qemu-e2k/hw/misc/imx6_src.c

312 lines
8.8 KiB
C
Raw Normal View History

/*
* IMX6 System Reset Controller
*
* Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "hw/misc/imx6_src.h"
#include "migration/vmstate.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "arm-powerctl.h"
#include "hw/core/cpu.h"
#ifndef DEBUG_IMX6_SRC
#define DEBUG_IMX6_SRC 0
#endif
#define DPRINTF(fmt, args...) \
do { \
if (DEBUG_IMX6_SRC) { \
fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
__func__, ##args); \
} \
} while (0)
static const char *imx6_src_reg_name(uint32_t reg)
{
static char unknown[20];
switch (reg) {
case SRC_SCR:
return "SRC_SCR";
case SRC_SBMR1:
return "SRC_SBMR1";
case SRC_SRSR:
return "SRC_SRSR";
case SRC_SISR:
return "SRC_SISR";
case SRC_SIMR:
return "SRC_SIMR";
case SRC_SBMR2:
return "SRC_SBMR2";
case SRC_GPR1:
return "SRC_GPR1";
case SRC_GPR2:
return "SRC_GPR2";
case SRC_GPR3:
return "SRC_GPR3";
case SRC_GPR4:
return "SRC_GPR4";
case SRC_GPR5:
return "SRC_GPR5";
case SRC_GPR6:
return "SRC_GPR6";
case SRC_GPR7:
return "SRC_GPR7";
case SRC_GPR8:
return "SRC_GPR8";
case SRC_GPR9:
return "SRC_GPR9";
case SRC_GPR10:
return "SRC_GPR10";
default:
sprintf(unknown, "%u ?", reg);
return unknown;
}
}
static const VMStateDescription vmstate_imx6_src = {
.name = TYPE_IMX6_SRC,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
VMSTATE_END_OF_LIST()
},
};
static void imx6_src_reset(DeviceState *dev)
{
IMX6SRCState *s = IMX6_SRC(dev);
DPRINTF("\n");
memset(s->regs, 0, sizeof(s->regs));
/* Set reset values */
s->regs[SRC_SCR] = 0x521;
s->regs[SRC_SRSR] = 0x1;
s->regs[SRC_SIMR] = 0x1F;
}
static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t value = 0;
IMX6SRCState *s = (IMX6SRCState *)opaque;
uint32_t index = offset >> 2;
if (index < SRC_MAX) {
value = s->regs[index];
} else {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
}
DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
return value;
}
/* The reset is asynchronous so we need to defer clearing the reset
* bit until the work is completed.
*/
struct SRCSCRResetInfo {
IMX6SRCState *s;
int reset_bit;
};
static void imx6_clear_reset_bit(CPUState *cpu, run_on_cpu_data data)
{
struct SRCSCRResetInfo *ri = data.host_ptr;
IMX6SRCState *s = ri->s;
assert(qemu_mutex_iothread_locked());
s->regs[SRC_SCR] = deposit32(s->regs[SRC_SCR], ri->reset_bit, 1, 0);
DPRINTF("reg[%s] <= 0x%" PRIx32 "\n",
imx6_src_reg_name(SRC_SCR), s->regs[SRC_SCR]);
g_free(ri);
}
static void imx6_defer_clear_reset_bit(int cpuid,
IMX6SRCState *s,
unsigned long reset_shift)
{
struct SRCSCRResetInfo *ri;
CPUState *cpu = arm_get_cpu_by_id(cpuid);
if (!cpu) {
return;
}
ri = g_new(struct SRCSCRResetInfo, 1);
ri->s = s;
ri->reset_bit = reset_shift;
async_run_on_cpu(cpu, imx6_clear_reset_bit, RUN_ON_CPU_HOST_PTR(ri));
}
static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
IMX6SRCState *s = (IMX6SRCState *)opaque;
uint32_t index = offset >> 2;
unsigned long change_mask;
unsigned long current_value = value;
if (index >= SRC_MAX) {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
return;
}
DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
(uint32_t)current_value);
change_mask = s->regs[index] ^ (uint32_t)current_value;
switch (index) {
case SRC_SCR:
/*
* On real hardware when the system reset controller starts a
* secondary CPU it runs through some boot ROM code which reads
* the SRC_GPRX registers controlling the start address and branches
* to it.
* Here we are taking a short cut and branching directly to the
* requested address (we don't want to run the boot ROM code inside
* QEMU)
*/
if (EXTRACT(change_mask, CORE3_ENABLE)) {
if (EXTRACT(current_value, CORE3_ENABLE)) {
/* CORE 3 is brought up */
arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
3, false);
} else {
/* CORE 3 is shut down */
arm_set_cpu_off(3);
}
/* We clear the reset bits as the processor changed state */
imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
clear_bit(CORE3_RST_SHIFT, &change_mask);
}
if (EXTRACT(change_mask, CORE2_ENABLE)) {
if (EXTRACT(current_value, CORE2_ENABLE)) {
/* CORE 2 is brought up */
arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
3, false);
} else {
/* CORE 2 is shut down */
arm_set_cpu_off(2);
}
/* We clear the reset bits as the processor changed state */
imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
clear_bit(CORE2_RST_SHIFT, &change_mask);
}
if (EXTRACT(change_mask, CORE1_ENABLE)) {
if (EXTRACT(current_value, CORE1_ENABLE)) {
/* CORE 1 is brought up */
arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
3, false);
} else {
/* CORE 1 is shut down */
arm_set_cpu_off(1);
}
/* We clear the reset bits as the processor changed state */
imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
clear_bit(CORE1_RST_SHIFT, &change_mask);
}
if (EXTRACT(change_mask, CORE0_RST)) {
arm_reset_cpu(0);
imx6_defer_clear_reset_bit(0, s, CORE0_RST_SHIFT);
}
if (EXTRACT(change_mask, CORE1_RST)) {
arm_reset_cpu(1);
imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
}
if (EXTRACT(change_mask, CORE2_RST)) {
arm_reset_cpu(2);
imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
}
if (EXTRACT(change_mask, CORE3_RST)) {
arm_reset_cpu(3);
imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
}
if (EXTRACT(change_mask, SW_IPU2_RST)) {
/* We pretend the IPU2 is reset */
clear_bit(SW_IPU2_RST_SHIFT, &current_value);
}
if (EXTRACT(change_mask, SW_IPU1_RST)) {
/* We pretend the IPU1 is reset */
clear_bit(SW_IPU1_RST_SHIFT, &current_value);
}
s->regs[index] = current_value;
break;
default:
s->regs[index] = current_value;
break;
}
}
static const struct MemoryRegionOps imx6_src_ops = {
.read = imx6_src_read,
.write = imx6_src_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
/*
* Our device would not work correctly if the guest was doing
* unaligned access. This might not be a limitation on the real
* device but in practice there is no reason for a guest to access
* this device unaligned.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void imx6_src_realize(DeviceState *dev, Error **errp)
{
IMX6SRCState *s = IMX6_SRC(dev);
memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
TYPE_IMX6_SRC, 0x1000);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
}
static void imx6_src_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = imx6_src_realize;
dc->reset = imx6_src_reset;
dc->vmsd = &vmstate_imx6_src;
dc->desc = "i.MX6 System Reset Controller";
}
static const TypeInfo imx6_src_info = {
.name = TYPE_IMX6_SRC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMX6SRCState),
.class_init = imx6_src_class_init,
};
static void imx6_src_register_types(void)
{
type_register_static(&imx6_src_info);
}
type_init(imx6_src_register_types)