qemu-e2k/target/hppa/insns.decode

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

532 lines
22 KiB
Plaintext
Raw Normal View History

#
# HPPA instruction decode definitions.
#
# Copyright (c) 2018 Richard Henderson <rth@twiddle.net>
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, see <http://www.gnu.org/licenses/>.
#
####
# Field definitions
####
%assemble_sr3 13:1 14:2
%assemble_sr3x 13:1 14:2 !function=expand_sr3x
%assemble_11a 0:s1 4:10 !function=expand_shl3
%assemble_12 0:s1 2:1 3:10 !function=expand_shl2
%assemble_12a 0:s1 3:11 !function=expand_shl2
%assemble_17 0:s1 16:5 2:1 3:10 !function=expand_shl2
%assemble_22 0:s1 16:10 2:1 3:10 !function=expand_shl2
%assemble_21 0:s1 1:11 14:2 16:5 12:2 !function=expand_shl11
%lowsign_11 0:s1 1:10
%lowsign_14 0:s1 1:13
%sm_imm 16:10 !function=expand_sm_imm
%rm64 1:1 16:5
%rt64 6:1 0:5
%ra64 7:1 21:5
%rb64 12:1 16:5
%rc64 8:1 13:3 9:2
%rc32 13:3 9:2
%im5_0 0:s1 1:4
%im5_16 16:s1 17:4
%ma_to_m 5:1 13:1 !function=ma_to_m
%ma2_to_m 2:2 !function=ma_to_m
%pos_to_m 0:1 !function=pos_to_m
%neg_to_m 0:1 !function=neg_to_m
%a_to_m 2:1 !function=neg_to_m
####
# Argument set definitions
####
# All insns that need to form a virtual address should use this set.
&ldst t b x disp sp m scale size
&rr_cf t r cf
&rrr_cf t r1 r2 cf
&rrr_cf_sh t r1 r2 cf sh
&rri_cf t r i cf
&rrb_c_f disp n c f r1 r2
&rib_c_f disp n c f r i
####
# Format definitions
####
@rr_cf ...... r:5 ..... cf:4 ....... t:5 &rr_cf
@rrr_cf ...... r2:5 r1:5 cf:4 ....... t:5 &rrr_cf
@rrr_cf_sh ...... r2:5 r1:5 cf:4 .... sh:2 . t:5 &rrr_cf_sh
@rrr_cf_sh0 ...... r2:5 r1:5 cf:4 ....... t:5 &rrr_cf_sh sh=0
@rri_cf ...... r:5 t:5 cf:4 . ........... &rri_cf i=%lowsign_11
@rrb_cf ...... r2:5 r1:5 c:3 ........... n:1 . \
&rrb_c_f disp=%assemble_12
@rib_cf ...... r:5 ..... c:3 ........... n:1 . \
&rib_c_f disp=%assemble_12 i=%im5_16
####
# System
####
break 000000 ----- ----- --- 00000000 -----
mtsp 000000 ----- r:5 ... 11000001 00000 sp=%assemble_sr3
mtctl 000000 t:5 r:5 --- 11000010 00000
mtsarcm 000000 01011 r:5 --- 11000110 00000
mtsm 000000 00000 r:5 000 11000011 00000
mfia 000000 ----- 00000 --- 10100101 t:5
mfsp 000000 ----- 00000 ... 00100101 t:5 sp=%assemble_sr3
mfctl 000000 r:5 00000- e:1 -01000101 t:5
sync 000000 ----- ----- 000 00100000 00000 # sync, syncdma
ldsid 000000 b:5 ----- sp:2 0 10000101 t:5
rsm 000000 .......... 000 01110011 t:5 i=%sm_imm
ssm 000000 .......... 000 01101011 t:5 i=%sm_imm
rfi 000000 ----- ----- --- 01100000 00000
rfi_r 000000 ----- ----- --- 01100101 00000
# These are artificial instructions used by QEMU firmware.
# They are allocated from the unassigned instruction space.
halt 1111 1111 1111 1101 1110 1010 1101 0000
reset 1111 1111 1111 1101 1110 1010 1101 0001
hppa: Add support for an emulated TOC/NMI button. Almost all PA-RISC machines have either a button that is labeled with 'TOC' or a BMC/GSP function to trigger a TOC. TOC is a non-maskable interrupt that is sent to the processor. This can be used for diagnostic purposes like obtaining a stack trace/register dump or to enter KDB/KGDB in Linux. This patch adds support for such an emulated TOC button. It wires up the qemu monitor "nmi" command to trigger a TOC. For that it provides the hppa_nmi function which is assigned to the nmi_monitor_handler function pointer. When called it raises the EXCP_TOC hardware interrupt in the hppa_cpu_do_interrupt() function. The interrupt function then calls the architecturally defined TOC function in SeaBIOS-hppa firmware (at fixed address 0xf0000000). According to the PA-RISC PDC specification, the SeaBIOS firmware then writes the CPU registers into PIM (processor internal memmory) for later analysis. In order to write all registers it needs to know the contents of the CPU "shadow registers" and the IASQ- and IAOQ-back values. The IAOQ/IASQ values are provided by qemu in shadow registers when entering the SeaBIOS TOC function. This patch adds a new aritificial opcode "getshadowregs" (0xfffdead2) which restores the original values of the shadow registers. With this opcode SeaBIOS can store those registers as well into PIM before calling an OS-provided TOC handler. To trigger a TOC, switch to the qemu monitor with Ctrl-A C, and type in the command "nmi". After the TOC started the OS-debugger, exit the qemu monitor with Ctrl-A C. Signed-off-by: Helge Deller <deller@gmx.de> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
2022-01-05 23:09:04 +01:00
getshadowregs 1111 1111 1111 1101 1110 1010 1101 0010
####
# Memory Management
####
@addrx ...... b:5 x:5 .. ........ m:1 ..... \
&ldst disp=0 scale=0 t=0 sp=0 size=0
nop 000001 ----- ----- -- 11001010 0 ----- # fdc, disp
nop_addrx 000001 ..... ..... -- 01001010 . ----- @addrx # fdc, index
nop_addrx 000001 ..... ..... -- 01001011 . ----- @addrx # fdce
nop_addrx 000001 ..... ..... --- 0001010 . ----- @addrx # fic 0x0a
nop_addrx 000001 ..... ..... -- 01001111 . 00000 @addrx # fic 0x4f
nop_addrx 000001 ..... ..... --- 0001011 . ----- @addrx # fice
nop_addrx 000001 ..... ..... -- 01001110 . 00000 @addrx # pdc
probe 000001 b:5 ri:5 sp:2 imm:1 100011 write:1 0 t:5
ixtlbx 000001 b:5 r:5 sp:2 0100000 addr:1 0 00000 data=1
ixtlbx 000001 b:5 r:5 ... 000000 addr:1 0 00000 \
sp=%assemble_sr3x data=0
# pcxl and pcxl2 Fast TLB Insert instructions
ixtlbxf 000001 00000 r:5 00 0 data:1 01000 addr:1 0 00000
pxtlbx 000001 b:5 x:5 sp:2 0100100 local:1 m:1 ----- data=1
pxtlbx 000001 b:5 x:5 ... 000100 local:1 m:1 ----- \
sp=%assemble_sr3x data=0
lpa 000001 b:5 x:5 sp:2 01001101 m:1 t:5 \
&ldst disp=0 scale=0 size=0
lci 000001 ----- ----- -- 01001100 0 t:5
####
# Arith/Log
####
target/hppa: Fix boot with old Linux installation CDs The current qemu hppa emulation emulates a PA1.1 CPU, which can only execute the 32-bit instruction set. For unknown 64-bit instructions, a instruction trap is sent to the virtual CPU. This behaviour is correct in the sense that we emulate what the PA1.1 specification says. But when trying to boot older Linux installation images, e.g. ftp://parisc.parisc-linux.org/debian-cd/debian-5.0/lenny-5.0.10-hppa-iso-cd/cdimage.debian.org/debian-5010-hppa-netinst.iso one finds that qemu fails to boot those images. The problem is, that in the Linux kernel (e.g. 2.6.26) of those old images 64-bit instructions were used by mistake in the fault handlers. The relevant instructions (the ",*" indicates that it's a 64-bit instruction) I see are: 0: 09 3e 04 29 sub,* sp,r9,r9 0: 08 3d 06 3d add,* ret1,r1,ret1 0: 0a 09 02 61 or,* r9,r16,r1 0: 0a ba 00 3a andcm,* r26,r21,r26 0: 08 33 02 33 and,* r19,r1,r19 The interesting part is, that real physical 32-bit machines (like the 700/64 and B160L - which is the one we emulate) do boot those images and thus seem to simply ignore the 64-bit flag on those instructions. The patch below modifies the qemu instruction decoder to ignore the 64-bit flag too - which is what real 32-bit hardware seems to do. With this modification qemu now successfully boots those older images too. I suggest to apply the patch below - even if it does not reflect what the SPEC says. Instead it increases the compatibility to really existing hardware and seem to not create problems if we add real PA2.0 support anytime later. Signed-off-by: Helge Deller <deller@gmx.de> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
2020-08-30 15:35:07 +02:00
andcm 000010 ..... ..... .... 000000 - ..... @rrr_cf
and 000010 ..... ..... .... 001000 - ..... @rrr_cf
or 000010 ..... ..... .... 001001 - ..... @rrr_cf
xor 000010 ..... ..... .... 001010 0 ..... @rrr_cf
uxor 000010 ..... ..... .... 001110 0 ..... @rrr_cf
ds 000010 ..... ..... .... 010001 0 ..... @rrr_cf
cmpclr 000010 ..... ..... .... 100010 0 ..... @rrr_cf
uaddcm 000010 ..... ..... .... 100110 0 ..... @rrr_cf
uaddcm_tc 000010 ..... ..... .... 100111 0 ..... @rrr_cf
dcor 000010 ..... 00000 .... 101110 0 ..... @rr_cf
dcor_i 000010 ..... 00000 .... 101111 0 ..... @rr_cf
target/hppa: Fix boot with old Linux installation CDs The current qemu hppa emulation emulates a PA1.1 CPU, which can only execute the 32-bit instruction set. For unknown 64-bit instructions, a instruction trap is sent to the virtual CPU. This behaviour is correct in the sense that we emulate what the PA1.1 specification says. But when trying to boot older Linux installation images, e.g. ftp://parisc.parisc-linux.org/debian-cd/debian-5.0/lenny-5.0.10-hppa-iso-cd/cdimage.debian.org/debian-5010-hppa-netinst.iso one finds that qemu fails to boot those images. The problem is, that in the Linux kernel (e.g. 2.6.26) of those old images 64-bit instructions were used by mistake in the fault handlers. The relevant instructions (the ",*" indicates that it's a 64-bit instruction) I see are: 0: 09 3e 04 29 sub,* sp,r9,r9 0: 08 3d 06 3d add,* ret1,r1,ret1 0: 0a 09 02 61 or,* r9,r16,r1 0: 0a ba 00 3a andcm,* r26,r21,r26 0: 08 33 02 33 and,* r19,r1,r19 The interesting part is, that real physical 32-bit machines (like the 700/64 and B160L - which is the one we emulate) do boot those images and thus seem to simply ignore the 64-bit flag on those instructions. The patch below modifies the qemu instruction decoder to ignore the 64-bit flag too - which is what real 32-bit hardware seems to do. With this modification qemu now successfully boots those older images too. I suggest to apply the patch below - even if it does not reflect what the SPEC says. Instead it increases the compatibility to really existing hardware and seem to not create problems if we add real PA2.0 support anytime later. Signed-off-by: Helge Deller <deller@gmx.de> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
2020-08-30 15:35:07 +02:00
add 000010 ..... ..... .... 0110.. - ..... @rrr_cf_sh
add_l 000010 ..... ..... .... 1010.. 0 ..... @rrr_cf_sh
add_tsv 000010 ..... ..... .... 1110.. 0 ..... @rrr_cf_sh
add_c 000010 ..... ..... .... 011100 0 ..... @rrr_cf_sh0
add_c_tsv 000010 ..... ..... .... 111100 0 ..... @rrr_cf_sh0
target/hppa: Fix boot with old Linux installation CDs The current qemu hppa emulation emulates a PA1.1 CPU, which can only execute the 32-bit instruction set. For unknown 64-bit instructions, a instruction trap is sent to the virtual CPU. This behaviour is correct in the sense that we emulate what the PA1.1 specification says. But when trying to boot older Linux installation images, e.g. ftp://parisc.parisc-linux.org/debian-cd/debian-5.0/lenny-5.0.10-hppa-iso-cd/cdimage.debian.org/debian-5010-hppa-netinst.iso one finds that qemu fails to boot those images. The problem is, that in the Linux kernel (e.g. 2.6.26) of those old images 64-bit instructions were used by mistake in the fault handlers. The relevant instructions (the ",*" indicates that it's a 64-bit instruction) I see are: 0: 09 3e 04 29 sub,* sp,r9,r9 0: 08 3d 06 3d add,* ret1,r1,ret1 0: 0a 09 02 61 or,* r9,r16,r1 0: 0a ba 00 3a andcm,* r26,r21,r26 0: 08 33 02 33 and,* r19,r1,r19 The interesting part is, that real physical 32-bit machines (like the 700/64 and B160L - which is the one we emulate) do boot those images and thus seem to simply ignore the 64-bit flag on those instructions. The patch below modifies the qemu instruction decoder to ignore the 64-bit flag too - which is what real 32-bit hardware seems to do. With this modification qemu now successfully boots those older images too. I suggest to apply the patch below - even if it does not reflect what the SPEC says. Instead it increases the compatibility to really existing hardware and seem to not create problems if we add real PA2.0 support anytime later. Signed-off-by: Helge Deller <deller@gmx.de> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
2020-08-30 15:35:07 +02:00
sub 000010 ..... ..... .... 010000 - ..... @rrr_cf
sub_tsv 000010 ..... ..... .... 110000 0 ..... @rrr_cf
sub_tc 000010 ..... ..... .... 010011 0 ..... @rrr_cf
sub_tsv_tc 000010 ..... ..... .... 110011 0 ..... @rrr_cf
sub_b 000010 ..... ..... .... 010100 0 ..... @rrr_cf
sub_b_tsv 000010 ..... ..... .... 110100 0 ..... @rrr_cf
ldil 001000 t:5 ..................... i=%assemble_21
addil 001010 r:5 ..................... i=%assemble_21
ldo 001101 b:5 t:5 -- .............. i=%lowsign_14
addi 101101 ..... ..... .... 0 ........... @rri_cf
addi_tsv 101101 ..... ..... .... 1 ........... @rri_cf
addi_tc 101100 ..... ..... .... 0 ........... @rri_cf
addi_tc_tsv 101100 ..... ..... .... 1 ........... @rri_cf
subi 100101 ..... ..... .... 0 ........... @rri_cf
subi_tsv 100101 ..... ..... .... 1 ........... @rri_cf
cmpiclr 100100 ..... ..... .... 0 ........... @rri_cf
####
# Index Mem
####
@ldstx ...... b:5 x:5 sp:2 scale:1 ....... m:1 t:5 &ldst disp=0
@ldim5 ...... b:5 ..... sp:2 ......... t:5 \
&ldst disp=%im5_16 x=0 scale=0 m=%ma_to_m
@stim5 ...... b:5 t:5 sp:2 ......... ..... \
&ldst disp=%im5_0 x=0 scale=0 m=%ma_to_m
ld 000011 ..... ..... .. . 1 -- 00 size:2 ...... @ldim5
ld 000011 ..... ..... .. . 0 -- 00 size:2 ...... @ldstx
st 000011 ..... ..... .. . 1 -- 10 size:2 ...... @stim5
ldc 000011 ..... ..... .. . 1 -- 0111 ...... @ldim5 size=2
ldc 000011 ..... ..... .. . 0 -- 0111 ...... @ldstx size=2
lda 000011 ..... ..... .. . 1 -- 0110 ...... @ldim5 size=2
lda 000011 ..... ..... .. . 0 -- 0110 ...... @ldstx size=2
sta 000011 ..... ..... .. . 1 -- 1110 ...... @stim5 size=2
stby 000011 b:5 r:5 sp:2 a:1 1 -- 1100 m:1 ..... disp=%im5_0
@fldstwx ...... b:5 x:5 sp:2 scale:1 ....... m:1 ..... \
&ldst t=%rt64 disp=0 size=2
@fldstwi ...... b:5 ..... sp:2 . ....... . ..... \
&ldst t=%rt64 disp=%im5_16 m=%ma_to_m x=0 scale=0 size=2
fldw 001001 ..... ..... .. . 0 -- 000 . . ..... @fldstwx
fldw 001001 ..... ..... .. . 1 -- 000 . . ..... @fldstwi
fstw 001001 ..... ..... .. . 0 -- 100 . . ..... @fldstwx
fstw 001001 ..... ..... .. . 1 -- 100 . . ..... @fldstwi
@fldstdx ...... b:5 x:5 sp:2 scale:1 ....... m:1 t:5 \
&ldst disp=0 size=3
@fldstdi ...... b:5 ..... sp:2 . ....... . t:5 \
&ldst disp=%im5_16 m=%ma_to_m x=0 scale=0 size=3
fldd 001011 ..... ..... .. . 0 -- 000 0 . ..... @fldstdx
fldd 001011 ..... ..... .. . 1 -- 000 0 . ..... @fldstdi
fstd 001011 ..... ..... .. . 0 -- 100 0 . ..... @fldstdx
fstd 001011 ..... ..... .. . 1 -- 100 0 . ..... @fldstdi
####
# Offset Mem
####
@ldstim14 ...... b:5 t:5 sp:2 .............. \
&ldst disp=%lowsign_14 x=0 scale=0 m=0
@ldstim14m ...... b:5 t:5 sp:2 .............. \
&ldst disp=%lowsign_14 x=0 scale=0 m=%neg_to_m
@ldstim12m ...... b:5 t:5 sp:2 .............. \
&ldst disp=%assemble_12a x=0 scale=0 m=%pos_to_m
# LDB, LDH, LDW, LDWM
ld 010000 ..... ..... .. .............. @ldstim14 size=0
ld 010001 ..... ..... .. .............. @ldstim14 size=1
ld 010010 ..... ..... .. .............. @ldstim14 size=2
ld 010011 ..... ..... .. .............. @ldstim14m size=2
ld 010111 ..... ..... .. ...........10. @ldstim12m size=2
# STB, STH, STW, STWM
st 011000 ..... ..... .. .............. @ldstim14 size=0
st 011001 ..... ..... .. .............. @ldstim14 size=1
st 011010 ..... ..... .. .............. @ldstim14 size=2
st 011011 ..... ..... .. .............. @ldstim14m size=2
st 011111 ..... ..... .. ...........10. @ldstim12m size=2
fldw 010110 b:5 ..... sp:2 .............. \
&ldst disp=%assemble_12a t=%rm64 m=%a_to_m x=0 scale=0 size=2
fldw 010111 b:5 ..... sp:2 ...........0.. \
&ldst disp=%assemble_12a t=%rm64 m=0 x=0 scale=0 size=2
fstw 011110 b:5 ..... sp:2 .............. \
&ldst disp=%assemble_12a t=%rm64 m=%a_to_m x=0 scale=0 size=2
fstw 011111 b:5 ..... sp:2 ...........0.. \
&ldst disp=%assemble_12a t=%rm64 m=0 x=0 scale=0 size=2
fldd 010100 b:5 t:5 sp:2 .......... .. 1 . \
&ldst disp=%assemble_11a m=%ma2_to_m x=0 scale=0 size=3
fstd 011100 b:5 t:5 sp:2 .......... .. 1 . \
&ldst disp=%assemble_11a m=%ma2_to_m x=0 scale=0 size=3
####
# Floating-point Multiply Add
####
&mpyadd rm1 rm2 ta ra tm
@mpyadd ...... rm1:5 rm2:5 ta:5 ra:5 . tm:5 &mpyadd
fmpyadd_f 000110 ..... ..... ..... ..... 0 ..... @mpyadd
fmpyadd_d 000110 ..... ..... ..... ..... 1 ..... @mpyadd
fmpysub_f 100110 ..... ..... ..... ..... 0 ..... @mpyadd
fmpysub_d 100110 ..... ..... ..... ..... 1 ..... @mpyadd
####
# Conditional Branches
####
bb_sar 110000 00000 r:5 c:1 10 ........... n:1 . disp=%assemble_12
bb_imm 110001 p:5 r:5 c:1 10 ........... n:1 . disp=%assemble_12
movb 110010 ..... ..... ... ........... . . @rrb_cf f=0
movbi 110011 ..... ..... ... ........... . . @rib_cf f=0
cmpb 100000 ..... ..... ... ........... . . @rrb_cf f=0
cmpb 100010 ..... ..... ... ........... . . @rrb_cf f=1
cmpbi 100001 ..... ..... ... ........... . . @rib_cf f=0
cmpbi 100011 ..... ..... ... ........... . . @rib_cf f=1
addb 101000 ..... ..... ... ........... . . @rrb_cf f=0
addb 101010 ..... ..... ... ........... . . @rrb_cf f=1
addbi 101001 ..... ..... ... ........... . . @rib_cf f=0
addbi 101011 ..... ..... ... ........... . . @rib_cf f=1
####
# Shift, Extract, Deposit
####
shrpw_sar 110100 r2:5 r1:5 c:3 00 0 00000 t:5
shrpw_imm 110100 r2:5 r1:5 c:3 01 0 cpos:5 t:5
extrw_sar 110100 r:5 t:5 c:3 10 se:1 00000 clen:5
extrw_imm 110100 r:5 t:5 c:3 11 se:1 pos:5 clen:5
depw_sar 110101 t:5 r:5 c:3 00 nz:1 00000 clen:5
depw_imm 110101 t:5 r:5 c:3 01 nz:1 cpos:5 clen:5
depwi_sar 110101 t:5 ..... c:3 10 nz:1 00000 clen:5 i=%im5_16
depwi_imm 110101 t:5 ..... c:3 11 nz:1 cpos:5 clen:5 i=%im5_16
####
# Branch External
####
&BE b l n disp sp
@be ...... b:5 ..... ... ........... n:1 . \
&BE disp=%assemble_17 sp=%assemble_sr3
be 111000 ..... ..... ... ........... . . @be l=0
be 111001 ..... ..... ... ........... . . @be l=31
####
# Branch
####
&BL l n disp
@bl ...... l:5 ..... ... ........... n:1 . &BL disp=%assemble_17
# B,L and B,L,PUSH
bl 111010 ..... ..... 000 ........... . . @bl
bl 111010 ..... ..... 100 ........... . . @bl
# B,L (long displacement)
bl 111010 ..... ..... 101 ........... n:1 . &BL l=2 \
disp=%assemble_22
b_gate 111010 ..... ..... 001 ........... . . @bl
blr 111010 l:5 x:5 010 00000000000 n:1 0
bv 111010 b:5 x:5 110 00000000000 n:1 0
bve 111010 b:5 00000 110 10000000000 n:1 - l=0
bve 111010 b:5 00000 111 10000000000 n:1 - l=2
####
# FP Fused Multiple-Add
####
fmpyfadd_f 101110 ..... ..... ... . 0 ... . . neg:1 ..... \
rm1=%ra64 rm2=%rb64 ra3=%rc64 t=%rt64
fmpyfadd_d 101110 rm1:5 rm2:5 ... 0 1 ..0 0 0 neg:1 t:5 ra3=%rc32
####
# FP operations
####
&fclass01 r t
&fclass2 r1 r2 c y
&fclass3 r1 r2 t
@f0c_0 ...... r:5 00000 ..... 00 000 0 t:5 &fclass01
@f0c_1 ...... r:5 000.. ..... 01 000 0 t:5 &fclass01
@f0c_2 ...... r1:5 r2:5 y:3 .. 10 000 . c:5 &fclass2
@f0c_3 ...... r1:5 r2:5 ..... 11 000 0 t:5 &fclass3
@f0e_f_0 ...... ..... 00000 ... 0 0 000 .. 0 ..... \
&fclass01 r=%ra64 t=%rt64
@f0e_d_0 ...... r:5 00000 ... 0 1 000 00 0 t:5 &fclass01
@f0e_ff_1 ...... ..... 000 ... 0000 010 .. 0 ..... \
&fclass01 r=%ra64 t=%rt64
@f0e_fd_1 ...... ..... 000 ... 0100 010 .0 0 t:5 &fclass01 r=%ra64
@f0e_df_1 ...... r:5 000 ... 0001 010 0. 0 ..... &fclass01 t=%rt64
@f0e_dd_1 ...... r:5 000 ... 0101 010 00 0 t:5 &fclass01
@f0e_f_2 ...... ..... ..... y:3 .0 100 .00 c:5 \
&fclass2 r1=%ra64 r2=%rb64
@f0e_d_2 ...... r1:5 r2:5 y:3 01 100 000 c:5 &fclass2
@f0e_f_3 ...... ..... ..... ... .0 110 ..0 ..... \
&fclass3 r1=%ra64 r2=%rb64 t=%rt64
@f0e_d_3 ...... r1:5 r2:5 ... 01 110 000 t:5
# Floating point class 0
fid_f 001100 00000 00000 000 00 000000 00000
fcpy_f 001100 ..... ..... 010 00 ...... ..... @f0c_0
fabs_f 001100 ..... ..... 011 00 ...... ..... @f0c_0
fsqrt_f 001100 ..... ..... 100 00 ...... ..... @f0c_0
frnd_f 001100 ..... ..... 101 00 ...... ..... @f0c_0
fneg_f 001100 ..... ..... 110 00 ...... ..... @f0c_0
fnegabs_f 001100 ..... ..... 111 00 ...... ..... @f0c_0
fcpy_d 001100 ..... ..... 010 01 ...... ..... @f0c_0
fabs_d 001100 ..... ..... 011 01 ...... ..... @f0c_0
fsqrt_d 001100 ..... ..... 100 01 ...... ..... @f0c_0
frnd_d 001100 ..... ..... 101 01 ...... ..... @f0c_0
fneg_d 001100 ..... ..... 110 01 ...... ..... @f0c_0
fnegabs_d 001100 ..... ..... 111 01 ...... ..... @f0c_0
fcpy_f 001110 ..... ..... 010 ........ ..... @f0e_f_0
fabs_f 001110 ..... ..... 011 ........ ..... @f0e_f_0
fsqrt_f 001110 ..... ..... 100 ........ ..... @f0e_f_0
frnd_f 001110 ..... ..... 101 ........ ..... @f0e_f_0
fneg_f 001110 ..... ..... 110 ........ ..... @f0e_f_0
fnegabs_f 001110 ..... ..... 111 ........ ..... @f0e_f_0
fcpy_d 001110 ..... ..... 010 ........ ..... @f0e_d_0
fabs_d 001110 ..... ..... 011 ........ ..... @f0e_d_0
fsqrt_d 001110 ..... ..... 100 ........ ..... @f0e_d_0
frnd_d 001110 ..... ..... 101 ........ ..... @f0e_d_0
fneg_d 001110 ..... ..... 110 ........ ..... @f0e_d_0
fnegabs_d 001110 ..... ..... 111 ........ ..... @f0e_d_0
# Floating point class 1
# float/float
fcnv_d_f 001100 ..... ... 000 00 01 ...... ..... @f0c_1
fcnv_f_d 001100 ..... ... 000 01 00 ...... ..... @f0c_1
fcnv_d_f 001110 ..... ... 000 .......... ..... @f0e_df_1
fcnv_f_d 001110 ..... ... 000 .......... ..... @f0e_fd_1
# int/float
fcnv_w_f 001100 ..... ... 001 00 00 ...... ..... @f0c_1
fcnv_q_f 001100 ..... ... 001 00 01 ...... ..... @f0c_1
fcnv_w_d 001100 ..... ... 001 01 00 ...... ..... @f0c_1
fcnv_q_d 001100 ..... ... 001 01 01 ...... ..... @f0c_1
fcnv_w_f 001110 ..... ... 001 .......... ..... @f0e_ff_1
fcnv_q_f 001110 ..... ... 001 .......... ..... @f0e_df_1
fcnv_w_d 001110 ..... ... 001 .......... ..... @f0e_fd_1
fcnv_q_d 001110 ..... ... 001 .......... ..... @f0e_dd_1
# float/int
fcnv_f_w 001100 ..... ... 010 00 00 ...... ..... @f0c_1
fcnv_d_w 001100 ..... ... 010 00 01 ...... ..... @f0c_1
fcnv_f_q 001100 ..... ... 010 01 00 ...... ..... @f0c_1
fcnv_d_q 001100 ..... ... 010 01 01 ...... ..... @f0c_1
fcnv_f_w 001110 ..... ... 010 .......... ..... @f0e_ff_1
fcnv_d_w 001110 ..... ... 010 .......... ..... @f0e_df_1
fcnv_f_q 001110 ..... ... 010 .......... ..... @f0e_fd_1
fcnv_d_q 001110 ..... ... 010 .......... ..... @f0e_dd_1
# float/int truncate
fcnv_t_f_w 001100 ..... ... 011 00 00 ...... ..... @f0c_1
fcnv_t_d_w 001100 ..... ... 011 00 01 ...... ..... @f0c_1
fcnv_t_f_q 001100 ..... ... 011 01 00 ...... ..... @f0c_1
fcnv_t_d_q 001100 ..... ... 011 01 01 ...... ..... @f0c_1
fcnv_t_f_w 001110 ..... ... 011 .......... ..... @f0e_ff_1
fcnv_t_d_w 001110 ..... ... 011 .......... ..... @f0e_df_1
fcnv_t_f_q 001110 ..... ... 011 .......... ..... @f0e_fd_1
fcnv_t_d_q 001110 ..... ... 011 .......... ..... @f0e_dd_1
# uint/float
fcnv_uw_f 001100 ..... ... 101 00 00 ...... ..... @f0c_1
fcnv_uq_f 001100 ..... ... 101 00 01 ...... ..... @f0c_1
fcnv_uw_d 001100 ..... ... 101 01 00 ...... ..... @f0c_1
fcnv_uq_d 001100 ..... ... 101 01 01 ...... ..... @f0c_1
fcnv_uw_f 001110 ..... ... 101 .......... ..... @f0e_ff_1
fcnv_uq_f 001110 ..... ... 101 .......... ..... @f0e_df_1
fcnv_uw_d 001110 ..... ... 101 .......... ..... @f0e_fd_1
fcnv_uq_d 001110 ..... ... 101 .......... ..... @f0e_dd_1
# float/int
fcnv_f_uw 001100 ..... ... 110 00 00 ...... ..... @f0c_1
fcnv_d_uw 001100 ..... ... 110 00 01 ...... ..... @f0c_1
fcnv_f_uq 001100 ..... ... 110 01 00 ...... ..... @f0c_1
fcnv_d_uq 001100 ..... ... 110 01 01 ...... ..... @f0c_1
fcnv_f_uw 001110 ..... ... 110 .......... ..... @f0e_ff_1
fcnv_d_uw 001110 ..... ... 110 .......... ..... @f0e_df_1
fcnv_f_uq 001110 ..... ... 110 .......... ..... @f0e_fd_1
fcnv_d_uq 001110 ..... ... 110 .......... ..... @f0e_dd_1
# float/int truncate
fcnv_t_f_uw 001100 ..... ... 111 00 00 ...... ..... @f0c_1
fcnv_t_d_uw 001100 ..... ... 111 00 01 ...... ..... @f0c_1
fcnv_t_f_uq 001100 ..... ... 111 01 00 ...... ..... @f0c_1
fcnv_t_d_uq 001100 ..... ... 111 01 01 ...... ..... @f0c_1
fcnv_t_f_uw 001110 ..... ... 111 .......... ..... @f0e_ff_1
fcnv_t_d_uw 001110 ..... ... 111 .......... ..... @f0e_df_1
fcnv_t_f_uq 001110 ..... ... 111 .......... ..... @f0e_fd_1
fcnv_t_d_uq 001110 ..... ... 111 .......... ..... @f0e_dd_1
# Floating point class 2
ftest 001100 00000 00000 y:3 00 10000 1 c:5
fcmp_f 001100 ..... ..... ... 00 ..... 0 ..... @f0c_2
fcmp_d 001100 ..... ..... ... 01 ..... 0 ..... @f0c_2
fcmp_f 001110 ..... ..... ... ..... ... ..... @f0e_f_2
fcmp_d 001110 ..... ..... ... ..... ... ..... @f0e_d_2
# Floating point class 3
fadd_f 001100 ..... ..... 000 00 ...... ..... @f0c_3
fsub_f 001100 ..... ..... 001 00 ...... ..... @f0c_3
fmpy_f 001100 ..... ..... 010 00 ...... ..... @f0c_3
fdiv_f 001100 ..... ..... 011 00 ...... ..... @f0c_3
fadd_d 001100 ..... ..... 000 01 ...... ..... @f0c_3
fsub_d 001100 ..... ..... 001 01 ...... ..... @f0c_3
fmpy_d 001100 ..... ..... 010 01 ...... ..... @f0c_3
fdiv_d 001100 ..... ..... 011 01 ...... ..... @f0c_3
fadd_f 001110 ..... ..... 000 ..... ... ..... @f0e_f_3
fsub_f 001110 ..... ..... 001 ..... ... ..... @f0e_f_3
fmpy_f 001110 ..... ..... 010 ..... ... ..... @f0e_f_3
fdiv_f 001110 ..... ..... 011 ..... ... ..... @f0e_f_3
fadd_d 001110 ..... ..... 000 ..... ... ..... @f0e_d_3
fsub_d 001110 ..... ..... 001 ..... ... ..... @f0e_d_3
fmpy_d 001110 ..... ..... 010 ..... ... ..... @f0e_d_3
fdiv_d 001110 ..... ..... 011 ..... ... ..... @f0e_d_3
xmpyu 001110 ..... ..... 010 .0111 .00 t:5 r1=%ra64 r2=%rb64
# diag
diag 000101 ----- ----- ---- ---- ---- ----