qemu-e2k/hw/net/cadence_gem.c

1647 lines
55 KiB
C
Raw Normal View History

/*
* QEMU Cadence GEM emulation
*
* Copyright (c) 2011 Xilinx, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include <zlib.h> /* For crc32 */
#include "hw/irq.h"
#include "hw/net/cadence_gem.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "sysemu/dma.h"
#include "net/checksum.h"
#ifdef CADENCE_GEM_ERR_DEBUG
#define DB_PRINT(...) do { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
maint: Fix macros with broken 'do/while(0); ' usage The point of writing a macro embedded in a 'do { ... } while (0)' loop (particularly if the macro has multiple statements or would otherwise end with an 'if' statement) is so that the macro can be used as a drop-in statement with the caller supplying the trailing ';'. Although our coding style frowns on brace-less 'if': if (cond) statement; else something else; that is the classic case where failure to use do/while(0) wrapping would cause the 'else' to pair with any embedded 'if' in the macro rather than the intended outer 'if'. But conversely, if the macro includes an embedded ';', then the same brace-less coding style would now have two statements, making the 'else' a syntax error rather than pairing with the outer 'if'. Thus, even though our coding style with required braces is not impacted, ending a macro with ';' makes our code harder to port to projects that use brace-less styles. The change should have no semantic impact. I was not able to fully compile-test all of the changes (as some of them are examples of the ugly bit-rotting debug print statements that are completely elided by default, and I didn't want to recompile with the necessary -D witnesses - cleaning those up is left as a bite-sized task for another day); I did, however, audit that for all files touched, all callers of the changed macros DID supply a trailing ';' at the callsite, and did not appear to be used as part of a brace-less conditional. Found mechanically via: $ git grep -B1 'while (0);' | grep -A1 \\\\ Signed-off-by: Eric Blake <eblake@redhat.com> Acked-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Message-Id: <20171201232433.25193-7-eblake@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-02 00:24:32 +01:00
} while (0)
#else
#define DB_PRINT(...)
#endif
#define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
#define GEM_NWCFG (0x00000004/4) /* Network Config reg */
#define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
#define GEM_USERIO (0x0000000C/4) /* User IO reg */
#define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
#define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
#define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
#define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
#define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
#define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
#define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
#define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
#define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
#define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */
#define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
#define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
#define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
#define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
#define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
#define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
#define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
#define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
#define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
#define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
#define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
#define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
#define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
#define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
#define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
#define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
#define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
#define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
#define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
#define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
#define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
#define GEM_MODID (0x000000FC/4) /* Module ID reg */
#define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
#define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
#define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
#define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
#define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
#define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
#define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
#define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
#define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
#define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
#define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
#define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
#define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
#define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
#define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
#define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
#define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
#define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
#define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
#define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
#define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
#define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
#define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
#define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
#define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
#define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
#define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
#define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
#define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
#define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
#define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
#define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
#define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
#define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
#define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
#define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
#define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
#define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
#define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
#define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
#define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
#define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
#define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
#define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
#define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
#define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
#define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
#define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
#define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
#define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
#define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
#define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
#define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
#define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
#define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
#define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
#define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
/* Design Configuration Registers */
#define GEM_DESCONF (0x00000280/4)
#define GEM_DESCONF2 (0x00000284/4)
#define GEM_DESCONF3 (0x00000288/4)
#define GEM_DESCONF4 (0x0000028C/4)
#define GEM_DESCONF5 (0x00000290/4)
#define GEM_DESCONF6 (0x00000294/4)
#define GEM_DESCONF6_64B_MASK (1U << 23)
#define GEM_DESCONF7 (0x00000298/4)
#define GEM_INT_Q1_STATUS (0x00000400 / 4)
#define GEM_INT_Q1_MASK (0x00000640 / 4)
#define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4)
#define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6)
#define GEM_RECEIVE_Q1_PTR (0x00000480 / 4)
#define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6)
#define GEM_TBQPH (0x000004C8 / 4)
#define GEM_RBQPH (0x000004D4 / 4)
#define GEM_INT_Q1_ENABLE (0x00000600 / 4)
#define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6)
#define GEM_INT_Q1_DISABLE (0x00000620 / 4)
#define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6)
#define GEM_INT_Q1_MASK (0x00000640 / 4)
#define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6)
#define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4)
#define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29)
#define GEM_ST1R_DSTC_ENABLE (1 << 28)
#define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12)
#define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
#define GEM_ST1R_DSTC_MATCH_SHIFT (4)
#define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
#define GEM_ST1R_QUEUE_SHIFT (0)
#define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1)
#define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4)
#define GEM_ST2R_COMPARE_A_ENABLE (1 << 18)
#define GEM_ST2R_COMPARE_A_SHIFT (13)
#define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
#define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12)
#define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9)
#define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
+ 1)
#define GEM_ST2R_QUEUE_SHIFT (0)
#define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1)
#define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4)
#define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4)
#define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7)
#define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
#define GEM_T2CW1_OFFSET_VALUE_SHIFT (0)
#define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
/*****************************************/
#define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
#define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
#define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
#define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
#define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
#define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
#define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
#define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
#define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
#define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
#define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
#define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
#define GEM_DMACFG_ADDR_64B (1U << 30)
#define GEM_DMACFG_TX_BD_EXT (1U << 29)
#define GEM_DMACFG_RX_BD_EXT (1U << 28)
#define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
#define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
#define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
#define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
#define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
#define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
#define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
#define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
/* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
#define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
#define GEM_INT_TXUSED 0x00000008
#define GEM_INT_RXUSED 0x00000004
#define GEM_INT_RXCMPL 0x00000002
#define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
#define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
#define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
#define GEM_PHYMNTNC_ADDR_SHFT 23
#define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
#define GEM_PHYMNTNC_REG_SHIFT 18
/* Marvell PHY definitions */
#define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
#define PHY_REG_CONTROL 0
#define PHY_REG_STATUS 1
#define PHY_REG_PHYID1 2
#define PHY_REG_PHYID2 3
#define PHY_REG_ANEGADV 4
#define PHY_REG_LINKPABIL 5
#define PHY_REG_ANEGEXP 6
#define PHY_REG_NEXTP 7
#define PHY_REG_LINKPNEXTP 8
#define PHY_REG_100BTCTRL 9
#define PHY_REG_1000BTSTAT 10
#define PHY_REG_EXTSTAT 15
#define PHY_REG_PHYSPCFC_CTL 16
#define PHY_REG_PHYSPCFC_ST 17
#define PHY_REG_INT_EN 18
#define PHY_REG_INT_ST 19
#define PHY_REG_EXT_PHYSPCFC_CTL 20
#define PHY_REG_RXERR 21
#define PHY_REG_EACD 22
#define PHY_REG_LED 24
#define PHY_REG_LED_OVRD 25
#define PHY_REG_EXT_PHYSPCFC_CTL2 26
#define PHY_REG_EXT_PHYSPCFC_ST 27
#define PHY_REG_CABLE_DIAG 28
#define PHY_REG_CONTROL_RST 0x8000
#define PHY_REG_CONTROL_LOOP 0x4000
#define PHY_REG_CONTROL_ANEG 0x1000
#define PHY_REG_CONTROL_ANRESTART 0x0200
#define PHY_REG_STATUS_LINK 0x0004
#define PHY_REG_STATUS_ANEGCMPL 0x0020
#define PHY_REG_INT_ST_ANEGCMPL 0x0800
#define PHY_REG_INT_ST_LINKC 0x0400
#define PHY_REG_INT_ST_ENERGY 0x0010
/***********************************************************************/
#define GEM_RX_REJECT (-1)
#define GEM_RX_PROMISCUOUS_ACCEPT (-2)
#define GEM_RX_BROADCAST_ACCEPT (-3)
#define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
#define GEM_RX_UNICAST_HASH_ACCEPT (-5)
#define GEM_RX_SAR_ACCEPT 0
/***********************************************************************/
#define DESC_1_USED 0x80000000
#define DESC_1_LENGTH 0x00001FFF
#define DESC_1_TX_WRAP 0x40000000
#define DESC_1_TX_LAST 0x00008000
#define DESC_0_RX_WRAP 0x00000002
#define DESC_0_RX_OWNERSHIP 0x00000001
#define R_DESC_1_RX_SAR_SHIFT 25
#define R_DESC_1_RX_SAR_LENGTH 2
#define R_DESC_1_RX_SAR_MATCH (1 << 27)
#define R_DESC_1_RX_UNICAST_HASH (1 << 29)
#define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
#define R_DESC_1_RX_BROADCAST (1 << 31)
#define DESC_1_RX_SOF 0x00004000
#define DESC_1_RX_EOF 0x00008000
#define GEM_MODID_VALUE 0x00020118
static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
{
uint64_t ret = desc[0];
if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
ret |= (uint64_t)desc[2] << 32;
}
return ret;
}
static inline unsigned tx_desc_get_used(uint32_t *desc)
{
return (desc[1] & DESC_1_USED) ? 1 : 0;
}
static inline void tx_desc_set_used(uint32_t *desc)
{
desc[1] |= DESC_1_USED;
}
static inline unsigned tx_desc_get_wrap(uint32_t *desc)
{
return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
}
static inline unsigned tx_desc_get_last(uint32_t *desc)
{
return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
}
static inline void tx_desc_set_last(uint32_t *desc)
{
desc[1] |= DESC_1_TX_LAST;
}
static inline unsigned tx_desc_get_length(uint32_t *desc)
{
return desc[1] & DESC_1_LENGTH;
}
static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
{
DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
DB_PRINT("bufaddr: 0x%08x\n", *desc);
DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
DB_PRINT("last: %d\n", tx_desc_get_last(desc));
DB_PRINT("length: %d\n", tx_desc_get_length(desc));
}
static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
{
uint64_t ret = desc[0] & ~0x3UL;
if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
ret |= (uint64_t)desc[2] << 32;
}
return ret;
}
static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
{
int ret = 2;
if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
ret += 2;
}
if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
: GEM_DMACFG_TX_BD_EXT)) {
ret += 2;
}
assert(ret <= DESC_MAX_NUM_WORDS);
return ret;
}
static inline unsigned rx_desc_get_wrap(uint32_t *desc)
{
return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
}
static inline unsigned rx_desc_get_ownership(uint32_t *desc)
{
return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
}
static inline void rx_desc_set_ownership(uint32_t *desc)
{
desc[0] |= DESC_0_RX_OWNERSHIP;
}
static inline void rx_desc_set_sof(uint32_t *desc)
{
desc[1] |= DESC_1_RX_SOF;
}
static inline void rx_desc_set_eof(uint32_t *desc)
{
desc[1] |= DESC_1_RX_EOF;
}
static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
{
desc[1] &= ~DESC_1_LENGTH;
desc[1] |= len;
}
static inline void rx_desc_set_broadcast(uint32_t *desc)
{
desc[1] |= R_DESC_1_RX_BROADCAST;
}
static inline void rx_desc_set_unicast_hash(uint32_t *desc)
{
desc[1] |= R_DESC_1_RX_UNICAST_HASH;
}
static inline void rx_desc_set_multicast_hash(uint32_t *desc)
{
desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
}
static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
{
desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
sar_idx);
desc[1] |= R_DESC_1_RX_SAR_MATCH;
}
/* The broadcast MAC address: 0xFFFFFFFFFFFF */
static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
/*
* gem_init_register_masks:
* One time initialization.
* Set masks to identify which register bits have magical clear properties
*/
static void gem_init_register_masks(CadenceGEMState *s)
{
/* Mask of register bits which are read only */
memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
s->regs_ro[GEM_DMACFG] = 0x8E00F000;
s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
s->regs_ro[GEM_RXQBASE] = 0x00000003;
s->regs_ro[GEM_TXQBASE] = 0x00000003;
s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
/* Mask of register bits which are clear on read */
memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
/* Mask of register bits which are write 1 to clear */
memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
/* Mask of register bits which are write only */
memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
s->regs_wo[GEM_NWCTRL] = 0x00073E60;
s->regs_wo[GEM_IER] = 0x07FFFFFF;
s->regs_wo[GEM_IDR] = 0x07FFFFFF;
}
/*
* phy_update_link:
* Make the emulated PHY link state match the QEMU "interface" state.
*/
static void phy_update_link(CadenceGEMState *s)
{
DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
/* Autonegotiation status mirrors link status. */
if (qemu_get_queue(s->nic)->link_down) {
s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
PHY_REG_STATUS_LINK);
s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
} else {
s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
PHY_REG_STATUS_LINK);
s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
PHY_REG_INT_ST_ANEGCMPL |
PHY_REG_INT_ST_ENERGY);
}
}
static bool gem_can_receive(NetClientState *nc)
{
CadenceGEMState *s;
int i;
s = qemu_get_nic_opaque(nc);
/* Do nothing if receive is not enabled. */
if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
if (s->can_rx_state != 1) {
s->can_rx_state = 1;
DB_PRINT("can't receive - no enable\n");
}
return false;
}
for (i = 0; i < s->num_priority_queues; i++) {
if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
break;
}
};
if (i == s->num_priority_queues) {
if (s->can_rx_state != 2) {
s->can_rx_state = 2;
DB_PRINT("can't receive - all the buffer descriptors are busy\n");
}
return false;
}
if (s->can_rx_state != 0) {
s->can_rx_state = 0;
DB_PRINT("can receive\n");
}
return true;
}
/*
* gem_update_int_status:
* Raise or lower interrupt based on current status.
*/
static void gem_update_int_status(CadenceGEMState *s)
{
int i;
if (!s->regs[GEM_ISR]) {
/* ISR isn't set, clear all the interrupts */
for (i = 0; i < s->num_priority_queues; ++i) {
qemu_set_irq(s->irq[i], 0);
}
return;
}
/* If we get here we know s->regs[GEM_ISR] is set, so we don't need to
* check it again.
*/
if (s->num_priority_queues == 1) {
/* No priority queues, just trigger the interrupt */
DB_PRINT("asserting int.\n");
qemu_set_irq(s->irq[0], 1);
return;
}
for (i = 0; i < s->num_priority_queues; ++i) {
if (s->regs[GEM_INT_Q1_STATUS + i]) {
DB_PRINT("asserting int. (q=%d)\n", i);
qemu_set_irq(s->irq[i], 1);
}
}
}
/*
* gem_receive_updatestats:
* Increment receive statistics.
*/
static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
unsigned bytes)
{
uint64_t octets;
/* Total octets (bytes) received */
octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
s->regs[GEM_OCTRXHI];
octets += bytes;
s->regs[GEM_OCTRXLO] = octets >> 32;
s->regs[GEM_OCTRXHI] = octets;
/* Error-free Frames received */
s->regs[GEM_RXCNT]++;
/* Error-free Broadcast Frames counter */
if (!memcmp(packet, broadcast_addr, 6)) {
s->regs[GEM_RXBROADCNT]++;
}
/* Error-free Multicast Frames counter */
if (packet[0] == 0x01) {
s->regs[GEM_RXMULTICNT]++;
}
if (bytes <= 64) {
s->regs[GEM_RX64CNT]++;
} else if (bytes <= 127) {
s->regs[GEM_RX65CNT]++;
} else if (bytes <= 255) {
s->regs[GEM_RX128CNT]++;
} else if (bytes <= 511) {
s->regs[GEM_RX256CNT]++;
} else if (bytes <= 1023) {
s->regs[GEM_RX512CNT]++;
} else if (bytes <= 1518) {
s->regs[GEM_RX1024CNT]++;
} else {
s->regs[GEM_RX1519CNT]++;
}
}
/*
* Get the MAC Address bit from the specified position
*/
static unsigned get_bit(const uint8_t *mac, unsigned bit)
{
unsigned byte;
byte = mac[bit / 8];
byte >>= (bit & 0x7);
byte &= 1;
return byte;
}
/*
* Calculate a GEM MAC Address hash index
*/
static unsigned calc_mac_hash(const uint8_t *mac)
{
int index_bit, mac_bit;
unsigned hash_index;
hash_index = 0;
mac_bit = 5;
for (index_bit = 5; index_bit >= 0; index_bit--) {
hash_index |= (get_bit(mac, mac_bit) ^
get_bit(mac, mac_bit + 6) ^
get_bit(mac, mac_bit + 12) ^
get_bit(mac, mac_bit + 18) ^
get_bit(mac, mac_bit + 24) ^
get_bit(mac, mac_bit + 30) ^
get_bit(mac, mac_bit + 36) ^
get_bit(mac, mac_bit + 42)) << index_bit;
mac_bit--;
}
return hash_index;
}
/*
* gem_mac_address_filter:
* Accept or reject this destination address?
* Returns:
* GEM_RX_REJECT: reject
* >= 0: Specific address accept (which matched SAR is returned)
* others for various other modes of accept:
* GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
* GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
*/
static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
{
uint8_t *gem_spaddr;
int i;
/* Promiscuous mode? */
if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
return GEM_RX_PROMISCUOUS_ACCEPT;
}
if (!memcmp(packet, broadcast_addr, 6)) {
/* Reject broadcast packets? */
if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
return GEM_RX_REJECT;
}
return GEM_RX_BROADCAST_ACCEPT;
}
/* Accept packets -w- hash match? */
if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
(packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
unsigned hash_index;
hash_index = calc_mac_hash(packet);
if (hash_index < 32) {
if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
GEM_RX_UNICAST_HASH_ACCEPT;
}
} else {
hash_index -= 32;
if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
GEM_RX_UNICAST_HASH_ACCEPT;
}
}
}
/* Check all 4 specific addresses */
gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
for (i = 3; i >= 0; i--) {
if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
return GEM_RX_SAR_ACCEPT + i;
}
}
/* No address match; reject the packet */
return GEM_RX_REJECT;
}
/* Figure out which queue the received data should be sent to */
static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
unsigned rxbufsize)
{
uint32_t reg;
bool matched, mismatched;
int i, j;
for (i = 0; i < s->num_type1_screeners; i++) {
reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
matched = false;
mismatched = false;
/* Screening is based on UDP Port */
if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
matched = true;
} else {
mismatched = true;
}
}
/* Screening is based on DS/TC */
if (reg & GEM_ST1R_DSTC_ENABLE) {
uint8_t dscp = rxbuf_ptr[14 + 1];
if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
GEM_ST1R_DSTC_MATCH_WIDTH)) {
matched = true;
} else {
mismatched = true;
}
}
if (matched && !mismatched) {
return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
}
}
for (i = 0; i < s->num_type2_screeners; i++) {
reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
matched = false;
mismatched = false;
if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
if (et_idx > s->num_type2_screeners) {
qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
"register index: %d\n", et_idx);
}
if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
et_idx]) {
matched = true;
} else {
mismatched = true;
}
}
/* Compare A, B, C */
for (j = 0; j < 3; j++) {
uint32_t cr0, cr1, mask;
uint16_t rx_cmp;
int offset;
int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
GEM_ST2R_COMPARE_WIDTH);
if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
continue;
}
if (cr_idx > s->num_type2_screeners) {
qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
"register index: %d\n", cr_idx);
}
cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
GEM_T2CW1_OFFSET_VALUE_WIDTH);
switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
case 3: /* Skip UDP header */
qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
"unimplemented - assuming UDP\n");
offset += 8;
/* Fallthrough */
case 2: /* skip the IP header */
offset += 20;
/* Fallthrough */
case 1: /* Count from after the ethertype */
offset += 14;
break;
case 0:
/* Offset from start of frame */
break;
}
rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
mask = extract32(cr0, 0, 16);
if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
matched = true;
} else {
mismatched = true;
}
}
if (matched && !mismatched) {
return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
}
}
/* We made it here, assume it's queue 0 */
return 0;
}
static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
{
hwaddr desc_addr = 0;
if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH];
}
desc_addr <<= 32;
desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
return desc_addr;
}
static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
{
return gem_get_desc_addr(s, true, q);
}
static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
{
return gem_get_desc_addr(s, false, q);
}
static void gem_get_rx_desc(CadenceGEMState *s, int q)
{
hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
/* read current descriptor */
address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
s->rx_desc[q],
sizeof(uint32_t) * gem_get_desc_len(s, true));
/* Descriptor owned by software ? */
if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
/* Handle interrupt consequences */
gem_update_int_status(s);
}
}
/*
* gem_receive:
* Fit a packet handed to us by QEMU into the receive descriptor ring.
*/
static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
CadenceGEMState *s;
unsigned rxbufsize, bytes_to_copy;
unsigned rxbuf_offset;
uint8_t rxbuf[2048];
uint8_t *rxbuf_ptr;
bool first_desc = true;
int maf;
int q = 0;
s = qemu_get_nic_opaque(nc);
/* Is this destination MAC address "for us" ? */
maf = gem_mac_address_filter(s, buf);
if (maf == GEM_RX_REJECT) {
return -1;
}
/* Discard packets with receive length error enabled ? */
if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
unsigned type_len;
/* Fish the ethertype / length field out of the RX packet */
type_len = buf[12] << 8 | buf[13];
/* It is a length field, not an ethertype */
if (type_len < 0x600) {
if (size < type_len) {
/* discard */
return -1;
}
}
}
/*
* Determine configured receive buffer offset (probably 0)
*/
rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
GEM_NWCFG_BUFF_OFST_S;
/* The configure size of each receive buffer. Determines how many
* buffers needed to hold this packet.
*/
rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
bytes_to_copy = size;
/* Hardware allows a zero value here but warns against it. To avoid QEMU
* indefinite loops we enforce a minimum value here
*/
if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
}
/* Pad to minimum length. Assume FCS field is stripped, logic
* below will increment it to the real minimum of 64 when
* not FCS stripping
*/
if (size < 60) {
size = 60;
}
/* Strip of FCS field ? (usually yes) */
if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
rxbuf_ptr = (void *)buf;
} else {
unsigned crc_val;
if (size > sizeof(rxbuf) - sizeof(crc_val)) {
size = sizeof(rxbuf) - sizeof(crc_val);
}
bytes_to_copy = size;
/* The application wants the FCS field, which QEMU does not provide.
* We must try and calculate one.
*/
memcpy(rxbuf, buf, size);
memset(rxbuf + size, 0, sizeof(rxbuf) - size);
rxbuf_ptr = rxbuf;
crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
bytes_to_copy += 4;
size += 4;
}
DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
/* Find which queue we are targeting */
q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
while (bytes_to_copy) {
hwaddr desc_addr;
/* Do nothing if receive is not enabled. */
if (!gem_can_receive(nc)) {
return -1;
}
DB_PRINT("copy %u bytes to 0x%" PRIx64 "\n",
MIN(bytes_to_copy, rxbufsize),
rx_desc_get_buffer(s, s->rx_desc[q]));
/* Copy packet data to emulated DMA buffer */
address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
rxbuf_offset,
MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
MIN(bytes_to_copy, rxbufsize));
rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
/* Update the descriptor. */
if (first_desc) {
rx_desc_set_sof(s->rx_desc[q]);
first_desc = false;
}
if (bytes_to_copy == 0) {
rx_desc_set_eof(s->rx_desc[q]);
rx_desc_set_length(s->rx_desc[q], size);
}
rx_desc_set_ownership(s->rx_desc[q]);
switch (maf) {
case GEM_RX_PROMISCUOUS_ACCEPT:
break;
case GEM_RX_BROADCAST_ACCEPT:
rx_desc_set_broadcast(s->rx_desc[q]);
break;
case GEM_RX_UNICAST_HASH_ACCEPT:
rx_desc_set_unicast_hash(s->rx_desc[q]);
break;
case GEM_RX_MULTICAST_HASH_ACCEPT:
rx_desc_set_multicast_hash(s->rx_desc[q]);
break;
case GEM_RX_REJECT:
abort();
default: /* SAR */
rx_desc_set_sar(s->rx_desc[q], maf);
}
/* Descriptor write-back. */
desc_addr = gem_get_rx_desc_addr(s, q);
address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
s->rx_desc[q],
sizeof(uint32_t) * gem_get_desc_len(s, true));
/* Next descriptor */
if (rx_desc_get_wrap(s->rx_desc[q])) {
DB_PRINT("wrapping RX descriptor list\n");
s->rx_desc_addr[q] = s->regs[GEM_RXQBASE];
} else {
DB_PRINT("incrementing RX descriptor list\n");
s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
}
gem_get_rx_desc(s, q);
}
/* Count it */
gem_receive_updatestats(s, buf, size);
s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
/* Handle interrupt consequences */
gem_update_int_status(s);
return size;
}
/*
* gem_transmit_updatestats:
* Increment transmit statistics.
*/
static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
unsigned bytes)
{
uint64_t octets;
/* Total octets (bytes) transmitted */
octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
s->regs[GEM_OCTTXHI];
octets += bytes;
s->regs[GEM_OCTTXLO] = octets >> 32;
s->regs[GEM_OCTTXHI] = octets;
/* Error-free Frames transmitted */
s->regs[GEM_TXCNT]++;
/* Error-free Broadcast Frames counter */
if (!memcmp(packet, broadcast_addr, 6)) {
s->regs[GEM_TXBCNT]++;
}
/* Error-free Multicast Frames counter */
if (packet[0] == 0x01) {
s->regs[GEM_TXMCNT]++;
}
if (bytes <= 64) {
s->regs[GEM_TX64CNT]++;
} else if (bytes <= 127) {
s->regs[GEM_TX65CNT]++;
} else if (bytes <= 255) {
s->regs[GEM_TX128CNT]++;
} else if (bytes <= 511) {
s->regs[GEM_TX256CNT]++;
} else if (bytes <= 1023) {
s->regs[GEM_TX512CNT]++;
} else if (bytes <= 1518) {
s->regs[GEM_TX1024CNT]++;
} else {
s->regs[GEM_TX1519CNT]++;
}
}
/*
* gem_transmit:
* Fish packets out of the descriptor ring and feed them to QEMU
*/
static void gem_transmit(CadenceGEMState *s)
{
uint32_t desc[DESC_MAX_NUM_WORDS];
hwaddr packet_desc_addr;
uint8_t tx_packet[2048];
uint8_t *p;
unsigned total_bytes;
int q = 0;
/* Do nothing if transmit is not enabled. */
if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
return;
}
DB_PRINT("\n");
/* The packet we will hand off to QEMU.
* Packets scattered across multiple descriptors are gathered to this
* one contiguous buffer first.
*/
p = tx_packet;
total_bytes = 0;
for (q = s->num_priority_queues - 1; q >= 0; q--) {
/* read current descriptor */
packet_desc_addr = gem_get_tx_desc_addr(s, q);
DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
address_space_read(&s->dma_as, packet_desc_addr,
MEMTXATTRS_UNSPECIFIED, desc,
sizeof(uint32_t) * gem_get_desc_len(s, false));
/* Handle all descriptors owned by hardware */
while (tx_desc_get_used(desc) == 0) {
/* Do nothing if transmit is not enabled. */
if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
return;
}
print_gem_tx_desc(desc, q);
/* The real hardware would eat this (and possibly crash).
* For QEMU let's lend a helping hand.
*/
if ((tx_desc_get_buffer(s, desc) == 0) ||
(tx_desc_get_length(desc) == 0)) {
DB_PRINT("Invalid TX descriptor @ 0x%x\n",
(unsigned)packet_desc_addr);
break;
}
if (tx_desc_get_length(desc) > sizeof(tx_packet) -
(p - tx_packet)) {
DB_PRINT("TX descriptor @ 0x%" HWADDR_PRIx \
" too large: size 0x%x space 0x%zx\n",
packet_desc_addr, tx_desc_get_length(desc),
sizeof(tx_packet) - (p - tx_packet));
break;
}
/* Gather this fragment of the packet from "dma memory" to our
* contig buffer.
*/
address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
MEMTXATTRS_UNSPECIFIED,
p, tx_desc_get_length(desc));
p += tx_desc_get_length(desc);
total_bytes += tx_desc_get_length(desc);
/* Last descriptor for this packet; hand the whole thing off */
if (tx_desc_get_last(desc)) {
uint32_t desc_first[DESC_MAX_NUM_WORDS];
hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
/* Modify the 1st descriptor of this packet to be owned by
* the processor.
*/
address_space_read(&s->dma_as, desc_addr,
MEMTXATTRS_UNSPECIFIED, desc_first,
sizeof(desc_first));
tx_desc_set_used(desc_first);
address_space_write(&s->dma_as, desc_addr,
MEMTXATTRS_UNSPECIFIED, desc_first,
sizeof(desc_first));
/* Advance the hardware current descriptor past this packet */
if (tx_desc_get_wrap(desc)) {
s->tx_desc_addr[q] = s->regs[GEM_TXQBASE];
} else {
s->tx_desc_addr[q] = packet_desc_addr +
4 * gem_get_desc_len(s, false);
}
DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
/* Update queue interrupt status */
if (s->num_priority_queues > 1) {
s->regs[GEM_INT_Q1_STATUS + q] |=
GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]);
}
/* Handle interrupt consequences */
gem_update_int_status(s);
/* Is checksum offload enabled? */
if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
net_checksum_calculate(tx_packet, total_bytes);
}
/* Update MAC statistics */
gem_transmit_updatestats(s, tx_packet, total_bytes);
/* Send the packet somewhere */
if (s->phy_loop || (s->regs[GEM_NWCTRL] &
GEM_NWCTRL_LOCALLOOP)) {
gem_receive(qemu_get_queue(s->nic), tx_packet,
total_bytes);
} else {
qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
total_bytes);
}
/* Prepare for next packet */
p = tx_packet;
total_bytes = 0;
}
/* read next descriptor */
if (tx_desc_get_wrap(desc)) {
tx_desc_set_last(desc);
packet_desc_addr = s->regs[GEM_TXQBASE];
} else {
packet_desc_addr += 4 * gem_get_desc_len(s, false);
}
DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
address_space_read(&s->dma_as, packet_desc_addr,
MEMTXATTRS_UNSPECIFIED, desc,
sizeof(uint32_t) * gem_get_desc_len(s, false));
}
if (tx_desc_get_used(desc)) {
s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
gem_update_int_status(s);
}
}
}
static void gem_phy_reset(CadenceGEMState *s)
{
memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
s->phy_regs[PHY_REG_CONTROL] = 0x1140;
s->phy_regs[PHY_REG_STATUS] = 0x7969;
s->phy_regs[PHY_REG_PHYID1] = 0x0141;
s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
s->phy_regs[PHY_REG_NEXTP] = 0x2001;
s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
s->phy_regs[PHY_REG_LED] = 0x4100;
s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
phy_update_link(s);
}
static void gem_reset(DeviceState *d)
{
int i;
CadenceGEMState *s = CADENCE_GEM(d);
const uint8_t *a;
uint32_t queues_mask = 0;
DB_PRINT("\n");
/* Set post reset register values */
memset(&s->regs[0], 0, sizeof(s->regs));
s->regs[GEM_NWCFG] = 0x00080000;
s->regs[GEM_NWSTATUS] = 0x00000006;
s->regs[GEM_DMACFG] = 0x00020784;
s->regs[GEM_IMR] = 0x07ffffff;
s->regs[GEM_TXPAUSE] = 0x0000ffff;
s->regs[GEM_TXPARTIALSF] = 0x000003ff;
s->regs[GEM_RXPARTIALSF] = 0x000003ff;
s->regs[GEM_MODID] = s->revision;
s->regs[GEM_DESCONF] = 0x02500111;
s->regs[GEM_DESCONF2] = 0x2ab13fff;
s->regs[GEM_DESCONF5] = 0x002f2045;
s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK;
if (s->num_priority_queues > 1) {
queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
s->regs[GEM_DESCONF6] |= queues_mask;
}
/* Set MAC address */
a = &s->conf.macaddr.a[0];
s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
for (i = 0; i < 4; i++) {
s->sar_active[i] = false;
}
gem_phy_reset(s);
gem_update_int_status(s);
}
static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
{
DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
return s->phy_regs[reg_num];
}
static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
{
DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
switch (reg_num) {
case PHY_REG_CONTROL:
if (val & PHY_REG_CONTROL_RST) {
/* Phy reset */
gem_phy_reset(s);
val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
s->phy_loop = 0;
}
if (val & PHY_REG_CONTROL_ANEG) {
/* Complete autonegotiation immediately */
val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
}
if (val & PHY_REG_CONTROL_LOOP) {
DB_PRINT("PHY placed in loopback\n");
s->phy_loop = 1;
} else {
s->phy_loop = 0;
}
break;
}
s->phy_regs[reg_num] = val;
}
/*
* gem_read32:
* Read a GEM register.
*/
static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
{
CadenceGEMState *s;
uint32_t retval;
s = (CadenceGEMState *)opaque;
offset >>= 2;
retval = s->regs[offset];
DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
switch (offset) {
case GEM_ISR:
DB_PRINT("lowering irqs on ISR read\n");
/* The interrupts get updated at the end of the function. */
break;
case GEM_PHYMNTNC:
if (retval & GEM_PHYMNTNC_OP_R) {
uint32_t phy_addr, reg_num;
phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
retval &= 0xFFFF0000;
retval |= gem_phy_read(s, reg_num);
} else {
retval |= 0xFFFF; /* No device at this address */
}
}
break;
}
/* Squash read to clear bits */
s->regs[offset] &= ~(s->regs_rtc[offset]);
/* Do not provide write only bits */
retval &= ~(s->regs_wo[offset]);
DB_PRINT("0x%08x\n", retval);
gem_update_int_status(s);
return retval;
}
/*
* gem_write32:
* Write a GEM register.
*/
static void gem_write(void *opaque, hwaddr offset, uint64_t val,
unsigned size)
{
CadenceGEMState *s = (CadenceGEMState *)opaque;
uint32_t readonly;
int i;
DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
offset >>= 2;
/* Squash bits which are read only in write value */
val &= ~(s->regs_ro[offset]);
/* Preserve (only) bits which are read only and wtc in register */
readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
/* Copy register write to backing store */
s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
/* do w1c */
s->regs[offset] &= ~(s->regs_w1c[offset] & val);
/* Handle register write side effects */
switch (offset) {
case GEM_NWCTRL:
if (val & GEM_NWCTRL_RXENA) {
for (i = 0; i < s->num_priority_queues; ++i) {
gem_get_rx_desc(s, i);
}
}
if (val & GEM_NWCTRL_TXSTART) {
gem_transmit(s);
}
if (!(val & GEM_NWCTRL_TXENA)) {
/* Reset to start of Q when transmit disabled. */
for (i = 0; i < s->num_priority_queues; i++) {
s->tx_desc_addr[i] = s->regs[GEM_TXQBASE];
}
}
if (gem_can_receive(qemu_get_queue(s->nic))) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
case GEM_TXSTATUS:
gem_update_int_status(s);
break;
case GEM_RXQBASE:
s->rx_desc_addr[0] = val;
break;
case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
break;
case GEM_TXQBASE:
s->tx_desc_addr[0] = val;
break;
case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
break;
case GEM_RXSTATUS:
gem_update_int_status(s);
break;
case GEM_IER:
s->regs[GEM_IMR] &= ~val;
gem_update_int_status(s);
break;
case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
gem_update_int_status(s);
break;
case GEM_IDR:
s->regs[GEM_IMR] |= val;
gem_update_int_status(s);
break;
case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
gem_update_int_status(s);
break;
case GEM_SPADDR1LO:
case GEM_SPADDR2LO:
case GEM_SPADDR3LO:
case GEM_SPADDR4LO:
s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
break;
case GEM_SPADDR1HI:
case GEM_SPADDR2HI:
case GEM_SPADDR3HI:
case GEM_SPADDR4HI:
s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
break;
case GEM_PHYMNTNC:
if (val & GEM_PHYMNTNC_OP_W) {
uint32_t phy_addr, reg_num;
phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
gem_phy_write(s, reg_num, val);
}
}
break;
}
DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
}
static const MemoryRegionOps gem_ops = {
.read = gem_read,
.write = gem_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void gem_set_link(NetClientState *nc)
{
CadenceGEMState *s = qemu_get_nic_opaque(nc);
DB_PRINT("\n");
phy_update_link(s);
gem_update_int_status(s);
}
static NetClientInfo net_gem_info = {
qapi: Change Netdev into a flat union This is a mostly-mechanical conversion that creates a new flat union 'Netdev' QAPI type that covers all the branches of the former 'NetClientOptions' simple union, where the branches are now listed in a new 'NetClientDriver' enum rather than generated from the simple union. The existence of a flat union has no change to the command line syntax accepted for new code, and will make it possible for a future patch to switch the QMP command to parse a boxed union for no change to valid QMP; but it does have some ripple effect on the C code when dealing with the new types. While making the conversion, note that the 'NetLegacy' type remains unchanged: it applies only to legacy command line options, and will not be ported to QMP, so it should remain a wrapper around a simple union; to avoid confusion, the type named 'NetClientOptions' is now gone, and we introduce 'NetLegacyOptions' in its place. Then, in the C code, we convert from NetLegacy to Netdev as soon as possible, so that the bulk of the net stack only has to deal with one QAPI type, not two. Note that since the old legacy code always rejected 'hubport', we can just omit that branch from the new 'NetLegacyOptions' simple union. Based on an idea originally by Zoltán Kővágó <DirtY.iCE.hu@gmail.com>: Message-Id: <01a527fbf1a5de880091f98cf011616a78adeeee.1441627176.git.DirtY.iCE.hu@gmail.com> although the sed script in that patch no longer applies due to other changes in the tree since then, and I also did some manual cleanups (such as fixing whitespace to keep checkpatch happy). Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1468468228-27827-13-git-send-email-eblake@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> [Fixup from Eric squashed in] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-07-14 05:50:23 +02:00
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = gem_can_receive,
.receive = gem_receive,
.link_status_changed = gem_set_link,
};
static void gem_realize(DeviceState *dev, Error **errp)
{
CadenceGEMState *s = CADENCE_GEM(dev);
int i;
address_space_init(&s->dma_as,
s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
if (s->num_priority_queues == 0 ||
s->num_priority_queues > MAX_PRIORITY_QUEUES) {
error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
s->num_priority_queues);
return;
} else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
s->num_type1_screeners);
return;
} else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
s->num_type2_screeners);
return;
}
for (i = 0; i < s->num_priority_queues; ++i) {
sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
}
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_gem_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->id, s);
}
static void gem_init(Object *obj)
{
CadenceGEMState *s = CADENCE_GEM(obj);
DeviceState *dev = DEVICE(obj);
DB_PRINT("\n");
gem_init_register_masks(s);
memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
"enet", sizeof(s->regs));
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
(Object **)&s->dma_mr,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG,
&error_abort);
}
static const VMStateDescription vmstate_cadence_gem = {
.name = "cadence_gem",
.version_id = 4,
.minimum_version_id = 4,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
VMSTATE_UINT8(phy_loop, CadenceGEMState),
VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
MAX_PRIORITY_QUEUES),
VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
MAX_PRIORITY_QUEUES),
VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
VMSTATE_END_OF_LIST(),
}
};
static Property gem_properties[] = {
DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
GEM_MODID_VALUE),
DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
num_priority_queues, 1),
DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
num_type1_screeners, 4),
DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
num_type2_screeners, 4),
DEFINE_PROP_END_OF_LIST(),
};
static void gem_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = gem_realize;
device_class_set_props(dc, gem_properties);
dc->vmsd = &vmstate_cadence_gem;
dc->reset = gem_reset;
}
static const TypeInfo gem_info = {
.name = TYPE_CADENCE_GEM,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CadenceGEMState),
.instance_init = gem_init,
.class_init = gem_class_init,
};
static void gem_register_types(void)
{
type_register_static(&gem_info);
}
type_init(gem_register_types)