || r > 15) {
fprintf(stderr, "wrong register write $r%d\n", r);
}
tcg_gen_mov_tl(cpu_R[r], tn);
}
static inline void _t_gen_mov_TN_env(TCGv tn, int offset)
{
if (offset > sizeof(CPUCRISState)) {
fprintf(stderr, "wrong load from env from off=%d\n", offset);
}
tcg_gen_ld_tl(tn, cpu_env, offset);
}
static inline void _t_gen_mov_env_TN(int offset, TCGv tn)
{
if (offset > sizeof(CPUCRISState)) {
fprintf(stderr, "wrong store to env at off=%d\n", offset);
}
tcg_gen_st_tl(tn, cpu_env, offset);
}
static inline void t_gen_mov_TN_preg(TCGv tn, int r)
{
if (r < 0 || r > 15) {
fprintf(stderr, "wrong register read $p%d\n", r);
}
if (r == PR_BZ || r == PR_WZ || r == PR_DZ) {
tcg_gen_mov_tl(tn, tcg_const_tl(0));
} else if (r == PR_VR) {
tcg_gen_mov_tl(tn, tcg_const_tl(32));
} else {
tcg_gen_mov_tl(tn, cpu_PR[r]);
}
}
static inline void t_gen_mov_preg_TN(DisasContext *dc, int r, TCGv tn)
{
if (r < 0 || r > 15) {
fprintf(stderr, "wrong register write $p%d\n", r);
}
if (r == PR_BZ || r == PR_WZ || r == PR_DZ) {
return;
} else if (r == PR_SRS) {
tcg_gen_andi_tl(cpu_PR[r], tn, 3);
} else {
if (r == PR_PID) {
gen_helper_tlb_flush_pid(cpu_env, tn);
}
if (dc->tb_flags & S_FLAG && r == PR_SPC) {
gen_helper_spc_write(cpu_env, tn);
} else if (r == PR_CCS) {
dc->cpustate_changed = 1;
}
tcg_gen_mov_tl(cpu_PR[r], tn);
}
}
/* Sign extend at translation time. */
static int sign_extend(unsigned int val, unsigned int width)
{
int sval;
/* LSL. */
val <<= 31 - width;
sval = val;
/* ASR. */
sval >>= 31 - width;
return sval;
}
static int cris_fetch(CPUCRISState *env, DisasContext *dc, uint32_t addr,
unsigned int size, unsigned int sign)
{
int r;
switch (size) {
case 4:
{
r = cpu_ldl_code(env, addr);
break;
}
case 2:
{
if (sign) {
r = cpu_ldsw_code(env, addr);
} else {
r = cpu_lduw_code(env, addr);
}
break;
}
case 1:
{
if (sign) {
r = cpu_ldsb_code(env, addr);
} else {
r = cpu_ldub_code(env, addr);
}
break;
}
default:
cpu_abort(dc->env, "Invalid fetch size %d\n", size);
break;
}
return r;
}
static void cris_lock_irq(DisasContext *dc)
{
dc->clear_locked_irq = 0;
t_gen_mov_env_TN(locked_irq, tcg_const_tl(1));
}
static inline void t_gen_raise_exception(uint32_t index)
{
TCGv_i32 tmp = tcg_const_i32(index);
gen_helper_raise_exception(cpu_env, tmp);
tcg_temp_free_i32(tmp);
}
static void t_gen_lsl(TCGv d, TCGv a, TCGv b)
{
TCGv t0, t_31;
t0 = tcg_temp_new();
t_31 = tcg_const_tl(31);
tcg_gen_shl_tl(d, a, b);
tcg_gen_sub_tl(t0, t_31, b);
tcg_gen_sar_tl(t0, t0, t_31);
tcg_gen_and_tl(t0, t0, d);
tcg_gen_xor_tl(d, d, t0);
tcg_temp_free(t0);
tcg_temp_free(t_31);
}
static void t_gen_lsr(TCGv d, TCGv a, TCGv b)
{
TCGv t0, t_31;
t0 = tcg_temp_new();
t_31 = tcg_temp_new();
tcg_gen_shr_tl(d, a, b);
tcg_gen_movi_tl(t_31, 31);
tcg_gen_sub_tl(t0, t_31, b);
tcg_gen_sar_tl(t0, t0, t_31);
tcg_gen_and_tl(t0, t0, d);
tcg_gen_xor_tl(d, d, t0);
tcg_temp_free(t0);
tcg_temp_free(t_31);
}
static void t_gen_asr(TCGv d, TCGv a, TCGv b)
{
TCGv t0, t_31;
t0 = tcg_temp_new();
t_31 = tcg_temp_new();
tcg_gen_sar_tl(d, a, b);
tcg_gen_movi_tl(t_31, 31);
tcg_gen_sub_tl(t0, t_31, b);
tcg_gen_sar_tl(t0, t0, t_31);
tcg_gen_or_tl(d, d, t0);
tcg_temp_free(t0);
tcg_temp_free(t_31);
}
static void t_gen_cris_dstep(TCGv d, TCGv a, TCGv b)
{
int l1;
l1 = gen_new_label();
/*
* d <<= 1
* if (d >= s)
* d -= s;
*/
tcg_gen_shli_tl(d, a, 1);
tcg_gen_brcond_tl(TCG_COND_LTU, d, b, l1);
tcg_gen_sub_tl(d, d, b);
gen_set_label(l1);
}
static void t_gen_cris_mstep(TCGv d, TCGv a, TCGv b, TCGv ccs)
{
TCGv t;
/*
* d <<= 1
* if (n)
* d += s;
*/
t = tcg_temp_new();
tcg_gen_shli_tl(d, a, 1);
tcg_gen_shli_tl(t, ccs, 31 - 3);
tcg_gen_sari_tl(t, t, 31);
tcg_gen_and_tl(t, t, b);
tcg_gen_add_tl(d, d, t);
tcg_temp_free(t);
}
/* Extended arithmetics on CRIS. */
static inline void t_gen_add_flag(TCGv d, int flag)
{
TCGv c;
c = tcg_temp_new();
t_gen_mov_TN_preg(c, PR_CCS);
/* Propagate carry into d. */
tcg_gen_andi_tl(c, c, 1 << flag);
if (flag) {
tcg_gen_shri_tl(c, c, flag);
}
tcg_gen_add_tl(d, d, c);
tcg_temp_free(c);
}
static inline void t_gen_addx_carry(DisasContext *dc, TCGv d)
{
if (dc->flagx_known) {
if (dc->flags_x) {
TCGv c;
c = tcg_temp_new();
t_gen_mov_TN_preg(c, PR_CCS);
/* C flag is already at bit 0. */
tcg_gen_andi_tl(c, c, C_FLAG);
tcg_gen_add_tl(d, d, c);
tcg_temp_free(c);
}
} else {
TCGv x, c;
x = tcg_temp_new();
c = tcg_temp_new();
t_gen_mov_TN_preg(x, PR_CCS);
tcg_gen_mov_tl(c, x);
/* Propagate carry into d if X is set. Branch free. */
tcg_gen_andi_tl(c, c, C_FLAG);
tcg_gen_andi_tl(x, x, X_FLAG);
tcg_gen_shri_tl(x, x, 4);
tcg_gen_and_tl(x, x, c);
tcg_gen_add_tl(d, d, x);
tcg_temp_free(x);
tcg_temp_free(c);
}
}
static inline void t_gen_subx_carry(DisasContext *dc, TCGv d)
{
if (dc->flagx_known) {
if (dc->flags_x) {
TCGv c;
c = tcg_temp_new();
t_gen_mov_TN_preg(c, PR_CCS);
/* C flag is already at bit 0. */
tcg_gen_andi_tl(c, c, C_FLAG);
tcg_gen_sub_tl(d, d, c);
tcg_temp_free(c);
}
} else {
TCGv x, c;
x = tcg_temp_new();
c = tcg_temp_new();
t_gen_mov_TN_preg(x, PR_CCS);
tcg_gen_mov_tl(c, x);
/* Propagate carry into d if X is set. Branch free. */
tcg_gen_andi_tl(c, c, C_FLAG);
tcg_gen_andi_tl(x, x, X_FLAG);
tcg_gen_shri_tl(x, x, 4);
tcg_gen_and_tl(x, x, c);
tcg_gen_sub_tl(d, d, x);
tcg_temp_free(x);
tcg_temp_free(c);
}
}
/* Swap the two bytes within each half word of the s operand.
T0 = ((T0 << 8) & 0xff00ff00) | ((T0 >> 8) & 0x00ff00ff) */
static inline void t_gen_swapb(TCGv d, TCGv s)
{
TCGv t, org_s;
t = tcg_temp_new();
org_s = tcg_temp_new();
/* d and s may refer to the same object. */
tcg_gen_mov_tl(org_s, s);
tcg_gen_shli_tl(t, org_s, 8);
tcg_gen_andi_tl(d, t, 0xff00ff00);
tcg_gen_shri_tl(t, org_s, 8);
tcg_gen_andi_tl(t, t, 0x00ff00ff);
tcg_gen_or_tl(d, d, t);
tcg_temp_free(t);
tcg_temp_free(org_s);
}
/* Swap the halfwords of the s operand. */
static inline void t_gen_swapw(TCGv d, TCGv s)
{
TCGv t;
/* d and s refer the same object. */
t = tcg_temp_new();
tcg_gen_mov_tl(t, s);
tcg_gen_shli_tl(d, t, 16);
tcg_gen_shri_tl(t, t, 16);
tcg_gen_or_tl(d, d, t);
tcg_temp_free(t);
}
/* Reverse the within each byte.
T0 = (((T0 << 7) & 0x80808080) |
((T0 << 5) & 0x40404040) |
((T0 << 3) & 0x20202020) |
((T0 << 1) & 0x10101010) |
((T0 >> 1) & 0x08080808) |
((T0 >> 3) & 0x04040404) |
((T0 >> 5) & 0x02020202) |
((T0 >> 7) & 0x01010101));
*/
static inline void t_gen_swapr(TCGv d, TCGv s)
{
struct {
int shift; /* LSL when positive, LSR when negative. */
uint32_t mask;
} bitrev[] = {
{7, 0x80808080},
{5, 0x40404040},
{3, 0x20202020},
{1, 0x10101010},
{-1, 0x08080808},
{-3, 0x04040404},
{-5, 0x02020202},
{-7, 0x01010101}
};
int i;
TCGv t, org_s;
/* d and s refer the same object. */
t = tcg_temp_new();
org_s = tcg_temp_new();
tcg_gen_mov_tl(org_s, s);
tcg_gen_shli_tl(t, org_s, bitrev[0].shift);
tcg_gen_andi_tl(d, t, bitrev[0].mask);
for (i = 1; i < ARRAY_SIZE(bitrev); i++) {
if (bitrev[i].shift >= 0) {
tcg_gen_shli_tl(t, org_s, bitrev[i].shift);
} else {
tcg_gen_shri_tl(t, org_s, -bitrev[i].shift);
}
tcg_gen_andi_tl(t, t, bitrev[i].mask);
tcg_gen_or_tl(d, d, t);
}
tcg_temp_free(t);
tcg_temp_free(org_s);
}
static void t_gen_cc_jmp(TCGv pc_true, TCGv pc_false)
{
int l1;
l1 = gen_new_label();
/* Conditional jmp. */
tcg_gen_mov_tl(env_pc, pc_false);
tcg_gen_brcondi_tl(TCG_COND_EQ, env_btaken, 0, l1);
tcg_gen_mov_tl(env_pc, pc_true);
gen_set_label(l1);
}
static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest)
{
TranslationBlock *tb;
tb = dc->tb;
if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) {
tcg_gen_goto_tb(n);
tcg_gen_movi_tl(env_pc, dest);
tcg_gen_exit_tb((uintptr_t)tb + n);
} else {
tcg_gen_movi_tl(env_pc, dest);
tcg_gen_exit_tb(0);
}
}
static inline void cris_clear_x_flag(DisasContext *dc)
{
if (dc->flagx_known && dc->flags_x) {
dc->flags_uptodate = 0;
}
dc->flagx_known = 1;
dc->flags_x = 0;
}
static void cris_flush_cc_state(DisasContext *dc)
{
if (dc->cc_size_uptodate != dc->cc_size) {
tcg_gen_movi_tl(cc_size, dc->cc_size);
dc->cc_size_uptodate = dc->cc_size;
}
tcg_gen_movi_tl(cc_op, dc->cc_op);
tcg_gen_movi_tl(cc_mask, dc->cc_mask);
}
static void cris_evaluate_flags(DisasContext *dc)
{
if (dc->flags_uptodate) {
return;
}
cris_flush_cc_state(dc);
switch (dc->cc_op) {
case CC_OP_MCP:
gen_helper_evaluate_flags_mcp(cpu_PR[PR_CCS], cpu_env,
cpu_PR[PR_CCS], cc_src,
cc_dest, cc_result);
break;
case CC_OP_MULS:
gen_helper_evaluate_flags_muls(cpu_PR[PR_CCS], cpu_env,
cpu_PR[PR_CCS], cc_result,
cpu_PR[PR_MOF]);
break;
case CC_OP_MULU:
gen_helper_evaluate_flags_mulu(cpu_PR[PR_CCS], cpu_env,
cpu_PR[PR_CCS], cc_result,
cpu_PR[PR_MOF]);
break;
case CC_OP_MOVE:
case CC_OP_AND:
case CC_OP_OR:
case CC_OP_XOR:
case CC_OP_ASR:
case CC_OP_LSR:
case CC_OP_LSL:
switch (dc->cc_size) {
case 4:
gen_helper_evaluate_flags_move_4(cpu_PR[PR_CCS],
cpu_env, cpu_PR[PR_CCS], cc_result);
break;
case 2:
gen_helper_evaluate_flags_move_2(cpu_PR[PR_CCS],
cpu_env, cpu_PR[PR_CCS], cc_result);
break;
default:
gen_helper_evaluate_flags(cpu_env);
break;
}
break;
case CC_OP_FLAGS:
/* live. */
break;
case CC_OP_SUB:
case CC_OP_CMP:
if (dc->cc_size == 4) {
gen_helper_evaluate_flags_sub_4(cpu_PR[PR_CCS], cpu_env,
cpu_PR[PR_CCS], cc_src, cc_dest, cc_result);
} else {
gen_helper_evaluate_flags(cpu_env);
}
break;
default:
switch (dc->cc_size) {
case 4:
gen_helper_evaluate_flags_alu_4(cpu_PR[PR_CCS], cpu_env,
cpu_PR[PR_CCS], cc_src, cc_dest, cc_result);
break;
default:
gen_helper_evaluate_flags(cpu_env);
break;
}
break;
}
if (dc->flagx_known) {
if (dc->flags_x) {
tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], X_FLAG);
} else if (dc->cc_op == CC_OP_FLAGS) {
tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~X_FLAG);
}
}
dc->flags_uptodate = 1;
}
static void cris_cc_mask(DisasContext *dc, unsigned int mask)
{
uint32_t ovl;
if (!mask) {
dc->update_cc = 0;
return;
}
/* Check if we need to evaluate the condition codes due to
CC overlaying. */
ovl = (dc->cc_mask ^ mask) & ~mask;
if (ovl) {
/* TODO: optimize this case. It trigs all the time. */
cris_evaluate_flags(dc);
}
dc->cc_mask = mask;
dc->update_cc = 1;
}
static void cris_update_cc_op(DisasContext *dc, int op, int size)
{
dc->cc_op = op;
dc->cc_size = size;
dc->flags_uptodate = 0;
}
static inline void cris_update_cc_x(DisasContext *dc)
{
/* Save the x flag state at the time of the cc snapshot. */
if (dc->flagx_known) {
if (dc->cc_x_uptodate == (2 | dc->flags_x)) {
return;
}
tcg_gen_movi_tl(cc_x, dc->flags_x);
dc->cc_x_uptodate = 2 | dc->flags_x;
} else {
tcg_gen_andi_tl(cc_x, cpu_PR[PR_CCS], X_FLAG);
dc->cc_x_uptodate = 1;
}
}
/* Update cc prior to executing ALU op. Needs source operands untouched. */
static void cris_pre_alu_update_cc(DisasContext *dc, int op,
TCGv dst, TCGv src, int size)
{
if (dc->update_cc) {
cris_update_cc_op(dc, op, size);
tcg_gen_mov_tl(cc_src, src);
if (op != CC_OP_MOVE
&& op != CC_OP_AND
&& op != CC_OP_OR
&& op != CC_OP_XOR
&& op != CC_OP_ASR
&& op != CC_OP_LSR
&& op != CC_OP_LSL) {
tcg_gen_mov_tl(cc_dest, dst);
}
cris_update_cc_x(dc);
}
}
/* Update cc after executing ALU op. needs the result. */
static inline void cris_update_result(DisasContext *dc, TCGv res)
{
if (dc->update_cc) {
tcg_gen_mov_tl(cc_result, res);
}
}
/* Returns one if the write back stage should execute. */
static void cris_alu_op_exec(DisasContext *dc, int op,
TCGv dst, TCGv a, TCGv b, int size)
{
/* Emit the ALU insns. */
switch (op) {
case CC_OP_ADD:
tcg_gen_add_tl(dst, a, b);
/* Extended arithmetics. */
t_gen_addx_carry(dc, dst);
break;
case CC_OP_ADDC:
tcg_gen_add_tl(dst, a, b);
t_gen_add_flag(dst, 0); /* C_FLAG. */
break;
case CC_OP_MCP:
tcg_gen_add_tl(dst, a, b);
t_gen_add_flag(dst, 8); /* R_FLAG. */
break;
case CC_OP_SUB:
tcg_gen_sub_tl(dst, a, b);
/* Extended arithmetics. */
t_gen_subx_carry(dc, dst);
break;
case CC_OP_MOVE:
tcg_gen_mov_tl(dst, b);
break;
case CC_OP_OR:
tcg_gen_or_tl(dst, a, b);
break;
case CC_OP_AND:
tcg_gen_and_tl(dst, a, b);
break;
case CC_OP_XOR:
tcg_gen_xor_tl(dst, a, b);
break;
case CC_OP_LSL:
t_gen_lsl(dst, a, b);
break;
case CC_OP_LSR:
t_gen_lsr(dst, a, b);
break;
case CC_OP_ASR:
t_gen_asr(dst, a, b);
break;
case CC_OP_NEG:
tcg_gen_neg_tl(dst, b);
/* Extended arithmetics. */
t_gen_subx_carry(dc, dst);
break;
case CC_OP_LZ:
gen_helper_lz(dst, b);
break;
case CC_OP_MULS:
tcg_gen_muls2_tl(dst, cpu_PR[PR_MOF], a, b);
break;
case CC_OP_MULU:
tcg_gen_mulu2_tl(dst, cpu_PR[PR_MOF], a, b);
break;
case CC_OP_DSTEP:
t_gen_cris_dstep(dst, a, b);
break;
case CC_OP_MSTEP:
t_gen_cris_mstep(dst, a, b, cpu_PR[PR_CCS]);
break;
case CC_OP_BOUND:
{
int l1;
l1 = gen_new_label();
tcg_gen_mov_tl(dst, a);
tcg_gen_brcond_tl(TCG_COND_LEU, a, b, l1);
tcg_gen_mov_tl(dst, b);
gen_set_label(l1);
}
break;
case CC_OP_CMP:
tcg_gen_sub_tl(dst, a, b);
/* Extended arithmetics. */
t_gen_subx_carry(dc, dst);
break;
default:
qemu_log("illegal ALU op.\n");
BUG();
break;
}
if (size == 1) {
tcg_gen_andi_tl(dst, dst, 0xff);
} else if (size == 2) {
tcg_gen_andi_tl(dst, dst, 0xffff);
}
}
static void cris_alu(DisasContext *dc, int op,
TCGv d, TCGv op_a, TCGv op_b, int size)
{
TCGv tmp;
int writeback;
writeback = 1;
if (op == CC_OP_CMP) {
tmp = tcg_temp_new();
writeback = 0;
} else if (size == 4) {
tmp = d;
writeback = 0;
} else {
tmp = tcg_temp_new();
}
cris_pre_alu_update_cc(dc, op, op_a, op_b, size);
cris_alu_op_exec(dc, op, tmp, op_a, op_b, size);
cris_update_result(dc, tmp);
/* Writeback. */
if (writeback) {
if (size == 1) {
tcg_gen_andi_tl(d, d, ~0xff);
} else {
tcg_gen_andi_tl(d, d, ~0xffff);
}
tcg_gen_or_tl(d, d, tmp);
}
if (!TCGV_EQUAL(tmp, d)) {
tcg_temp_free(tmp);
}
}
static int arith_cc(DisasContext *dc)
{
if (dc->update_cc) {
switch (dc->cc_op) {
case CC_OP_ADDC: return 1;
case CC_OP_ADD: return 1;
case CC_OP_SUB: return 1;
case CC_OP_DSTEP: return 1;
case CC_OP_LSL: return 1;
case CC_OP_LSR: return 1;
case CC_OP_ASR: return 1;
case CC_OP_CMP: return 1;
case CC_OP_NEG: return 1;
case CC_OP_OR: return 1;
case CC_OP_AND: return 1;
case CC_OP_XOR: return 1;
case CC_OP_MULU: return 1;
case CC_OP_MULS: return 1;
default:
return 0;
}
}
return 0;
}
static void gen_tst_cc (DisasContext *dc, TCGv cc, int cond)
{
int arith_opt, move_opt;
/* TODO: optimize more condition codes. */
/*
* If the flags are live, we've gotta look into the bits of CCS.
* Otherwise, if we just did an arithmetic operation we try to
* evaluate the condition code faster.
*
* When this function is done, T0 should be non-zero if the condition
* code is true.
*/
arith_opt = arith_cc(dc) && !dc->flags_uptodate;
move_opt = (dc->cc_op == CC_OP_MOVE);
switch (cond) {
case CC_EQ:
if ((arith_opt || move_opt)
&& dc->cc_x_uptodate != (2 | X_FLAG)) {
tcg_gen_setcond_tl(TCG_COND_EQ, cc,
cc_result, tcg_const_tl(0));
} else {
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc,
cpu_PR[PR_CCS], Z_FLAG);
}
break;
case CC_NE:
if ((arith_opt || move_opt)
&& dc->cc_x_uptodate != (2 | X_FLAG)) {
tcg_gen_mov_tl(cc, cc_result);
} else {
cris_evaluate_flags(dc);
tcg_gen_xori_tl(cc, cpu_PR[PR_CCS],
Z_FLAG);
tcg_gen_andi_tl(cc, cc, Z_FLAG);
}
break;
case CC_CS:
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], C_FLAG);
break;
case CC_CC:
cris_evaluate_flags(dc);
tcg_gen_xori_tl(cc, cpu_PR[PR_CCS], C_FLAG);
tcg_gen_andi_tl(cc, cc, C_FLAG);
break;
case CC_VS:
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], V_FLAG);
break;
case CC_VC:
cris_evaluate_flags(dc);
tcg_gen_xori_tl(cc, cpu_PR[PR_CCS],
V_FLAG);
tcg_gen_andi_tl(cc, cc, V_FLAG);
break;
case CC_PL:
if (arith_opt || move_opt) {
int bits = 31;
if (dc->cc_size == 1) {
bits = 7;
} else if (dc->cc_size == 2) {
bits = 15;
}
tcg_gen_shri_tl(cc, cc_result, bits);
tcg_gen_xori_tl(cc, cc, 1);
} else {
cris_evaluate_flags(dc);
tcg_gen_xori_tl(cc, cpu_PR[PR_CCS],
N_FLAG);
tcg_gen_andi_tl(cc, cc, N_FLAG);
}
break;
case CC_MI:
if (arith_opt || move_opt) {
int bits = 31;
if (dc->cc_size == 1) {
bits = 7;
} else if (dc->cc_size == 2) {
bits = 15;
}
tcg_gen_shri_tl(cc, cc_result, bits);
tcg_gen_andi_tl(cc, cc, 1);
} else {
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc, cpu_PR[PR_CCS],
N_FLAG);
}
break;
case CC_LS:
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc, cpu_PR[PR_CCS],
C_FLAG | Z_FLAG);
break;
case CC_HI:
cris_evaluate_flags(dc);
{
TCGv tmp;
tmp = tcg_temp_new();
tcg_gen_xori_tl(tmp, cpu_PR[PR_CCS],
C_FLAG | Z_FLAG);
/* Overlay the C flag on top of the Z. */
tcg_gen_shli_tl(cc, tmp, 2);
tcg_gen_and_tl(cc, tmp, cc);
tcg_gen_andi_tl(cc, cc, Z_FLAG);
tcg_temp_free(tmp);
}
break;
case CC_GE:
cris_evaluate_flags(dc);
/* Overlay the V flag on top of the N. */
tcg_gen_shli_tl(cc, cpu_PR[PR_CCS], 2);
tcg_gen_xor_tl(cc,
cpu_PR[PR_CCS], cc);
tcg_gen_andi_tl(cc, cc, N_FLAG);
tcg_gen_xori_tl(cc, cc, N_FLAG);
break;
case CC_LT:
cris_evaluate_flags(dc);
/* Overlay the V flag on top of the N. */
tcg_gen_shli_tl(cc, cpu_PR[PR_CCS], 2);
tcg_gen_xor_tl(cc,
cpu_PR[PR_CCS], cc);
tcg_gen_andi_tl(cc, cc, N_FLAG);
break;
case CC_GT:
cris_evaluate_flags(dc);
{
TCGv n, z;
n = tcg_temp_new();
z = tcg_temp_new();
/* To avoid a shift we overlay everything on
the V flag. */
tcg_gen_shri_tl(n, cpu_PR[PR_CCS], 2);
tcg_gen_shri_tl(z, cpu_PR[PR_CCS], 1);
/* invert Z. */
tcg_gen_xori_tl(z, z, 2);
tcg_gen_xor_tl(n, n, cpu_PR[PR_CCS]);
tcg_gen_xori_tl(n, n, 2);
tcg_gen_and_tl(cc, z, n);
tcg_gen_andi_tl(cc, cc, 2);
tcg_temp_free(n);
tcg_temp_free(z);
}
break;
case CC_LE:
cris_evaluate_flags(dc);
{
TCGv n, z;
n = tcg_temp_new();
z = tcg_temp_new();
/* To avoid a shift we overlay everything on
the V flag. */
tcg_gen_shri_tl(n, cpu_PR[PR_CCS], 2);
tcg_gen_shri_tl(z, cpu_PR[PR_CCS], 1);
tcg_gen_xor_tl(n, n, cpu_PR[PR_CCS]);
tcg_gen_or_tl(cc, z, n);
tcg_gen_andi_tl(cc, cc, 2);
tcg_temp_free(n);
tcg_temp_free(z);
}
break;
case CC_P:
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], P_FLAG);
break;
case CC_A:
tcg_gen_movi_tl(cc, 1);
break;
default:
BUG();
break;
};
}
static void cris_store_direct_jmp(DisasContext *dc)
{
/* Store the direct jmp state into the cpu-state. */
if (dc->jmp == JMP_DIRECT || dc->jmp == JMP_DIRECT_CC) {
if (dc->jmp == JMP_DIRECT) {
tcg_gen_movi_tl(env_btaken, 1);
}
tcg_gen_movi_tl(env_btarget, dc->jmp_pc);
dc->jmp = JMP_INDIRECT;
}
}
static void cris_prepare_cc_branch (DisasContext *dc,
int offset, int cond)
{
/* This helps us re-schedule the micro-code to insns in delay-slots
before the actual jump. */
dc->delayed_branch = 2;
dc->jmp = JMP_DIRECT_CC;
dc->jmp_pc = dc->pc + offset;
gen_tst_cc(dc, env_btaken, cond);
tcg_gen_movi_tl(env_btarget, dc->jmp_pc);
}
/* jumps, when the dest is in a live reg for example. Direct should be set
when the dest addr is constant to allow tb chaining. */
static inline void cris_prepare_jmp (DisasContext *dc, unsigned int type)
{
/* This helps us re-schedule the micro-code to insns in delay-slots
before the actual jump. */
dc->delayed_branch = 2;
dc->jmp = type;
if (type == JMP_INDIRECT) {
tcg_gen_movi_tl(env_btaken, 1);
}
}
static void gen_load64(DisasContext *dc, TCGv_i64 dst, TCGv addr)
{
int mem_index = cpu_mmu_index(dc->env);
/* If we get a fault on a delayslot we must keep the jmp state in
the cpu-state to be able to re-execute the jmp. */
if (dc->delayed_branch == 1) {
cris_store_direct_jmp(dc);
}
tcg_gen_qemu_ld_i64(dst, addr, mem_index, MO_TEQ);
}
static void gen_load(DisasContext *dc, TCGv dst, TCGv addr,
unsigned int size, int sign)
{
int mem_index = cpu_mmu_index(dc->env);
/* If we get a fault on a delayslot we must keep the jmp state in
the cpu-state to be able to re-execute the jmp. */
if (dc->delayed_branch == 1) {
cris_store_direct_jmp(dc);
}
tcg_gen_qemu_ld_tl(dst, addr, mem_index,
MO_TE + ctz32(size) + (sign ? MO_SIGN : 0));
}
static void gen_store (DisasContext *dc, TCGv addr, TCGv val,
unsigned int size)
{
int mem_index = cpu_mmu_index(dc->env);
/* If we get a fault on a delayslot we must keep the jmp state in
the cpu-state to be able to re-execute the jmp. */
if (dc->delayed_branch == 1) {
cris_store_direct_jmp(dc);
}
/* Conditional writes. We only support the kind were X and P are known
at translation time. */
if (dc->flagx_known && dc->flags_x && (dc->tb_flags & P_FLAG)) {
dc->postinc = 0;
cris_evaluate_flags(dc);
tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], C_FLAG);
return;
}
tcg_gen_qemu_st_tl(val, addr, mem_index, MO_TE + ctz32(size));
if (dc->flagx_known && dc->flags_x) {
cris_evaluate_flags(dc);
tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~C_FLAG);
}
}
static inline void t_gen_sext(TCGv d, TCGv s, int size)
{
if (size == 1) {
tcg_gen_ext8s_i32(d, s);
} else if (size == 2) {
tcg_gen_ext16s_i32(d, s);
} else if (!TCGV_EQUAL(d, s)) {
tcg_gen_mov_tl(d, s);
}
}
static inline void t_gen_zext(TCGv d, TCGv s, int size)
{
if (size == 1) {
tcg_gen_ext8u_i32(d, s);
} else if (size == 2) {
tcg_gen_ext16u_i32(d, s);
} else if (!TCGV_EQUAL(d, s)) {
tcg_gen_mov_tl(d, s);
}
}
#if DISAS_CRIS
static char memsize_char(int size)
{
switch (size) {
case 1: return 'b'; break;
case 2: return 'w'; break;
case 4: return 'd'; break;
default:
return 'x';
break;
}
}
#endif
static inline unsigned int memsize_z(DisasContext *dc)
{
return dc->zsize + 1;
}
static inline unsigned int memsize_zz(DisasContext *dc)
{
switch (dc->zzsize) {
case 0: return 1;
case 1: return 2;
default:
return 4;
}
}
static inline void do_postinc (DisasContext *dc, int size)
{
if (dc->postinc) {
tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], size);
}
}
static inline void dec_prep_move_r(DisasContext *dc, int rs, int rd,
int size, int s_ext, TCGv dst)
{
if (s_ext) {
t_gen_sext(dst, cpu_R[rs], size);
} else {
t_gen_zext(dst, cpu_R[rs], size);
}
}
/* Prepare T0 and T1 for a register alu operation.
s_ext decides if the operand1 should be sign-extended or zero-extended when
needed. */
static void dec_prep_alu_r(DisasContext *dc, int rs, int rd,
int size, int s_ext, TCGv dst, TCGv src)
{
dec_prep_move_r(dc, rs, rd, size, s_ext, src);
if (s_ext) {
t_gen_sext(dst, cpu_R[rd], size);
} else {
t_gen_zext(dst, cpu_R[rd], size);
}
}
static int dec_prep_move_m(CPUCRISState *env, DisasContext *dc,
int s_ext, int memsize, TCGv dst)
{
unsigned int rs;
uint32_t imm;
int is_imm;
int insn_len = 2;
rs = dc->op1;
is_imm = rs == 15 && dc->postinc;
/* Load [$rs] onto T1. */
if (is_imm) {
insn_len = 2 + memsize;
if (memsize == 1) {
insn_len++;
}
imm = cris_fetch(env, dc, dc->pc + 2, memsize, s_ext);
tcg_gen_movi_tl(dst, imm);
dc->postinc = 0;
} else {
cris_flush_cc_state(dc);
gen_load(dc, dst, cpu_R[rs], memsize, 0);
if (s_ext) {
t_gen_sext(dst, dst, memsize);
} else {
t_gen_zext(dst, dst, memsize);
}
}
return insn_len;
}
/* Prepare T0 and T1 for a memory + alu operation.
s_ext decides if the operand1 should be sign-extended or zero-extended when
needed. */
static int dec_prep_alu_m(CPUCRISState *env, DisasContext *dc,
int s_ext, int memsize, TCGv dst, TCGv src)
{
int insn_len;
insn_len = dec_prep_move_m(env, dc, s_ext, memsize, src);
tcg_gen_mov_tl(dst, cpu_R[dc->op2]);
return insn_len;
}
#if DISAS_CRIS
static const char *cc_name(int cc)
{
static const char *cc_names[16] = {
"cc", "cs", "ne", "eq", "vc", "vs", "pl", "mi",
"ls", "hi", "ge", "lt", "gt", "le", "a", "p"
};
assert(cc < 16);
return cc_names[cc];
}
#endif
/* Start of insn decoders. */
static int dec_bccq(CPUCRISState *env, DisasContext *dc)
{
int32_t offset;
int sign;
uint32_t cond = dc->op2;
offset = EXTRACT_FIELD(dc->ir, 1, 7);
sign = EXTRACT_FIELD(dc->ir, 0, 0);
offset *= 2;
offset |= sign << 8;
offset = sign_extend(offset, 8);
LOG_DIS("b%s %x\n", cc_name(cond), dc->pc + offset);
/* op2 holds the condition-code. */
cris_cc_mask(dc, 0);
cris_prepare_cc_branch(dc, offset, cond);
return 2;
}
static int dec_addoq(CPUCRISState *env, DisasContext *dc)
{
int32_t imm;
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 7);
imm = sign_extend(dc->op1, 7);
LOG_DIS("addoq %d, $r%u\n", imm, dc->op2);
cris_cc_mask(dc, 0);
/* Fetch register operand, */
tcg_gen_addi_tl(cpu_R[R_ACR], cpu_R[dc->op2], imm);
return 2;
}
static int dec_addq(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("addq %u, $r%u\n", dc->op1, dc->op2);
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADD,
cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(dc->op1), 4);
return 2;
}
static int dec_moveq(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
imm = sign_extend(dc->op1, 5);
LOG_DIS("moveq %d, $r%u\n", imm, dc->op2);
tcg_gen_movi_tl(cpu_R[dc->op2], imm);
return 2;
}
static int dec_subq(CPUCRISState *env, DisasContext *dc)
{
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
LOG_DIS("subq %u, $r%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_SUB,
cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(dc->op1), 4);
return 2;
}
static int dec_cmpq(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
imm = sign_extend(dc->op1, 5);
LOG_DIS("cmpq %d, $r%d\n", imm, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_CMP,
cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(imm), 4);
return 2;
}
static int dec_andq(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
imm = sign_extend(dc->op1, 5);
LOG_DIS("andq %d, $r%d\n", imm, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_AND,
cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(imm), 4);
return 2;
}
static int dec_orq(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5);
imm = sign_extend(dc->op1, 5);
LOG_DIS("orq %d, $r%d\n", imm, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_OR,
cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(imm), 4);
return 2;
}
static int dec_btstq(CPUCRISState *env, DisasContext *dc)
{
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4);
LOG_DIS("btstq %u, $r%d\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_evaluate_flags(dc);
gen_helper_btst(cpu_PR[PR_CCS], cpu_env, cpu_R[dc->op2],
tcg_const_tl(dc->op1), cpu_PR[PR_CCS]);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4);
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
dc->flags_uptodate = 1;
return 2;
}
static int dec_asrq(CPUCRISState *env, DisasContext *dc)
{
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4);
LOG_DIS("asrq %u, $r%d\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
tcg_gen_sari_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2],
cpu_R[dc->op2], cpu_R[dc->op2], 4);
return 2;
}
static int dec_lslq(CPUCRISState *env, DisasContext *dc)
{
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4);
LOG_DIS("lslq %u, $r%d\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
tcg_gen_shli_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2],
cpu_R[dc->op2], cpu_R[dc->op2], 4);
return 2;
}
static int dec_lsrq(CPUCRISState *env, DisasContext *dc)
{
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4);
LOG_DIS("lsrq %u, $r%d\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
tcg_gen_shri_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2],
cpu_R[dc->op2], cpu_R[dc->op2], 4);
return 2;
}
static int dec_move_r(CPUCRISState *env, DisasContext *dc)
{
int size = memsize_zz(dc);
LOG_DIS("move.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
if (size == 4) {
dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, cpu_R[dc->op2]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_update_cc_op(dc, CC_OP_MOVE, 4);
cris_update_cc_x(dc);
cris_update_result(dc, cpu_R[dc->op2]);
} else {
TCGv t0;
t0 = tcg_temp_new();
dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, t0);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2],
cpu_R[dc->op2], t0, size);
tcg_temp_free(t0);
}
return 2;
}
static int dec_scc_r(CPUCRISState *env, DisasContext *dc)
{
int cond = dc->op2;
LOG_DIS("s%s $r%u\n",
cc_name(cond), dc->op1);
if (cond != CC_A) {
int l1;
gen_tst_cc(dc, cpu_R[dc->op1], cond);
l1 = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_R[dc->op1], 0, l1);
tcg_gen_movi_tl(cpu_R[dc->op1], 1);
gen_set_label(l1);
} else {
tcg_gen_movi_tl(cpu_R[dc->op1], 1);
}
cris_cc_mask(dc, 0);
return 2;
}
static inline void cris_alu_alloc_temps(DisasContext *dc, int size, TCGv *t)
{
if (size == 4) {
t[0] = cpu_R[dc->op2];
t[1] = cpu_R[dc->op1];
} else {
t[0] = tcg_temp_new();
t[1] = tcg_temp_new();
}
}
static inline void cris_alu_free_temps(DisasContext *dc, int size, TCGv *t)
{
if (size != 4) {
tcg_temp_free(t[0]);
tcg_temp_free(t[1]);
}
}
static int dec_and_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("and.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_AND, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_lz_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
LOG_DIS("lz $r%u, $r%u\n",
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
t0 = tcg_temp_new();
dec_prep_alu_r(dc, dc->op1, dc->op2, 4, 0, cpu_R[dc->op2], t0);
cris_alu(dc, CC_OP_LZ, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
static int dec_lsl_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("lsl.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
tcg_gen_andi_tl(t[1], t[1], 63);
cris_alu(dc, CC_OP_LSL, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_alloc_temps(dc, size, t);
return 2;
}
static int dec_lsr_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("lsr.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
tcg_gen_andi_tl(t[1], t[1], 63);
cris_alu(dc, CC_OP_LSR, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_asr_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("asr.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 1, t[0], t[1]);
tcg_gen_andi_tl(t[1], t[1], 63);
cris_alu(dc, CC_OP_ASR, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_muls_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("muls.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZV);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 1, t[0], t[1]);
cris_alu(dc, CC_OP_MULS, cpu_R[dc->op2], t[0], t[1], 4);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_mulu_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("mulu.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZV);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_MULU, cpu_R[dc->op2], t[0], t[1], 4);
cris_alu_alloc_temps(dc, size, t);
return 2;
}
static int dec_dstep_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("dstep $r%u, $r%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_DSTEP,
cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op1], 4);
return 2;
}
static int dec_xor_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("xor.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
BUG_ON(size != 4); /* xor is dword. */
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_XOR, cpu_R[dc->op2], t[0], t[1], 4);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_bound_r(CPUCRISState *env, DisasContext *dc)
{
TCGv l0;
int size = memsize_zz(dc);
LOG_DIS("bound.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
l0 = tcg_temp_local_new();
dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, l0);
cris_alu(dc, CC_OP_BOUND, cpu_R[dc->op2], cpu_R[dc->op2], l0, 4);
tcg_temp_free(l0);
return 2;
}
static int dec_cmp_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("cmp.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_abs_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
LOG_DIS("abs $r%u, $r%u\n",
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
t0 = tcg_temp_new();
tcg_gen_sari_tl(t0, cpu_R[dc->op1], 31);
tcg_gen_xor_tl(cpu_R[dc->op2], cpu_R[dc->op1], t0);
tcg_gen_sub_tl(cpu_R[dc->op2], cpu_R[dc->op2], t0);
tcg_temp_free(t0);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4);
return 2;
}
static int dec_add_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("add.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_addc_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("addc $r%u, $r%u\n",
dc->op1, dc->op2);
cris_evaluate_flags(dc);
/* Set for this insn. */
dc->flagx_known = 1;
dc->flags_x = X_FLAG;
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADDC,
cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op1], 4);
return 2;
}
static int dec_mcp_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("mcp $p%u, $r%u\n",
dc->op2, dc->op1);
cris_evaluate_flags(dc);
cris_cc_mask(dc, CC_MASK_RNZV);
cris_alu(dc, CC_OP_MCP,
cpu_R[dc->op1], cpu_R[dc->op1], cpu_PR[dc->op2], 4);
return 2;
}
#if DISAS_CRIS
static char * swapmode_name(int mode, char *modename) {
int i = 0;
if (mode & 8) {
modename[i++] = 'n';
}
if (mode & 4) {
modename[i++] = 'w';
}
if (mode & 2) {
modename[i++] = 'b';
}
if (mode & 1) {
modename[i++] = 'r';
}
modename[i++] = 0;
return modename;
}
#endif
static int dec_swap_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
#if DISAS_CRIS
char modename[4];
#endif
LOG_DIS("swap%s $r%u\n",
swapmode_name(dc->op2, modename), dc->op1);
cris_cc_mask(dc, CC_MASK_NZ);
t0 = tcg_temp_new();
t_gen_mov_TN_reg(t0, dc->op1);
if (dc->op2 & 8) {
tcg_gen_not_tl(t0, t0);
}
if (dc->op2 & 4) {
t_gen_swapw(t0, t0);
}
if (dc->op2 & 2) {
t_gen_swapb(t0, t0);
}
if (dc->op2 & 1) {
t_gen_swapr(t0, t0);
}
cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op1], cpu_R[dc->op1], t0, 4);
tcg_temp_free(t0);
return 2;
}
static int dec_or_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("or.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_OR, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_addi_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
LOG_DIS("addi.%c $r%u, $r%u\n",
memsize_char(memsize_zz(dc)), dc->op2, dc->op1);
cris_cc_mask(dc, 0);
t0 = tcg_temp_new();
tcg_gen_shl_tl(t0, cpu_R[dc->op2], tcg_const_tl(dc->zzsize));
tcg_gen_add_tl(cpu_R[dc->op1], cpu_R[dc->op1], t0);
tcg_temp_free(t0);
return 2;
}
static int dec_addi_acr(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
LOG_DIS("addi.%c $r%u, $r%u, $acr\n",
memsize_char(memsize_zz(dc)), dc->op2, dc->op1);
cris_cc_mask(dc, 0);
t0 = tcg_temp_new();
tcg_gen_shl_tl(t0, cpu_R[dc->op2], tcg_const_tl(dc->zzsize));
tcg_gen_add_tl(cpu_R[R_ACR], cpu_R[dc->op1], t0);
tcg_temp_free(t0);
return 2;
}
static int dec_neg_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("neg.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_NEG, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
static int dec_btst_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("btst $r%u, $r%u\n",
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
cris_evaluate_flags(dc);
gen_helper_btst(cpu_PR[PR_CCS], cpu_env, cpu_R[dc->op2],
cpu_R[dc->op1], cpu_PR[PR_CCS]);
cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2],
cpu_R[dc->op2], cpu_R[dc->op2], 4);
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
dc->flags_uptodate = 1;
return 2;
}
static int dec_sub_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int size = memsize_zz(dc);
LOG_DIS("sub.%c $r%u, $r%u\n",
memsize_char(size), dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu_alloc_temps(dc, size, t);
dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]);
cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], t[0], t[1], size);
cris_alu_free_temps(dc, size, t);
return 2;
}
/* Zero extension. From size to dword. */
static int dec_movu_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("movu.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
t0 = tcg_temp_new();
dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, t0);
cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
/* Sign extension. From size to dword. */
static int dec_movs_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("movs.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZ);
t0 = tcg_temp_new();
/* Size can only be qi or hi. */
t_gen_sext(t0, cpu_R[dc->op1], size);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2], cpu_R[dc->op1], t0, 4);
tcg_temp_free(t0);
return 2;
}
/* zero extension. From size to dword. */
static int dec_addu_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("addu.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
t0 = tcg_temp_new();
/* Size can only be qi or hi. */
t_gen_zext(t0, cpu_R[dc->op1], size);
cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
/* Sign extension. From size to dword. */
static int dec_adds_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("adds.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
t0 = tcg_temp_new();
/* Size can only be qi or hi. */
t_gen_sext(t0, cpu_R[dc->op1], size);
cris_alu(dc, CC_OP_ADD,
cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
/* Zero extension. From size to dword. */
static int dec_subu_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("subu.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
t0 = tcg_temp_new();
/* Size can only be qi or hi. */
t_gen_zext(t0, cpu_R[dc->op1], size);
cris_alu(dc, CC_OP_SUB,
cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
/* Sign extension. From size to dword. */
static int dec_subs_r(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int size = memsize_z(dc);
LOG_DIS("subs.%c $r%u, $r%u\n",
memsize_char(size),
dc->op1, dc->op2);
cris_cc_mask(dc, CC_MASK_NZVC);
t0 = tcg_temp_new();
/* Size can only be qi or hi. */
t_gen_sext(t0, cpu_R[dc->op1], size);
cris_alu(dc, CC_OP_SUB,
cpu_R[dc->op2], cpu_R[dc->op2], t0, 4);
tcg_temp_free(t0);
return 2;
}
static int dec_setclrf(CPUCRISState *env, DisasContext *dc)
{
uint32_t flags;
int set = (~dc->opcode >> 2) & 1;
flags = (EXTRACT_FIELD(dc->ir, 12, 15) << 4)
| EXTRACT_FIELD(dc->ir, 0, 3);
if (set && flags == 0) {
LOG_DIS("nop\n");
return 2;
} else if (!set && (flags & 0x20)) {
LOG_DIS("di\n");
} else {
LOG_DIS("%sf %x\n", set ? "set" : "clr", flags);
}
/* User space is not allowed to touch these. Silently ignore. */
if (dc->tb_flags & U_FLAG) {
flags &= ~(S_FLAG | I_FLAG | U_FLAG);
}
if (flags & X_FLAG) {
dc->flagx_known = 1;
if (set) {
dc->flags_x = X_FLAG;
} else {
dc->flags_x = 0;
}
}
/* Break the TB if any of the SPI flag changes. */
if (flags & (P_FLAG | S_FLAG)) {
tcg_gen_movi_tl(env_pc, dc->pc + 2);
dc->is_jmp = DISAS_UPDATE;
dc->cpustate_changed = 1;
}
/* For the I flag, only act on posedge. */
if ((flags & I_FLAG)) {
tcg_gen_movi_tl(env_pc, dc->pc + 2);
dc->is_jmp = DISAS_UPDATE;
dc->cpustate_changed = 1;
}
/* Simply decode the flags. */
cris_evaluate_flags(dc);
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
cris_update_cc_x(dc);
tcg_gen_movi_tl(cc_op, dc->cc_op);
if (set) {
if (!(dc->tb_flags & U_FLAG) && (flags & U_FLAG)) {
/* Enter user mode. */
t_gen_mov_env_TN(ksp, cpu_R[R_SP]);
tcg_gen_mov_tl(cpu_R[R_SP], cpu_PR[PR_USP]);
dc->cpustate_changed = 1;
}
tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], flags);
} else {
tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~flags);
}
dc->flags_uptodate = 1;
dc->clear_x = 0;
return 2;
}
static int dec_move_rs(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("move $r%u, $s%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, 0);
gen_helper_movl_sreg_reg(cpu_env, tcg_const_tl(dc->op2),
tcg_const_tl(dc->op1));
return 2;
}
static int dec_move_sr(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("move $s%u, $r%u\n", dc->op2, dc->op1);
cris_cc_mask(dc, 0);
gen_helper_movl_reg_sreg(cpu_env, tcg_const_tl(dc->op1),
tcg_const_tl(dc->op2));
return 2;
}
static int dec_move_rp(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
LOG_DIS("move $r%u, $p%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, 0);
t[0] = tcg_temp_new();
if (dc->op2 == PR_CCS) {
cris_evaluate_flags(dc);
t_gen_mov_TN_reg(t[0], dc->op1);
if (dc->tb_flags & U_FLAG) {
t[1] = tcg_temp_new();
/* User space is not allowed to touch all flags. */
tcg_gen_andi_tl(t[0], t[0], 0x39f);
tcg_gen_andi_tl(t[1], cpu_PR[PR_CCS], ~0x39f);
tcg_gen_or_tl(t[0], t[1], t[0]);
tcg_temp_free(t[1]);
}
} else {
t_gen_mov_TN_reg(t[0], dc->op1);
}
t_gen_mov_preg_TN(dc, dc->op2, t[0]);
if (dc->op2 == PR_CCS) {
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
dc->flags_uptodate = 1;
}
tcg_temp_free(t[0]);
return 2;
}
static int dec_move_pr(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
LOG_DIS("move $p%u, $r%u\n", dc->op2, dc->op1);
cris_cc_mask(dc, 0);
if (dc->op2 == PR_CCS) {
cris_evaluate_flags(dc);
}
if (dc->op2 == PR_DZ) {
tcg_gen_movi_tl(cpu_R[dc->op1], 0);
} else {
t0 = tcg_temp_new();
t_gen_mov_TN_preg(t0, dc->op2);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op1], cpu_R[dc->op1], t0,
preg_sizes[dc->op2]);
tcg_temp_free(t0);
}
return 2;
}
static int dec_move_mr(CPUCRISState *env, DisasContext *dc)
{
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("move.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
if (memsize == 4) {
insn_len = dec_prep_move_m(env, dc, 0, 4, cpu_R[dc->op2]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_update_cc_op(dc, CC_OP_MOVE, 4);
cris_update_cc_x(dc);
cris_update_result(dc, cpu_R[dc->op2]);
} else {
TCGv t0;
t0 = tcg_temp_new();
insn_len = dec_prep_move_m(env, dc, 0, memsize, t0);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2], cpu_R[dc->op2], t0, memsize);
tcg_temp_free(t0);
}
do_postinc(dc, memsize);
return insn_len;
}
static inline void cris_alu_m_alloc_temps(TCGv *t)
{
t[0] = tcg_temp_new();
t[1] = tcg_temp_new();
}
static inline void cris_alu_m_free_temps(TCGv *t)
{
tcg_temp_free(t[0]);
tcg_temp_free(t[1]);
}
static int dec_movs_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("movs.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
/* sign extend. */
insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_MOVE,
cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_addu_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("addu.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
/* sign extend. */
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADD,
cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_adds_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("adds.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
/* sign extend. */
insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_subu_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("subu.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
/* sign extend. */
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_subs_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("subs.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
/* sign extend. */
insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_movu_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("movu.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_cmpu_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("cmpu.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_cmps_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_z(dc);
int insn_len;
LOG_DIS("cmps.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_CMP,
cpu_R[dc->op2], cpu_R[dc->op2], t[1],
memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_cmp_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("cmp.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_CMP,
cpu_R[dc->op2], cpu_R[dc->op2], t[1],
memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_test_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("test.%c [$r%u%s] op2=%x\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_evaluate_flags(dc);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZ);
tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~3);
cris_alu(dc, CC_OP_CMP,
cpu_R[dc->op2], t[1], tcg_const_tl(0), memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_and_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("and.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_AND, cpu_R[dc->op2], t[0], t[1], memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_add_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("add.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADD,
cpu_R[dc->op2], t[0], t[1], memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_addo_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("add.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]);
cris_cc_mask(dc, 0);
cris_alu(dc, CC_OP_ADD, cpu_R[R_ACR], t[0], t[1], 4);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_bound_m(CPUCRISState *env, DisasContext *dc)
{
TCGv l[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("bound.%c [$r%u%s, $r%u\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
l[0] = tcg_temp_local_new();
l[1] = tcg_temp_local_new();
insn_len = dec_prep_alu_m(env, dc, 0, memsize, l[0], l[1]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_BOUND, cpu_R[dc->op2], l[0], l[1], 4);
do_postinc(dc, memsize);
tcg_temp_free(l[0]);
tcg_temp_free(l[1]);
return insn_len;
}
static int dec_addc_mr(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int insn_len = 2;
LOG_DIS("addc [$r%u%s, $r%u\n",
dc->op1, dc->postinc ? "+]" : "]",
dc->op2);
cris_evaluate_flags(dc);
/* Set for this insn. */
dc->flagx_known = 1;
dc->flags_x = X_FLAG;
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, 4, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_ADDC, cpu_R[dc->op2], t[0], t[1], 4);
do_postinc(dc, 4);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_sub_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("sub.%c [$r%u%s, $r%u ir=%x zz=%x\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2, dc->ir, dc->zzsize);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZVC);
cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], t[0], t[1], memsize);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_or_m(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len;
LOG_DIS("or.%c [$r%u%s, $r%u pc=%x\n",
memsize_char(memsize),
dc->op1, dc->postinc ? "+]" : "]",
dc->op2, dc->pc);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, CC_MASK_NZ);
cris_alu(dc, CC_OP_OR,
cpu_R[dc->op2], t[0], t[1], memsize_zz(dc));
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_move_mp(CPUCRISState *env, DisasContext *dc)
{
TCGv t[2];
int memsize = memsize_zz(dc);
int insn_len = 2;
LOG_DIS("move.%c [$r%u%s, $p%u\n",
memsize_char(memsize),
dc->op1,
dc->postinc ? "+]" : "]",
dc->op2);
cris_alu_m_alloc_temps(t);
insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]);
cris_cc_mask(dc, 0);
if (dc->op2 == PR_CCS) {
cris_evaluate_flags(dc);
if (dc->tb_flags & U_FLAG) {
/* User space is not allowed to touch all flags. */
tcg_gen_andi_tl(t[1], t[1], 0x39f);
tcg_gen_andi_tl(t[0], cpu_PR[PR_CCS], ~0x39f);
tcg_gen_or_tl(t[1], t[0], t[1]);
}
}
t_gen_mov_preg_TN(dc, dc->op2, t[1]);
do_postinc(dc, memsize);
cris_alu_m_free_temps(t);
return insn_len;
}
static int dec_move_pm(CPUCRISState *env, DisasContext *dc)
{
TCGv t0;
int memsize;
memsize = preg_sizes[dc->op2];
LOG_DIS("move.%c $p%u, [$r%u%s\n",
memsize_char(memsize),
dc->op2, dc->op1, dc->postinc ? "+]" : "]");
/* prepare store. Address in T0, value in T1. */
if (dc->op2 == PR_CCS) {
cris_evaluate_flags(dc);
}
t0 = tcg_temp_new();
t_gen_mov_TN_preg(t0, dc->op2);
cris_flush_cc_state(dc);
gen_store(dc, cpu_R[dc->op1], t0, memsize);
tcg_temp_free(t0);
cris_cc_mask(dc, 0);
if (dc->postinc) {
tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], memsize);
}
return 2;
}
static int dec_movem_mr(CPUCRISState *env, DisasContext *dc)
{
TCGv_i64 tmp[16];
TCGv tmp32;
TCGv addr;
int i;
int nr = dc->op2 + 1;
LOG_DIS("movem [$r%u%s, $r%u\n", dc->op1,
dc->postinc ? "+]" : "]", dc->op2);
addr = tcg_temp_new();
/* There are probably better ways of doing this. */
cris_flush_cc_state(dc);
for (i = 0; i < (nr >> 1); i++) {
tmp[i] = tcg_temp_new_i64();
tcg_gen_addi_tl(addr, cpu_R[dc->op1], i * 8);
gen_load64(dc, tmp[i], addr);
}
if (nr & 1) {
tmp32 = tcg_temp_new_i32();
tcg_gen_addi_tl(addr, cpu_R[dc->op1], i * 8);
gen_load(dc, tmp32, addr, 4, 0);
} else {
TCGV_UNUSED(tmp32);
}
tcg_temp_free(addr);
for (i = 0; i < (nr >> 1); i++) {
tcg_gen_trunc_i64_i32(cpu_R[i * 2], tmp[i]);
tcg_gen_shri_i64(tmp[i], tmp[i], 32);
tcg_gen_trunc_i64_i32(cpu_R[i * 2 + 1], tmp[i]);
tcg_temp_free_i64(tmp[i]);
}
if (nr & 1) {
tcg_gen_mov_tl(cpu_R[dc->op2], tmp32);
tcg_temp_free(tmp32);
}
/* writeback the updated pointer value. */
if (dc->postinc) {
tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], nr * 4);
}
/* gen_load might want to evaluate the previous insns flags. */
cris_cc_mask(dc, 0);
return 2;
}
static int dec_movem_rm(CPUCRISState *env, DisasContext *dc)
{
TCGv tmp;
TCGv addr;
int i;
LOG_DIS("movem $r%u, [$r%u%s\n", dc->op2, dc->op1,
dc->postinc ? "+]" : "]");
cris_flush_cc_state(dc);
tmp = tcg_temp_new();
addr = tcg_temp_new();
tcg_gen_movi_tl(tmp, 4);
tcg_gen_mov_tl(addr, cpu_R[dc->op1]);
for (i = 0; i <= dc->op2; i++) {
/* Displace addr. */
/* Perform the store. */
gen_store(dc, addr, cpu_R[i], 4);
tcg_gen_add_tl(addr, addr, tmp);
}
if (dc->postinc) {
tcg_gen_mov_tl(cpu_R[dc->op1], addr);
}
cris_cc_mask(dc, 0);
tcg_temp_free(tmp);
tcg_temp_free(addr);
return 2;
}
static int dec_move_rm(CPUCRISState *env, DisasContext *dc)
{
int memsize;
memsize = memsize_zz(dc);
LOG_DIS("move.%c $r%u, [$r%u]\n",
memsize_char(memsize), dc->op2, dc->op1);
/* prepare store. */
cris_flush_cc_state(dc);
gen_store(dc, cpu_R[dc->op1], cpu_R[dc->op2], memsize);
if (dc->postinc) {
tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], memsize);
}
cris_cc_mask(dc, 0);
return 2;
}
static int dec_lapcq(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("lapcq %x, $r%u\n",
dc->pc + dc->op1*2, dc->op2);
cris_cc_mask(dc, 0);
tcg_gen_movi_tl(cpu_R[dc->op2], dc->pc + dc->op1 * 2);
return 2;
}
static int dec_lapc_im(CPUCRISState *env, DisasContext *dc)
{
unsigned int rd;
int32_t imm;
int32_t pc;
rd = dc->op2;
cris_cc_mask(dc, 0);
imm = cris_fetch(env, dc, dc->pc + 2, 4, 0);
LOG_DIS("lapc 0x%x, $r%u\n", imm + dc->pc, dc->op2);
pc = dc->pc;
pc += imm;
tcg_gen_movi_tl(cpu_R[rd], pc);
return 6;
}
/* Jump to special reg. */
static int dec_jump_p(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("jump $p%u\n", dc->op2);
if (dc->op2 == PR_CCS) {
cris_evaluate_flags(dc);
}
t_gen_mov_TN_preg(env_btarget, dc->op2);
/* rete will often have low bit set to indicate delayslot. */
tcg_gen_andi_tl(env_btarget, env_btarget, ~1);
cris_cc_mask(dc, 0);
cris_prepare_jmp(dc, JMP_INDIRECT);
return 2;
}
/* Jump and save. */
static int dec_jas_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("jas $r%u, $p%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
tcg_gen_mov_tl(env_btarget, cpu_R[dc->op1]);
if (dc->op2 > 15) {
abort();
}
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 4));
cris_prepare_jmp(dc, JMP_INDIRECT);
return 2;
}
static int dec_jas_im(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
imm = cris_fetch(env, dc, dc->pc + 2, 4, 0);
LOG_DIS("jas 0x%x\n", imm);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 8));
dc->jmp_pc = imm;
cris_prepare_jmp(dc, JMP_DIRECT);
return 6;
}
static int dec_jasc_im(CPUCRISState *env, DisasContext *dc)
{
uint32_t imm;
imm = cris_fetch(env, dc, dc->pc + 2, 4, 0);
LOG_DIS("jasc 0x%x\n", imm);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 8 + 4));
dc->jmp_pc = imm;
cris_prepare_jmp(dc, JMP_DIRECT);
return 6;
}
static int dec_jasc_r(CPUCRISState *env, DisasContext *dc)
{
LOG_DIS("jasc_r $r%u, $p%u\n", dc->op1, dc->op2);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
tcg_gen_mov_tl(env_btarget, cpu_R[dc->op1]);
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 4 + 4));
cris_prepare_jmp(dc, JMP_INDIRECT);
return 2;
}
static int dec_bcc_im(CPUCRISState *env, DisasContext *dc)
{
int32_t offset;
uint32_t cond = dc->op2;
offset = cris_fetch(env, dc, dc->pc + 2, 2, 1);
LOG_DIS("b%s %d pc=%x dst=%x\n",
cc_name(cond), offset,
dc->pc, dc->pc + offset);
cris_cc_mask(dc, 0);
/* op2 holds the condition-code. */
cris_prepare_cc_branch(dc, offset, cond);
return 4;
}
static int dec_bas_im(CPUCRISState *env, DisasContext *dc)
{
int32_t simm;
simm = cris_fetch(env, dc, dc->pc + 2, 4, 0);
LOG_DIS("bas 0x%x, $p%u\n", dc->pc + simm, dc->op2);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 8));
dc->jmp_pc = dc->pc + simm;
cris_prepare_jmp(dc, JMP_DIRECT);
return 6;
}
static int dec_basc_im(CPUCRISState *env, DisasContext *dc)
{
int32_t simm;
simm = cris_fetch(env, dc, dc->pc + 2, 4, 0);
LOG_DIS("basc 0x%x, $p%u\n", dc->pc + simm, dc->op2);
cris_cc_mask(dc, 0);
/* Store the return address in Pd. */
t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 12));
dc->jmp_pc = dc->pc + simm;
cris_prepare_jmp(dc, JMP_DIRECT);
return 6;
}
static int dec_rfe_etc(CPUCRISState *env, DisasContext *dc)
{
cris_cc_mask(dc, 0);
if (dc->op2 == 15) {
tcg_gen_st_i32(tcg_const_i32(1), cpu_env,
-offsetof(CRISCPU, env) + offsetof(CPUState, halted));
tcg_gen_movi_tl(env_pc, dc->pc + 2);
t_gen_raise_exception(EXCP_HLT);
return 2;
}
switch (dc->op2 & 7) {
case 2:
/* rfe. */
LOG_DIS("rfe\n");
cris_evaluate_flags(dc);
gen_helper_rfe(cpu_env);
dc->is_jmp = DISAS_UPDATE;
break;
case 5:
/* rfn. */
LOG_DIS("rfn\n");
cris_evaluate_flags(dc);
gen_helper_rfn(cpu_env);
dc->is_jmp = DISAS_UPDATE;
break;
case 6:
LOG_DIS("break %d\n", dc->op1);
cris_evaluate_flags(dc);
/* break. */
tcg_gen_movi_tl(env_pc, dc->pc + 2);
/* Breaks start at 16 in the exception vector. */
t_gen_mov_env_TN(trap_vector,
tcg_const_tl(dc->op1 + 16));
t_gen_raise_exception(EXCP_BREAK);
dc->is_jmp = DISAS_UPDATE;
break;
default:
printf("op2=%x\n", dc->op2);
BUG();
break;
}
return 2;
}
static int dec_ftag_fidx_d_m(CPUCRISState *env, DisasContext *dc)
{
return 2;
}
static int dec_ftag_fidx_i_m(CPUCRISState *env, DisasContext *dc)
{
return 2;
}
static int dec_null(CPUCRISState *env, DisasContext *dc)
{
printf("unknown insn pc=%x opc=%x op1=%x op2=%x\n",
dc->pc, dc->opcode, dc->op1, dc->op2);
fflush(NULL);
BUG();
return 2;
}
static struct decoder_info {
struct {
uint32_t bits;
uint32_t mask;
};
int (*dec)(CPUCRISState *env, DisasContext *dc);
} decinfo[] = {
/* Order matters here. */
{DEC_MOVEQ, dec_moveq},
{DEC_BTSTQ, dec_btstq},
{DEC_CMPQ, dec_cmpq},
{DEC_ADDOQ, dec_addoq},
{DEC_ADDQ, dec_addq},
{DEC_SUBQ, dec_subq},
{DEC_ANDQ, dec_andq},
{DEC_ORQ, dec_orq},
{DEC_ASRQ, dec_asrq},
{DEC_LSLQ, dec_lslq},
{DEC_LSRQ, dec_lsrq},
{DEC_BCCQ, dec_bccq},
{DEC_BCC_IM, dec_bcc_im},
{DEC_JAS_IM, dec_jas_im},
{DEC_JAS_R, dec_jas_r},
{DEC_JASC_IM, dec_jasc_im},
{DEC_JASC_R, dec_jasc_r},
{DEC_BAS_IM, dec_bas_im},
{DEC_BASC_IM, dec_basc_im},
{DEC_JUMP_P, dec_jump_p},
{DEC_LAPC_IM, dec_lapc_im},
{DEC_LAPCQ, dec_lapcq},
{DEC_RFE_ETC, dec_rfe_etc},
{DEC_ADDC_MR, dec_addc_mr},
{DEC_MOVE_MP, dec_move_mp},
{DEC_MOVE_PM, dec_move_pm},
{DEC_MOVEM_MR, dec_movem_mr},
{DEC_MOVEM_RM, dec_movem_rm},
{DEC_MOVE_PR, dec_move_pr},
{DEC_SCC_R, dec_scc_r},
{DEC_SETF, dec_setclrf},
{DEC_CLEARF, dec_setclrf},
{DEC_MOVE_SR, dec_move_sr},
{DEC_MOVE_RP, dec_move_rp},
{DEC_SWAP_R, dec_swap_r},
{DEC_ABS_R, dec_abs_r},
{DEC_LZ_R, dec_lz_r},
{DEC_MOVE_RS, dec_move_rs},
{DEC_BTST_R, dec_btst_r},
{DEC_ADDC_R, dec_addc_r},
{DEC_DSTEP_R, dec_dstep_r},
{DEC_XOR_R, dec_xor_r},
{DEC_MCP_R, dec_mcp_r},
{DEC_CMP_R, dec_cmp_r},
{DEC_ADDI_R, dec_addi_r},
{DEC_ADDI_ACR, dec_addi_acr},
{DEC_ADD_R, dec_add_r},
{DEC_SUB_R, dec_sub_r},
{DEC_ADDU_R, dec_addu_r},
{DEC_ADDS_R, dec_adds_r},
{DEC_SUBU_R, dec_subu_r},
{DEC_SUBS_R, dec_subs_r},
{DEC_LSL_R, dec_lsl_r},
{DEC_AND_R, dec_and_r},
{DEC_OR_R, dec_or_r},
{DEC_BOUND_R, dec_bound_r},
{DEC_ASR_R, dec_asr_r},
{DEC_LSR_R, dec_lsr_r},
{DEC_MOVU_R, dec_movu_r},
{DEC_MOVS_R, dec_movs_r},
{DEC_NEG_R, dec_neg_r},
{DEC_MOVE_R, dec_move_r},
{DEC_FTAG_FIDX_I_M, dec_ftag_fidx_i_m},
{DEC_FTAG_FIDX_D_M, dec_ftag_fidx_d_m},
{DEC_MULS_R, dec_muls_r},
{DEC_MULU_R, dec_mulu_r},
{DEC_ADDU_M, dec_addu_m},
{DEC_ADDS_M, dec_adds_m},
{DEC_SUBU_M, dec_subu_m},
{DEC_SUBS_M, dec_subs_m},
{DEC_CMPU_M, dec_cmpu_m},
{DEC_CMPS_M, dec_cmps_m},
{DEC_MOVU_M, dec_movu_m},
{DEC_MOVS_M, dec_movs_m},
{DEC_CMP_M, dec_cmp_m},
{DEC_ADDO_M, dec_addo_m},
{DEC_BOUND_M, dec_bound_m},
{DEC_ADD_M, dec_add_m},
{DEC_SUB_M, dec_sub_m},
{DEC_AND_M, dec_and_m},
{DEC_OR_M, dec_or_m},
{DEC_MOVE_RM, dec_move_rm},
{DEC_TEST_M, dec_test_m},
{DEC_MOVE_MR, dec_move_mr},
{{0, 0}, dec_null}
};
static unsigned int crisv32_decoder(CPUCRISState *env, DisasContext *dc)
{
int insn_len = 2;
int i;
if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT))) {
tcg_gen_debug_insn_start(dc->pc);
}
/* Load a halfword onto the instruction register. */
dc->ir = cris_fetch(env, dc, dc->pc, 2, 0);
/* Now decode it. */
dc->opcode = EXTRACT_FIELD(dc->ir, 4, 11);
dc->op1 = EXTRACT_FIELD(dc->ir, 0, 3);
dc->op2 = EXTRACT_FIELD(dc->ir, 12, 15);
dc->zsize = EXTRACT_FIELD(dc->ir, 4, 4);
dc->zzsize = EXTRACT_FIELD(dc->ir, 4, 5);
dc->postinc = EXTRACT_FIELD(dc->ir, 10, 10);
/* Large switch for all insns. */
for (i = 0; i < ARRAY_SIZE(decinfo); i++) {
if ((dc->opcode & decinfo[i].mask) == decinfo[i].bits) {
insn_len = decinfo[i].dec(env, dc);
break;
}
}
#if !defined(CONFIG_USER_ONLY)
/* Single-stepping ? */
if (dc->tb_flags & S_FLAG) {
int l1;
l1 = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_NE, cpu_PR[PR_SPC], dc->pc, l1);
/* We treat SPC as a break with an odd trap vector. */
cris_evaluate_flags(dc);
t_gen_mov_env_TN(trap_vector, tcg_const_tl(3));
tcg_gen_movi_tl(env_pc, dc->pc + insn_len);
tcg_gen_movi_tl(cpu_PR[PR_SPC], dc->pc + insn_len);
t_gen_raise_exception(EXCP_BREAK);
gen_set_label(l1);
}
#endif
return insn_len;
}
static void check_breakpoint(CPUCRISState *env, DisasContext *dc)
{
CPUBreakpoint *bp;
if (unlikely(!QTAILQ_EMPTY(&env->breakpoints))) {
QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
if (bp->pc == dc->pc) {
cris_evaluate_flags(dc);
tcg_gen_movi_tl(env_pc, dc->pc);
t_gen_raise_exception(EXCP_DEBUG);
dc->is_jmp = DISAS_UPDATE;
}
}
}
}
#include "translate_v10.c"
/*
* Delay slots on QEMU/CRIS.
*
* If an exception hits on a delayslot, the core will let ERP (the Exception
* Return Pointer) point to the branch (the previous) insn and set the lsb to
* to give SW a hint that the exception actually hit on the dslot.
*
* CRIS expects all PC addresses to be 16-bit aligned. The lsb is ignored by
* the core and any jmp to an odd addresses will mask off that lsb. It is
* simply there to let sw know there was an exception on a dslot.
*
* When the software returns from an exception, the branch will re-execute.
* On QEMU care needs to be taken when a branch+delayslot sequence is broken
* and the branch and delayslot dont share pages.
*
* The TB contaning the branch insn will set up env->btarget and evaluate
* env->btaken. When the translation loop exits we will note that the branch
* sequence is broken and let env->dslot be the size of the branch insn (those
* vary in length).
*
* The TB contaning the delayslot will have the PC of its real insn (i.e no lsb
* set). It will also expect to have env->dslot setup with the size of the
* delay slot so that env->pc - env->dslot point to the branch insn. This TB
* will execute the dslot and take the branch, either to btarget or just one
* insn ahead.
*
* When exceptions occur, we check for env->dslot in do_interrupt to detect
* broken branch sequences and setup $erp accordingly (i.e let it point to the
* branch and set lsb). Then env->dslot gets cleared so that the exception
* handler can enter. When returning from exceptions (jump $erp) the lsb gets
* masked off and we will reexecute the branch insn.
*
*/
/* generate intermediate code for basic block 'tb'. */
static inline void
gen_intermediate_code_internal(CRISCPU *cpu, TranslationBlock *tb,
bool search_pc)
{
CPUState *cs = CPU(cpu);
CPUCRISState *env = &cpu->env;
uint16_t *gen_opc_end;
uint32_t pc_start;
unsigned int insn_len;
int j, lj;
struct DisasContext ctx;
struct DisasContext *dc = &ctx;
uint32_t next_page_start;
target_ulong npc;
int num_insns;
int max_insns;
if (env->pregs[PR_VR] == 32) {
dc->decoder = crisv32_decoder;
dc->clear_locked_irq = 0;
} else {
dc->decoder = crisv10_decoder;
dc->clear_locked_irq = 1;
}
/* Odd PC indicates that branch is rexecuting due to exception in the
* delayslot, like in real hw.
*/
pc_start = tb->pc & ~1;
dc->env = env;
dc->tb = tb;
gen_opc_end = tcg_ctx.gen_opc_buf + OPC_MAX_SIZE;
dc->is_jmp = DISAS_NEXT;
dc->ppc = pc_start;
dc->pc = pc_start;
dc->singlestep_enabled = cs->singlestep_enabled;
dc->flags_uptodate = 1;
dc->flagx_known = 1;
dc->flags_x = tb->flags & X_FLAG;
dc->cc_x_uptodate = 0;
dc->cc_mask = 0;
dc->update_cc = 0;
dc->clear_prefix = 0;
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
dc->cc_size_uptodate = -1;
/* Decode TB flags. */
dc->tb_flags = tb->flags & (S_FLAG | P_FLAG | U_FLAG \
| X_FLAG | PFIX_FLAG);
dc->delayed_branch = !!(tb->flags & 7);
if (dc->delayed_branch) {
dc->jmp = JMP_INDIRECT;
} else {
dc->jmp = JMP_NOJMP;
}
dc->cpustate_changed = 0;
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
qemu_log(
"srch=%d pc=%x %x flg=%" PRIx64 " bt=%x ds=%u ccs=%x\n"
"pid=%x usp=%x\n"
"%x.%x.%x.%x\n"
"%x.%x.%x.%x\n"
"%x.%x.%x.%x\n"
"%x.%x.%x.%x\n",
search_pc, dc->pc, dc->ppc,
(uint64_t)tb->flags,
env->btarget, (unsigned)tb->flags & 7,
env->pregs[PR_CCS],
env->pregs[PR_PID], env->pregs[PR_USP],
env->regs[0], env->regs[1], env->regs[2], env->regs[3],
env->regs[4], env->regs[5], env->regs[6], env->regs[7],
env->regs[8], env->regs[9],
env->regs[10], env->regs[11],
env->regs[12], env->regs[13],
env->regs[14], env->regs[15]);
qemu_log("--------------\n");
qemu_log("IN: %s\n", lookup_symbol(pc_start));
}
next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
lj = -1;
num_insns = 0;
max_insns = tb->cflags & CF_COUNT_MASK;
if (max_insns == 0) {
max_insns = CF_COUNT_MASK;
}
gen_tb_start();
do {
check_breakpoint(env, dc);
if (search_pc) {
j = tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf;
if (lj < j) {
lj++;
while (lj < j) {
tcg_ctx.gen_opc_instr_start[lj++] = 0;
}
}
if (dc->delayed_branch == 1) {
tcg_ctx.gen_opc_pc[lj] = dc->ppc | 1;
} else {
tcg_ctx.gen_opc_pc[lj] = dc->pc;
}
tcg_ctx.gen_opc_instr_start[lj] = 1;
tcg_ctx.gen_opc_icount[lj] = num_insns;
}
/* Pretty disas. */
LOG_DIS("%8.8x:\t", dc->pc);
if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) {
gen_io_start();
}
dc->clear_x = 1;
insn_len = dc->decoder(env, dc);
dc->ppc = dc->pc;
dc->pc += insn_len;
if (dc->clear_x) {
cris_clear_x_flag(dc);
}
num_insns++;
/* Check for delayed branches here. If we do it before
actually generating any host code, the simulator will just
loop doing nothing for on this program location. */
if (dc->delayed_branch) {
dc->delayed_branch--;
if (dc->delayed_branch == 0) {
if (tb->flags & 7) {
t_gen_mov_env_TN(dslot, tcg_const_tl(0));
}
if (dc->cpustate_changed || !dc->flagx_known
|| (dc->flags_x != (tb->flags & X_FLAG))) {
cris_store_direct_jmp(dc);
}
if (dc->clear_locked_irq) {
dc->clear_locked_irq = 0;
t_gen_mov_env_TN(locked_irq, tcg_const_tl(0));
}
if (dc->jmp == JMP_DIRECT_CC) {
int l1;
l1 = gen_new_label();
cris_evaluate_flags(dc);
/* Conditional jmp. */
tcg_gen_brcondi_tl(TCG_COND_EQ,
env_btaken, 0, l1);
gen_goto_tb(dc, 1, dc->jmp_pc);
gen_set_label(l1);
gen_goto_tb(dc, 0, dc->pc);
dc->is_jmp = DISAS_TB_JUMP;
dc->jmp = JMP_NOJMP;
} else if (dc->jmp == JMP_DIRECT) {
cris_evaluate_flags(dc);
gen_goto_tb(dc, 0, dc->jmp_pc);
dc->is_jmp = DISAS_TB_JUMP;
dc->jmp = JMP_NOJMP;
} else {
t_gen_cc_jmp(env_btarget, tcg_const_tl(dc->pc));
dc->is_jmp = DISAS_JUMP;
}
break;
}
}
/* If we are rexecuting a branch due to exceptions on
delay slots dont break. */
if (!(tb->pc & 1) && cs->singlestep_enabled) {
break;
}
} while (!dc->is_jmp && !dc->cpustate_changed
&& tcg_ctx.gen_opc_ptr < gen_opc_end
&& !singlestep
&& (dc->pc < next_page_start)
&& num_insns < max_insns);
if (dc->clear_locked_irq) {
t_gen_mov_env_TN(locked_irq, tcg_const_tl(0));
}
npc = dc->pc;
if (tb->cflags & CF_LAST_IO)
gen_io_end();
/* Force an update if the per-tb cpu state has changed. */
if (dc->is_jmp == DISAS_NEXT
&& (dc->cpustate_changed || !dc->flagx_known
|| (dc->flags_x != (tb->flags & X_FLAG)))) {
dc->is_jmp = DISAS_UPDATE;
tcg_gen_movi_tl(env_pc, npc);
}
/* Broken branch+delayslot sequence. */
if (dc->delayed_branch == 1) {
/* Set env->dslot to the size of the branch insn. */
t_gen_mov_env_TN(dslot, tcg_const_tl(dc->pc - dc->ppc));
cris_store_direct_jmp(dc);
}
cris_evaluate_flags(dc);
if (unlikely(cs->singlestep_enabled)) {
if (dc->is_jmp == DISAS_NEXT) {
tcg_gen_movi_tl(env_pc, npc);
}
t_gen_raise_exception(EXCP_DEBUG);
} else {
switch (dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, npc);
break;
default:
case DISAS_JUMP:
case DISAS_UPDATE:
/* indicate that the hash table must be used
to find the next TB */
tcg_gen_exit_tb(0);
break;
case DISAS_SWI:
case DISAS_TB_JUMP:
/* nothing more to generate */
break;
}
}
gen_tb_end(tb, num_insns);
*tcg_ctx.gen_opc_ptr = INDEX_op_end;
if (search_pc) {
j = tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf;
lj++;
while (lj <= j) {
tcg_ctx.gen_opc_instr_start[lj++] = 0;
}
} else {
tb->size = dc->pc - pc_start;
tb->icount = num_insns;
}
#ifdef DEBUG_DISAS
#if !DISAS_CRIS
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
log_target_disas(env, pc_start, dc->pc - pc_start,
dc->env->pregs[PR_VR]);
qemu_log("\nisize=%d osize=%td\n",
dc->pc - pc_start, tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf);
}
#endif
#endif
}
void gen_intermediate_code (CPUCRISState *env, struct TranslationBlock *tb)
{
gen_intermediate_code_internal(cris_env_get_cpu(env), tb, false);
}
void gen_intermediate_code_pc (CPUCRISState *env, struct TranslationBlock *tb)
{
gen_intermediate_code_internal(cris_env_get_cpu(env), tb, true);
}
void cris_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
int flags)
{
CRISCPU *cpu = CRIS_CPU(cs);
CPUCRISState *env = &cpu->env;
int i;
uint32_t srs;
if (!env || !f) {
return;
}
cpu_fprintf(f, "PC=%x CCS=%x btaken=%d btarget=%x\n"
"cc_op=%d cc_src=%d cc_dest=%d cc_result=%x cc_mask=%x\n",
env->pc, env->pregs[PR_CCS], env->btaken, env->btarget,
env->cc_op,
env->cc_src, env->cc_dest, env->cc_result, env->cc_mask);
for (i = 0; i < 16; i++) {
cpu_fprintf(f, "%s=%8.8x ", regnames[i], env->regs[i]);
if ((i + 1) % 4 == 0) {
cpu_fprintf(f, "\n");
}
}
cpu_fprintf(f, "\nspecial regs:\n");
for (i = 0; i < 16; i++) {
cpu_fprintf(f, "%s=%8.8x ", pregnames[i], env->pregs[i]);
if ((i + 1) % 4 == 0) {
cpu_fprintf(f, "\n");
}
}
srs = env->pregs[PR_SRS];
cpu_fprintf(f, "\nsupport function regs bank %x:\n", srs);
if (srs < ARRAY_SIZE(env->sregs)) {
for (i = 0; i < 16; i++) {
cpu_fprintf(f, "s%2.2d=%8.8x ",
i, env->sregs[srs][i]);
if ((i + 1) % 4 == 0) {
cpu_fprintf(f, "\n");
}
}
}
cpu_fprintf(f, "\n\n");
}
void cris_initialize_tcg(void)
{
int i;
cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env");
cc_x = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, cc_x), "cc_x");
cc_src = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, cc_src), "cc_src");
cc_dest = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, cc_dest),
"cc_dest");
cc_result = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, cc_result),
"cc_result");
cc_op = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, cc_op), "cc_op");
cc_size = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, cc_size),
"cc_size");
cc_mask = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, cc_mask),
"cc_mask");
env_pc = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, pc),
"pc");
env_btarget = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, btarget),
"btarget");
env_btaken = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, btaken),
"btaken");
for (i = 0; i < 16; i++) {
cpu_R[i] = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, regs[i]),
regnames[i]);
}
for (i = 0; i < 16; i++) {
cpu_PR[i] = tcg_global_mem_new(TCG_AREG0,
offsetof(CPUCRISState, pregs[i]),
pregnames[i]);
}
}
void restore_state_to_opc(CPUCRISState *env, TranslationBlock *tb, int pc_pos)
{
env->pc = tcg_ctx.gen_opc_pc[pc_pos];
}