target-arm queue:

* Add (experimental) support for FEAT_RME
  * host-utils: Avoid using __builtin_subcll on buggy versions of Apple Clang
  * target/arm: Restructure has_vfp_d32 test
  * hw/arm/sbsa-ref: add ITS support in SBSA GIC
  * target/arm: Fix sve predicate store, 8 <= VQ <= 15
  * pc-bios/keymaps: Use the official xkb name for Arabic layout, not the legacy synonym
 -----BEGIN PGP SIGNATURE-----
 
 iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAmSVkGcZHHBldGVyLm1h
 eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3tUZEACGBkfRmEa3CRVdOzRWeJS8
 vcvcHEVDUVBTMKvpBah5YC5mK8fx040fymoSiYtxiWyf4l7U2Zr/kYouIbqos5Wy
 KW6It3Sq2IXHdl0n34D1GAWXujcJp/RP+jt+SZy1cWv9aPOy0xOpofMusytkLLeT
 4+8il6t8eGDVxqBam5jwTi2vskosP4IsDmuqZk4/o3Yg5Gg2NGFaS+SMf/V5pJSv
 M/aH09sYtsTMoAIihpGbQsQeUtUjRXijr/WOKKwa4LeDd/abA7ZTiIGkfkzCOxOa
 82LmoSFarIkfe5xgtfF3DArkN+ajvrJHLbsB0PwuYFqjSUAfcB7gs4r+I7IdvjN+
 hdY2oTxa8nDerPDdiW61i4xg6qtNRc87l/y2qX6xMrqBEQ743V/e/4cNsGLsLxou
 R1iHq2R8LZ00051pZeXYrOUW3Bu6GK/b30nDFgTb4uLStA/OtlXKWspeGj4JIgzi
 04xwndUMbq6eZp89BDHc52AEF9SreCz8/YVu32W1JWvRgGWV1uv6E5rYQMXsrf/3
 CVNVBOyNeDuGcKNaXGFd2bvpebyEMbtM29kpYP8Xl6YFDdopC2J99NZS+829c+/w
 Zl6gVTEpWOOIYif/z2VgwP74MvMDxSRsuyfxNei+eAnkoIDXpMdRvQZDRqbvooU6
 nIFnyoEgiDX051C9UZa+mg==
 =Q2Ei
 -----END PGP SIGNATURE-----

Merge tag 'pull-target-arm-20230623' of https://git.linaro.org/people/pmaydell/qemu-arm into staging

target-arm queue:
 * Add (experimental) support for FEAT_RME
 * host-utils: Avoid using __builtin_subcll on buggy versions of Apple Clang
 * target/arm: Restructure has_vfp_d32 test
 * hw/arm/sbsa-ref: add ITS support in SBSA GIC
 * target/arm: Fix sve predicate store, 8 <= VQ <= 15
 * pc-bios/keymaps: Use the official xkb name for Arabic layout, not the legacy synonym

# -----BEGIN PGP SIGNATURE-----
#
# iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAmSVkGcZHHBldGVyLm1h
# eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3tUZEACGBkfRmEa3CRVdOzRWeJS8
# vcvcHEVDUVBTMKvpBah5YC5mK8fx040fymoSiYtxiWyf4l7U2Zr/kYouIbqos5Wy
# KW6It3Sq2IXHdl0n34D1GAWXujcJp/RP+jt+SZy1cWv9aPOy0xOpofMusytkLLeT
# 4+8il6t8eGDVxqBam5jwTi2vskosP4IsDmuqZk4/o3Yg5Gg2NGFaS+SMf/V5pJSv
# M/aH09sYtsTMoAIihpGbQsQeUtUjRXijr/WOKKwa4LeDd/abA7ZTiIGkfkzCOxOa
# 82LmoSFarIkfe5xgtfF3DArkN+ajvrJHLbsB0PwuYFqjSUAfcB7gs4r+I7IdvjN+
# hdY2oTxa8nDerPDdiW61i4xg6qtNRc87l/y2qX6xMrqBEQ743V/e/4cNsGLsLxou
# R1iHq2R8LZ00051pZeXYrOUW3Bu6GK/b30nDFgTb4uLStA/OtlXKWspeGj4JIgzi
# 04xwndUMbq6eZp89BDHc52AEF9SreCz8/YVu32W1JWvRgGWV1uv6E5rYQMXsrf/3
# CVNVBOyNeDuGcKNaXGFd2bvpebyEMbtM29kpYP8Xl6YFDdopC2J99NZS+829c+/w
# Zl6gVTEpWOOIYif/z2VgwP74MvMDxSRsuyfxNei+eAnkoIDXpMdRvQZDRqbvooU6
# nIFnyoEgiDX051C9UZa+mg==
# =Q2Ei
# -----END PGP SIGNATURE-----
# gpg: Signature made Fri 23 Jun 2023 02:30:31 PM CEST
# gpg:                using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE
# gpg:                issuer "peter.maydell@linaro.org"
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [full]
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>" [full]
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [full]
# gpg:                 aka "Peter Maydell <peter@archaic.org.uk>" [unknown]

* tag 'pull-target-arm-20230623' of https://git.linaro.org/people/pmaydell/qemu-arm: (26 commits)
  pc-bios/keymaps: Use the official xkb name for Arabic layout, not the legacy synonym
  target/arm: Fix sve predicate store, 8 <= VQ <= 15
  hw/arm/sbsa-ref: add ITS support in SBSA GIC
  target/arm: Restructure has_vfp_d32 test
  host-utils: Avoid using __builtin_subcll on buggy versions of Apple Clang
  docs/system/arm: Document FEAT_RME
  target/arm: Add cpu properties for enabling FEAT_RME
  target/arm: Implement the granule protection check
  target/arm: Implement GPC exceptions
  target/arm: Add GPC syndrome
  target/arm: Use get_phys_addr_with_struct for stage2
  target/arm: Move s1_is_el0 into S1Translate
  target/arm: Use get_phys_addr_with_struct in S1_ptw_translate
  target/arm: Handle no-execute for Realm and Root regimes
  target/arm: Handle Block and Page bits for security space
  target/arm: NSTable is RES0 for the RME EL3 regime
  target/arm: Pipe ARMSecuritySpace through ptw.c
  target/arm: Remove __attribute__((nonnull)) from ptw.c
  target/arm: Introduce ARMMMUIdx_Phys_{Realm,Root}
  target/arm: Adjust the order of Phys and Stage2 ARMMMUIdx
  ...

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
Richard Henderson 2023-06-25 08:58:13 +02:00
commit fa7dd27bc3
17 changed files with 1034 additions and 166 deletions

View File

@ -435,3 +435,26 @@ As with ``sve-default-vector-length``, if the default length is larger
than the maximum vector length enabled, the actual vector length will
be reduced. If this property is set to ``-1`` then the default vector
length is set to the maximum possible length.
RME CPU Properties
==================
The status of RME support with QEMU is experimental. At this time we
only support RME within the CPU proper, not within the SMMU or GIC.
The feature is enabled by the CPU property ``x-rme``, with the ``x-``
prefix present as a reminder of the experimental status, and defaults off.
The method for enabling RME will change in some future QEMU release
without notice or backward compatibility.
RME Level 0 GPT Size Property
-----------------------------
To aid firmware developers in testing different possible CPU
configurations, ``x-l0gptsz=S`` may be used to specify the value
to encode into ``GPCCR_EL3.L0GPTSZ``, a read-only field that
specifies the size of the Level 0 Granule Protection Table.
Legal values for ``S`` are 30, 34, 36, and 39; the default is 30.
As with ``x-rme``, the ``x-l0gptsz`` property may be renamed or
removed in some future QEMU release.

View File

@ -66,6 +66,7 @@ the following architecture extensions:
- FEAT_RAS (Reliability, availability, and serviceability)
- FEAT_RASv1p1 (RAS Extension v1.1)
- FEAT_RDM (Advanced SIMD rounding double multiply accumulate instructions)
- FEAT_RME (Realm Management Extension) (NB: support status in QEMU is experimental)
- FEAT_RNG (Random number generator)
- FEAT_S2FWB (Stage 2 forced Write-Back)
- FEAT_SB (Speculation Barrier)

View File

@ -46,6 +46,9 @@ to be a complete compliant DT. It currently reports:
- platform version
- GIC addresses
Platform version
''''''''''''''''
The platform version is only for informing platform firmware about
what kind of ``sbsa-ref`` board it is running on. It is neither
a QEMU versioned machine type nor a reflection of the level of the
@ -54,3 +57,14 @@ SBSA/SystemReady SR support provided.
The ``machine-version-major`` value is updated when changes breaking
fw compatibility are introduced. The ``machine-version-minor`` value
is updated when features are added that don't break fw compatibility.
Platform version changes:
0.0
Devicetree holds information about CPUs, memory and platform version.
0.1
GIC information is present in devicetree.
0.2
GIC ITS information is present in devicetree.

View File

@ -65,6 +65,7 @@ enum {
SBSA_CPUPERIPHS,
SBSA_GIC_DIST,
SBSA_GIC_REDIST,
SBSA_GIC_ITS,
SBSA_SECURE_EC,
SBSA_GWDT_WS0,
SBSA_GWDT_REFRESH,
@ -108,6 +109,7 @@ static const MemMapEntry sbsa_ref_memmap[] = {
[SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
[SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
[SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
[SBSA_GIC_ITS] = { 0x44081000, 0x00020000 },
[SBSA_SECURE_EC] = { 0x50000000, 0x00001000 },
[SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 },
[SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 },
@ -181,8 +183,15 @@ static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
nodename = g_strdup_printf("/intc/its");
qemu_fdt_add_subnode(sms->fdt, nodename);
qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
g_free(nodename);
}
/*
* Firmware on this machine only uses ACPI table to load OS, these limited
* device tree nodes are just to let firmware know the info which varies from
@ -219,7 +228,7 @@ static void create_fdt(SBSAMachineState *sms)
* fw compatibility.
*/
qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 1);
qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 2);
if (ms->numa_state->have_numa_distance) {
int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
@ -409,7 +418,20 @@ static void create_secure_ram(SBSAMachineState *sms,
memory_region_add_subregion(secure_sysmem, base, secram);
}
static void create_gic(SBSAMachineState *sms)
static void create_its(SBSAMachineState *sms)
{
const char *itsclass = its_class_name();
DeviceState *dev;
dev = qdev_new(itsclass);
object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
&error_abort);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
}
static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
{
unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
SysBusDevice *gicbusdev;
@ -436,6 +458,10 @@ static void create_gic(SBSAMachineState *sms)
qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
object_property_set_link(OBJECT(sms->gic), "sysmem",
OBJECT(mem), &error_fatal);
qdev_prop_set_bit(sms->gic, "has-lpi", true);
gicbusdev = SYS_BUS_DEVICE(sms->gic);
sysbus_realize_and_unref(gicbusdev, &error_fatal);
sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
@ -482,6 +508,7 @@ static void create_gic(SBSAMachineState *sms)
sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
}
create_its(sms);
}
static void create_uart(const SBSAMachineState *sms, int uart,
@ -788,7 +815,7 @@ static void sbsa_ref_init(MachineState *machine)
create_secure_ram(sms, secure_sysmem);
create_gic(sms);
create_gic(sms, sysmem);
create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));

View File

@ -29,10 +29,17 @@ typedef struct MemTxAttrs {
* "didn't specify" if necessary.
*/
unsigned int unspecified:1;
/* ARM/AMBA: TrustZone Secure access
/*
* ARM/AMBA: TrustZone Secure access
* x86: System Management Mode access
*/
unsigned int secure:1;
/*
* ARM: ArmSecuritySpace. This partially overlaps secure, but it is
* easier to have both fields to assist code that does not understand
* ARMv9 RME, or no specific knowledge of ARM at all (e.g. pflash).
*/
unsigned int space:2;
/* Memory access is usermode (unprivileged) */
unsigned int user:1;
/*

View File

@ -184,4 +184,17 @@
#define QEMU_DISABLE_CFI
#endif
/*
* Apple clang version 14 has a bug in its __builtin_subcll(); define
* BUILTIN_SUBCLL_BROKEN for the offending versions so we can avoid it.
* When a version of Apple clang which has this bug fixed is released
* we can add an upper bound to this check.
* See https://gitlab.com/qemu-project/qemu/-/issues/1631
* and https://gitlab.com/qemu-project/qemu/-/issues/1659 for details.
* The bug never made it into any upstream LLVM releases, only Apple ones.
*/
#if defined(__apple_build_version__) && __clang_major__ >= 14
#define BUILTIN_SUBCLL_BROKEN
#endif
#endif /* COMPILER_H */

View File

@ -649,7 +649,7 @@ static inline uint64_t uadd64_carry(uint64_t x, uint64_t y, bool *pcarry)
*/
static inline uint64_t usub64_borrow(uint64_t x, uint64_t y, bool *pborrow)
{
#if __has_builtin(__builtin_subcll)
#if __has_builtin(__builtin_subcll) && !defined(BUILTIN_SUBCLL_BROKEN)
unsigned long long b = *pborrow;
x = __builtin_subcll(x, y, b, &b);
*pborrow = b & 1;

View File

@ -1,5 +1,5 @@
keymaps = {
'ar': '-l ar',
'ar': '-l ara',
'bepo': '-l fr -v dvorak',
'cz': '-l cz',
'da': '-l dk',

View File

@ -1402,25 +1402,27 @@ void arm_cpu_post_init(Object *obj)
* KVM does not currently allow us to lie to the guest about its
* ID/feature registers, so the guest always sees what the host has.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
? cpu_isar_feature(aa64_fp_simd, cpu)
: cpu_isar_feature(aa32_vfp, cpu)) {
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
if (cpu_isar_feature(aa64_fp_simd, cpu)) {
cpu->has_vfp = true;
if (!kvm_enabled()) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
}
}
if (cpu->has_vfp && cpu_isar_feature(aa32_simd_r32, cpu)) {
cpu->has_vfp_d32 = true;
if (!kvm_enabled()) {
if (tcg_enabled() || qtest_enabled()) {
qdev_property_add_static(DEVICE(obj),
&arm_cpu_has_vfp_property);
}
}
} else if (cpu_isar_feature(aa32_vfp, cpu)) {
cpu->has_vfp = true;
if (cpu_isar_feature(aa32_simd_r32, cpu)) {
cpu->has_vfp_d32 = true;
/*
* The permitted values of the SIMDReg bits [3:0] on
* Armv8-A are either 0b0000 and 0b0010. On such CPUs,
* make sure that has_vfp_d32 can not be set to false.
*/
if (!(arm_feature(&cpu->env, ARM_FEATURE_V8) &&
!arm_feature(&cpu->env, ARM_FEATURE_M))) {
if ((tcg_enabled() || qtest_enabled())
&& !(arm_feature(&cpu->env, ARM_FEATURE_V8)
&& !arm_feature(&cpu->env, ARM_FEATURE_M))) {
qdev_property_add_static(DEVICE(obj),
&arm_cpu_has_vfp_d32_property);
}
@ -1989,6 +1991,10 @@ static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
ID_AA64PFR0, EL3, 0);
/* Disable the realm management extension, which requires EL3. */
cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
ID_AA64PFR0, RME, 0);
}
if (!cpu->has_el2) {

View File

@ -57,6 +57,7 @@
#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
#define EXCP_VSERR 24
#define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
#define ARMV7M_EXCP_RESET 1
@ -541,6 +542,11 @@ typedef struct CPUArchState {
uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
uint64_t fgt_exec[1]; /* HFGITR */
/* RME registers */
uint64_t gpccr_el3;
uint64_t gptbr_el3;
uint64_t mfar_el3;
} cp15;
struct {
@ -1055,6 +1061,7 @@ struct ArchCPU {
uint64_t reset_cbar;
uint32_t reset_auxcr;
bool reset_hivecs;
uint8_t reset_l0gptsz;
/*
* Intermediate values used during property parsing.
@ -1655,7 +1662,7 @@ static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
#define HCR_TERR (1ULL << 36)
#define HCR_TEA (1ULL << 37)
#define HCR_MIOCNCE (1ULL << 38)
/* RES0 bit 39 */
#define HCR_TME (1ULL << 39)
#define HCR_APK (1ULL << 40)
#define HCR_API (1ULL << 41)
#define HCR_NV (1ULL << 42)
@ -1664,7 +1671,7 @@ static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
#define HCR_NV2 (1ULL << 45)
#define HCR_FWB (1ULL << 46)
#define HCR_FIEN (1ULL << 47)
/* RES0 bit 48 */
#define HCR_GPF (1ULL << 48)
#define HCR_TID4 (1ULL << 49)
#define HCR_TICAB (1ULL << 50)
#define HCR_AMVOFFEN (1ULL << 51)
@ -1729,6 +1736,7 @@ static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
#define SCR_TRNDR (1ULL << 40)
#define SCR_ENTP2 (1ULL << 41)
#define SCR_GPF (1ULL << 48)
#define SCR_NSE (1ULL << 62)
#define HSTR_TTEE (1 << 16)
#define HSTR_TJDBX (1 << 17)
@ -2195,6 +2203,7 @@ FIELD(ID_AA64PFR0, SEL2, 36, 4)
FIELD(ID_AA64PFR0, MPAM, 40, 4)
FIELD(ID_AA64PFR0, AMU, 44, 4)
FIELD(ID_AA64PFR0, DIT, 48, 4)
FIELD(ID_AA64PFR0, RME, 52, 4)
FIELD(ID_AA64PFR0, CSV2, 56, 4)
FIELD(ID_AA64PFR0, CSV3, 60, 4)
@ -2339,6 +2348,19 @@ FIELD(MVFR1, SIMDFMAC, 28, 4)
FIELD(MVFR2, SIMDMISC, 0, 4)
FIELD(MVFR2, FPMISC, 4, 4)
FIELD(GPCCR, PPS, 0, 3)
FIELD(GPCCR, IRGN, 8, 2)
FIELD(GPCCR, ORGN, 10, 2)
FIELD(GPCCR, SH, 12, 2)
FIELD(GPCCR, PGS, 14, 2)
FIELD(GPCCR, GPC, 16, 1)
FIELD(GPCCR, GPCP, 17, 1)
FIELD(GPCCR, L0GPTSZ, 20, 4)
FIELD(MFAR, FPA, 12, 40)
FIELD(MFAR, NSE, 62, 1)
FIELD(MFAR, NS, 63, 1)
QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
/* If adding a feature bit which corresponds to a Linux ELF
@ -2393,25 +2415,53 @@ static inline int arm_feature(CPUARMState *env, int feature)
void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
#if !defined(CONFIG_USER_ONLY)
/*
* ARM v9 security states.
* The ordering of the enumeration corresponds to the low 2 bits
* of the GPI value, and (except for Root) the concat of NSE:NS.
*/
typedef enum ARMSecuritySpace {
ARMSS_Secure = 0,
ARMSS_NonSecure = 1,
ARMSS_Root = 2,
ARMSS_Realm = 3,
} ARMSecuritySpace;
/* Return true if @space is secure, in the pre-v9 sense. */
static inline bool arm_space_is_secure(ARMSecuritySpace space)
{
return space == ARMSS_Secure || space == ARMSS_Root;
}
/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
static inline ARMSecuritySpace arm_secure_to_space(bool secure)
{
return secure ? ARMSS_Secure : ARMSS_NonSecure;
}
#if !defined(CONFIG_USER_ONLY)
/**
* arm_security_space_below_el3:
* @env: cpu context
*
* Return the security space of exception levels below EL3, following
* an exception return to those levels. Unlike arm_security_space,
* this doesn't care about the current EL.
*/
ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
/**
* arm_is_secure_below_el3:
* @env: cpu context
*
* Return true if exception levels below EL3 are in secure state,
* or would be following an exception return to that level.
* Unlike arm_is_secure() (which is always a question about the
* _current_ state of the CPU) this doesn't care about the current
* EL or mode.
* or would be following an exception return to those levels.
*/
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
assert(!arm_feature(env, ARM_FEATURE_M));
if (arm_feature(env, ARM_FEATURE_EL3)) {
return !(env->cp15.scr_el3 & SCR_NS);
} else {
/* If EL3 is not supported then the secure state is implementation
* defined, in which case QEMU defaults to non-secure.
*/
return false;
}
ARMSecuritySpace ss = arm_security_space_below_el3(env);
return ss == ARMSS_Secure;
}
/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
@ -2431,16 +2481,23 @@ static inline bool arm_is_el3_or_mon(CPUARMState *env)
return false;
}
/* Return true if the processor is in secure state */
/**
* arm_security_space:
* @env: cpu context
*
* Return the current security space of the cpu.
*/
ARMSecuritySpace arm_security_space(CPUARMState *env);
/**
* arm_is_secure:
* @env: cpu context
*
* Return true if the processor is in secure state.
*/
static inline bool arm_is_secure(CPUARMState *env)
{
if (arm_feature(env, ARM_FEATURE_M)) {
return env->v7m.secure;
}
if (arm_is_el3_or_mon(env)) {
return true;
}
return arm_is_secure_below_el3(env);
return arm_space_is_secure(arm_security_space(env));
}
/*
@ -2459,11 +2516,21 @@ static inline bool arm_is_el2_enabled(CPUARMState *env)
}
#else
static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
{
return ARMSS_NonSecure;
}
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
return false;
}
static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
{
return ARMSS_NonSecure;
}
static inline bool arm_is_secure(CPUARMState *env)
{
return false;
@ -2794,18 +2861,20 @@ typedef enum ARMMMUIdx {
ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
/* TLBs with 1-1 mapping to the physical address spaces. */
ARMMMUIdx_Phys_NS = 8 | ARM_MMU_IDX_A,
ARMMMUIdx_Phys_S = 9 | ARM_MMU_IDX_A,
/*
* Used for second stage of an S12 page table walk, or for descriptor
* loads during first stage of an S1 page table walk. Note that both
* are in use simultaneously for SecureEL2: the security state for
* the S2 ptw is selected by the NS bit from the S1 ptw.
*/
ARMMMUIdx_Stage2 = 10 | ARM_MMU_IDX_A,
ARMMMUIdx_Stage2_S = 11 | ARM_MMU_IDX_A,
ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
/* TLBs with 1-1 mapping to the physical address spaces. */
ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
/*
* These are not allocated TLBs and are used only for AT system
@ -2869,6 +2938,23 @@ typedef enum ARMASIdx {
ARMASIdx_TagS = 3,
} ARMASIdx;
static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
{
/* Assert the relative order of the physical mmu indexes. */
QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
return ARMMMUIdx_Phys_S + space;
}
static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
{
assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
return idx - ARMMMUIdx_Phys_S;
}
static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
{
/* If all the CLIDR.Ctypem bits are 0 there are no caches, and
@ -3814,6 +3900,11 @@ static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
}
static inline bool isar_feature_aa64_rme(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0;
}
static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;

View File

@ -1855,6 +1855,9 @@ static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
}
if (cpu_isar_feature(aa64_sel2, cpu)) {
valid_mask |= SCR_EEL2;
} else if (cpu_isar_feature(aa64_rme, cpu)) {
/* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
value |= SCR_NS;
}
if (cpu_isar_feature(aa64_mte, cpu)) {
valid_mask |= SCR_ATA;
@ -1874,6 +1877,9 @@ static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
if (cpu_isar_feature(aa64_fgt, cpu)) {
valid_mask |= SCR_FGTEN;
}
if (cpu_isar_feature(aa64_rme, cpu)) {
valid_mask |= SCR_NSE | SCR_GPF;
}
} else {
valid_mask &= ~(SCR_RW | SCR_ST);
if (cpu_isar_feature(aa32_ras, cpu)) {
@ -1903,10 +1909,10 @@ static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
env->cp15.scr_el3 = value;
/*
* If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
* If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
* we must invalidate all TLBs below EL3.
*/
if (changed & SCR_NS) {
if (changed & (SCR_NS | SCR_NSE)) {
tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
ARMMMUIdxBit_E20_0 |
ARMMMUIdxBit_E10_1 |
@ -5654,6 +5660,9 @@ static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
if (cpu_isar_feature(aa64_fwb, cpu)) {
valid_mask |= HCR_FWB;
}
if (cpu_isar_feature(aa64_rme, cpu)) {
valid_mask |= HCR_GPF;
}
}
if (cpu_isar_feature(any_evt, cpu)) {
@ -6901,6 +6910,83 @@ static const ARMCPRegInfo sme_reginfo[] = {
.access = PL2_RW, .accessfn = access_esm,
.type = ARM_CP_CONST, .resetvalue = 0 },
};
static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush(cs);
}
static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* L0GPTSZ is RO; other bits not mentioned are RES0. */
uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
}
static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
env_archcpu(env)->reset_l0gptsz);
}
static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
CPUState *cs = env_cpu(env);
tlb_flush_all_cpus_synced(cs);
}
static const ARMCPRegInfo rme_reginfo[] = {
{ .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
.access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
.fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
{ .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
{ .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
{ .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_paall_write },
{ .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_paallos_write },
/*
* QEMU does not have a way to invalidate by physical address, thus
* invalidating a range of physical addresses is accomplished by
* flushing all tlb entries in the outer sharable domain,
* just like PAALLOS.
*/
{ .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_paallos_write },
{ .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
.access = PL3_W, .type = ARM_CP_NO_RAW,
.writefn = tlbi_aa64_paallos_write },
{ .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
.access = PL3_W, .type = ARM_CP_NOP },
};
static const ARMCPRegInfo rme_mte_reginfo[] = {
{ .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
.access = PL3_W, .type = ARM_CP_NOP },
};
#endif /* TARGET_AARCH64 */
static void define_pmu_regs(ARMCPU *cpu)
@ -9121,6 +9207,13 @@ void register_cp_regs_for_features(ARMCPU *cpu)
if (cpu_isar_feature(aa64_fgt, cpu)) {
define_arm_cp_regs(cpu, fgt_reginfo);
}
if (cpu_isar_feature(aa64_rme, cpu)) {
define_arm_cp_regs(cpu, rme_reginfo);
if (cpu_isar_feature(aa64_mte, cpu)) {
define_arm_cp_regs(cpu, rme_mte_reginfo);
}
}
#endif
if (cpu_isar_feature(any_predinv, cpu)) {
@ -10091,6 +10184,7 @@ void arm_log_exception(CPUState *cs)
[EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
[EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
[EXCP_VSERR] = "Virtual SERR",
[EXCP_GPC] = "Granule Protection Check",
};
if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
@ -10822,6 +10916,10 @@ static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
}
switch (cs->exception_index) {
case EXCP_GPC:
qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
env->cp15.mfar_el3);
/* fall through */
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
/*
@ -12043,3 +12141,63 @@ void aarch64_sve_change_el(CPUARMState *env, int old_el,
}
}
#endif
#ifndef CONFIG_USER_ONLY
ARMSecuritySpace arm_security_space(CPUARMState *env)
{
if (arm_feature(env, ARM_FEATURE_M)) {
return arm_secure_to_space(env->v7m.secure);
}
/*
* If EL3 is not supported then the secure state is implementation
* defined, in which case QEMU defaults to non-secure.
*/
if (!arm_feature(env, ARM_FEATURE_EL3)) {
return ARMSS_NonSecure;
}
/* Check for AArch64 EL3 or AArch32 Mon. */
if (is_a64(env)) {
if (extract32(env->pstate, 2, 2) == 3) {
if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
return ARMSS_Root;
} else {
return ARMSS_Secure;
}
}
} else {
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
return ARMSS_Secure;
}
}
return arm_security_space_below_el3(env);
}
ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
{
assert(!arm_feature(env, ARM_FEATURE_M));
/*
* If EL3 is not supported then the secure state is implementation
* defined, in which case QEMU defaults to non-secure.
*/
if (!arm_feature(env, ARM_FEATURE_EL3)) {
return ARMSS_NonSecure;
}
/*
* Note NSE cannot be set without RME, and NSE & !NS is Reserved.
* Ignoring NSE when !NS retains consistency without having to
* modify other predicates.
*/
if (!(env->cp15.scr_el3 & SCR_NS)) {
return ARMSS_Secure;
} else if (env->cp15.scr_el3 & SCR_NSE) {
return ARMSS_Realm;
} else {
return ARMSS_NonSecure;
}
}
#endif /* !CONFIG_USER_ONLY */

View File

@ -358,14 +358,27 @@ typedef enum ARMFaultType {
ARMFault_ICacheMaint,
ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
ARMFault_GPCFOnWalk,
ARMFault_GPCFOnOutput,
} ARMFaultType;
typedef enum ARMGPCF {
GPCF_None,
GPCF_AddressSize,
GPCF_Walk,
GPCF_EABT,
GPCF_Fail,
} ARMGPCF;
/**
* ARMMMUFaultInfo: Information describing an ARM MMU Fault
* @type: Type of fault
* @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
* @level: Table walk level (for translation, access flag and permission faults)
* @domain: Domain of the fault address (for non-LPAE CPUs only)
* @s2addr: Address that caused a fault at stage 2
* @paddr: physical address that caused a fault for gpc
* @paddr_space: physical address space that caused a fault for gpc
* @stage2: True if we faulted at stage 2
* @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
* @s1ns: True if we faulted on a non-secure IPA while in secure state
@ -374,7 +387,10 @@ typedef enum ARMFaultType {
typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
struct ARMMMUFaultInfo {
ARMFaultType type;
ARMGPCF gpcf;
target_ulong s2addr;
target_ulong paddr;
ARMSecuritySpace paddr_space;
int level;
int domain;
bool stage2;
@ -548,6 +564,17 @@ static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
case ARMFault_Exclusive:
fsc = 0x35;
break;
case ARMFault_GPCFOnWalk:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b100011;
} else {
fsc = 0b100100 | fi->level;
}
break;
case ARMFault_GPCFOnOutput:
fsc = 0b101000;
break;
default:
/* Other faults can't occur in a context that requires a
* long-format status code.

View File

@ -21,28 +21,35 @@
typedef struct S1Translate {
ARMMMUIdx in_mmu_idx;
ARMMMUIdx in_ptw_idx;
ARMSecuritySpace in_space;
bool in_secure;
bool in_debug;
/*
* If this is stage 2 of a stage 1+2 page table walk, then this must
* be true if stage 1 is an EL0 access; otherwise this is ignored.
* Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
*/
bool in_s1_is_el0;
bool out_secure;
bool out_rw;
bool out_be;
ARMSecuritySpace out_space;
hwaddr out_virt;
hwaddr out_phys;
void *out_host;
} S1Translate;
static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
uint64_t address,
MMUAccessType access_type, bool s1_is_el0,
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
__attribute__((nonnull));
static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
target_ulong address,
MMUAccessType access_type,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
__attribute__((nonnull));
ARMMMUFaultInfo *fi);
static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
target_ulong address,
MMUAccessType access_type,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi);
/* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
static const uint8_t pamax_map[] = {
@ -215,8 +222,10 @@ static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
case ARMMMUIdx_E3:
break;
case ARMMMUIdx_Phys_NS:
case ARMMMUIdx_Phys_S:
case ARMMMUIdx_Phys_NS:
case ARMMMUIdx_Phys_Root:
case ARMMMUIdx_Phys_Realm:
/* No translation for physical address spaces. */
return true;
@ -227,6 +236,197 @@ static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}
static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
ARMSecuritySpace pspace,
ARMMMUFaultInfo *fi)
{
MemTxAttrs attrs = {
.secure = true,
.space = ARMSS_Root,
};
ARMCPU *cpu = env_archcpu(env);
uint64_t gpccr = env->cp15.gpccr_el3;
unsigned pps, pgs, l0gptsz, level = 0;
uint64_t tableaddr, pps_mask, align, entry, index;
AddressSpace *as;
MemTxResult result;
int gpi;
if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
return true;
}
/*
* GPC Priority 1 (R_GMGRR):
* R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
* the access fails as GPT walk fault at level 0.
*/
/*
* Configuration of PPS to a value exceeding the implemented
* physical address size is invalid.
*/
pps = FIELD_EX64(gpccr, GPCCR, PPS);
if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
goto fault_walk;
}
pps = pamax_map[pps];
pps_mask = MAKE_64BIT_MASK(0, pps);
switch (FIELD_EX64(gpccr, GPCCR, SH)) {
case 0b10: /* outer shareable */
break;
case 0b00: /* non-shareable */
case 0b11: /* inner shareable */
/* Inner and Outer non-cacheable requires Outer shareable. */
if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
goto fault_walk;
}
break;
default: /* reserved */
goto fault_walk;
}
switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
case 0b00: /* 4KB */
pgs = 12;
break;
case 0b01: /* 64KB */
pgs = 16;
break;
case 0b10: /* 16KB */
pgs = 14;
break;
default: /* reserved */
goto fault_walk;
}
/* Note this field is read-only and fixed at reset. */
l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
/*
* GPC Priority 2: Secure, Realm or Root address exceeds PPS.
* R_CPDSB: A NonSecure physical address input exceeding PPS
* does not experience any fault.
*/
if (paddress & ~pps_mask) {
if (pspace == ARMSS_NonSecure) {
return true;
}
goto fault_size;
}
/* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
tableaddr = env->cp15.gptbr_el3 << 12;
if (tableaddr & ~pps_mask) {
goto fault_size;
}
/*
* BADDR is aligned per a function of PPS and L0GPTSZ.
* These bits of GPTBR_EL3 are RES0, but are not a configuration error,
* unlike the RES0 bits of the GPT entries (R_XNKFZ).
*/
align = MAX(pps - l0gptsz + 3, 12);
align = MAKE_64BIT_MASK(0, align);
tableaddr &= ~align;
as = arm_addressspace(env_cpu(env), attrs);
/* Level 0 lookup. */
index = extract64(paddress, l0gptsz, pps - l0gptsz);
tableaddr += index * 8;
entry = address_space_ldq_le(as, tableaddr, attrs, &result);
if (result != MEMTX_OK) {
goto fault_eabt;
}
switch (extract32(entry, 0, 4)) {
case 1: /* block descriptor */
if (entry >> 8) {
goto fault_walk; /* RES0 bits not 0 */
}
gpi = extract32(entry, 4, 4);
goto found;
case 3: /* table descriptor */
tableaddr = entry & ~0xf;
align = MAX(l0gptsz - pgs - 1, 12);
align = MAKE_64BIT_MASK(0, align);
if (tableaddr & (~pps_mask | align)) {
goto fault_walk; /* RES0 bits not 0 */
}
break;
default: /* invalid */
goto fault_walk;
}
/* Level 1 lookup */
level = 1;
index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
tableaddr += index * 8;
entry = address_space_ldq_le(as, tableaddr, attrs, &result);
if (result != MEMTX_OK) {
goto fault_eabt;
}
switch (extract32(entry, 0, 4)) {
case 1: /* contiguous descriptor */
if (entry >> 10) {
goto fault_walk; /* RES0 bits not 0 */
}
/*
* Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
* and because we cannot invalidate by pa, and thus will always
* flush entire tlbs, we don't actually care about the range here
* and can simply extract the GPI as the result.
*/
if (extract32(entry, 8, 2) == 0) {
goto fault_walk; /* reserved contig */
}
gpi = extract32(entry, 4, 4);
break;
default:
index = extract64(paddress, pgs, 4);
gpi = extract64(entry, index * 4, 4);
break;
}
found:
switch (gpi) {
case 0b0000: /* no access */
break;
case 0b1111: /* all access */
return true;
case 0b1000:
case 0b1001:
case 0b1010:
case 0b1011:
if (pspace == (gpi & 3)) {
return true;
}
break;
default:
goto fault_walk; /* reserved */
}
fi->gpcf = GPCF_Fail;
goto fault_common;
fault_eabt:
fi->gpcf = GPCF_EABT;
goto fault_common;
fault_size:
fi->gpcf = GPCF_AddressSize;
goto fault_common;
fault_walk:
fi->gpcf = GPCF_Walk;
fault_common:
fi->level = level;
fi->paddr = paddress;
fi->paddr_space = pspace;
return false;
}
static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
{
/*
@ -249,6 +449,7 @@ static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
hwaddr addr, ARMMMUFaultInfo *fi)
{
ARMSecuritySpace space = ptw->in_space;
bool is_secure = ptw->in_secure;
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
@ -261,30 +462,27 @@ static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
* From gdbstub, do not use softmmu so that we don't modify the
* state of the cpu at all, including softmmu tlb contents.
*/
if (regime_is_stage2(s2_mmu_idx)) {
S1Translate s2ptw = {
.in_mmu_idx = s2_mmu_idx,
.in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
.in_secure = s2_mmu_idx == ARMMMUIdx_Stage2_S,
.in_space = (s2_mmu_idx == ARMMMUIdx_Stage2_S ? ARMSS_Secure
: space == ARMSS_Realm ? ARMSS_Realm
: ARMSS_NonSecure),
.in_debug = true,
};
GetPhysAddrResult s2 = { };
if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
false, &s2, fi)) {
if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
goto fail;
}
ptw->out_phys = s2.f.phys_addr;
pte_attrs = s2.cacheattrs.attrs;
ptw->out_secure = s2.f.attrs.secure;
} else {
/* Regime is physical. */
ptw->out_phys = addr;
pte_attrs = 0;
ptw->out_secure = s2_mmu_idx == ARMMMUIdx_Phys_S;
}
ptw->out_host = NULL;
ptw->out_rw = false;
ptw->out_secure = s2.f.attrs.secure;
ptw->out_space = s2.f.attrs.space;
} else {
#ifdef CONFIG_TCG
CPUTLBEntryFull *full;
@ -303,6 +501,7 @@ static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
ptw->out_rw = full->prot & PAGE_WRITE;
pte_attrs = full->pte_attrs;
ptw->out_secure = full->attrs.secure;
ptw->out_space = full->attrs.space;
#else
g_assert_not_reached();
#endif
@ -330,6 +529,9 @@ static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
fail:
assert(fi->type != ARMFault_None);
if (fi->type == ARMFault_GPCFOnOutput) {
fi->type = ARMFault_GPCFOnWalk;
}
fi->s2addr = addr;
fi->stage2 = true;
fi->s1ptw = true;
@ -355,7 +557,10 @@ static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
}
} else {
/* Page tables are in MMIO. */
MemTxAttrs attrs = { .secure = ptw->out_secure };
MemTxAttrs attrs = {
.secure = ptw->out_secure,
.space = ptw->out_space,
};
AddressSpace *as = arm_addressspace(cs, attrs);
MemTxResult result = MEMTX_OK;
@ -398,7 +603,10 @@ static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
#endif
} else {
/* Page tables are in MMIO. */
MemTxAttrs attrs = { .secure = ptw->out_secure };
MemTxAttrs attrs = {
.secure = ptw->out_secure,
.space = ptw->out_space,
};
AddressSpace *as = arm_addressspace(cs, attrs);
MemTxResult result = MEMTX_OK;
@ -909,6 +1117,7 @@ static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
* regime, because the attribute will already be non-secure.
*/
result->f.attrs.secure = false;
result->f.attrs.space = ARMSS_NonSecure;
}
result->f.phys_addr = phys_addr;
return false;
@ -925,7 +1134,7 @@ do_fault:
* @xn: XN (execute-never) bits
* @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
*/
static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
static int get_S2prot_noexecute(int s2ap)
{
int prot = 0;
@ -935,6 +1144,12 @@ static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
if (s2ap & 2) {
prot |= PAGE_WRITE;
}
return prot;
}
static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
{
int prot = get_S2prot_noexecute(s2ap);
if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
switch (xn) {
@ -972,12 +1187,14 @@ static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
* @mmu_idx: MMU index indicating required translation regime
* @is_aa64: TRUE if AArch64
* @ap: The 2-bit simple AP (AP[2:1])
* @ns: NS (non-secure) bit
* @xn: XN (execute-never) bit
* @pxn: PXN (privileged execute-never) bit
* @in_pa: The original input pa space
* @out_pa: The output pa space, modified by NSTable, NS, and NSE
*/
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
int ap, int ns, int xn, int pxn)
int ap, int xn, int pxn,
ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
{
ARMCPU *cpu = env_archcpu(env);
bool is_user = regime_is_user(env, mmu_idx);
@ -1010,8 +1227,39 @@ static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
}
}
if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
if (in_pa != out_pa) {
switch (in_pa) {
case ARMSS_Root:
/*
* R_ZWRVD: permission fault for insn fetched from non-Root,
* I_WWBFB: SIF has no effect in EL3.
*/
return prot_rw;
case ARMSS_Realm:
/*
* R_PKTDS: permission fault for insn fetched from non-Realm,
* for Realm EL2 or EL2&0. The corresponding fault for EL1&0
* happens during any stage2 translation.
*/
switch (mmu_idx) {
case ARMMMUIdx_E2:
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
return prot_rw;
default:
break;
}
break;
case ARMSS_Secure:
if (env->cp15.scr_el3 & SCR_SIF) {
return prot_rw;
}
break;
default:
/* Input NonSecure must have output NonSecure. */
g_assert_not_reached();
}
}
/* TODO have_wxn should be replaced with
@ -1242,22 +1490,16 @@ static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
* @ptw: Current and next stage parameters for the walk.
* @address: virtual address to get physical address for
* @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
* @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
* (so this is a stage 2 page table walk),
* must be true if this is stage 2 of a stage 1+2
* walk for an EL0 access. If @mmu_idx is anything else,
* @s1_is_el0 is ignored.
* @result: set on translation success,
* @fi: set to fault info if the translation fails
*/
static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
uint64_t address,
MMUAccessType access_type, bool s1_is_el0,
MMUAccessType access_type,
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
{
ARMCPU *cpu = env_archcpu(env);
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
bool is_secure = ptw->in_secure;
int32_t level;
ARMVAParameters param;
uint64_t ttbr;
@ -1268,12 +1510,12 @@ static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
int32_t stride;
int addrsize, inputsize, outputsize;
uint64_t tcr = regime_tcr(env, mmu_idx);
int ap, ns, xn, pxn;
int ap, xn, pxn;
uint32_t el = regime_el(env, mmu_idx);
uint64_t descaddrmask;
bool aarch64 = arm_el_is_aa64(env, el);
uint64_t descriptor, new_descriptor;
bool nstable;
ARMSecuritySpace out_space;
/* TODO: This code does not support shareability levels. */
if (aarch64) {
@ -1435,32 +1677,32 @@ static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
descaddrmask = MAKE_64BIT_MASK(0, 40);
}
descaddrmask &= ~indexmask_grainsize;
/*
* Secure stage 1 accesses start with the page table in secure memory and
* can be downgraded to non-secure at any step. Non-secure accesses
* remain non-secure. We implement this by just ORing in the NSTable/NS
* bits at each step.
* Stage 2 never gets this kind of downgrade.
*/
tableattrs = is_secure ? 0 : (1 << 4);
tableattrs = 0;
next_level:
descaddr |= (address >> (stride * (4 - level))) & indexmask;
descaddr &= ~7ULL;
nstable = !regime_is_stage2(mmu_idx) && extract32(tableattrs, 4, 1);
if (nstable) {
/*
* Process the NSTable bit from the previous level. This changes
* the table address space and the output space from Secure to
* NonSecure. With RME, the EL3 translation regime does not change
* from Root to NonSecure.
*/
if (ptw->in_space == ARMSS_Secure
&& !regime_is_stage2(mmu_idx)
&& extract32(tableattrs, 4, 1)) {
/*
* Stage2_S -> Stage2 or Phys_S -> Phys_NS
* Assert that the non-secure idx are even, and relative order.
* Assert the relative order of the secure/non-secure indexes.
*/
QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
ptw->in_ptw_idx &= ~1;
QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
ptw->in_ptw_idx += 1;
ptw->in_secure = false;
ptw->in_space = ARMSS_NonSecure;
}
if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
goto do_fault;
}
@ -1563,7 +1805,7 @@ static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
*/
attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
if (!regime_is_stage2(mmu_idx)) {
attrs |= nstable << 5; /* NS */
attrs |= !ptw->in_secure << 5; /* NS */
if (!param.hpd) {
attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
/*
@ -1576,15 +1818,79 @@ static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
}
ap = extract32(attrs, 6, 2);
out_space = ptw->in_space;
if (regime_is_stage2(mmu_idx)) {
ns = mmu_idx == ARMMMUIdx_Stage2;
xn = extract64(attrs, 53, 2);
result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
/*
* R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
* The bit remains ignored for other security states.
* R_YMCSL: Executing an insn fetched from non-Realm causes
* a stage2 permission fault.
*/
if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
out_space = ARMSS_NonSecure;
result->f.prot = get_S2prot_noexecute(ap);
} else {
ns = extract32(attrs, 5, 1);
xn = extract64(attrs, 53, 2);
result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
}
} else {
int nse, ns = extract32(attrs, 5, 1);
switch (out_space) {
case ARMSS_Root:
/*
* R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
* R_XTYPW: NSE and NS together select the output pa space.
*/
nse = extract32(attrs, 11, 1);
out_space = (nse << 1) | ns;
if (out_space == ARMSS_Secure &&
!cpu_isar_feature(aa64_sel2, cpu)) {
out_space = ARMSS_NonSecure;
}
break;
case ARMSS_Secure:
if (ns) {
out_space = ARMSS_NonSecure;
}
break;
case ARMSS_Realm:
switch (mmu_idx) {
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
/* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
break;
case ARMMMUIdx_E2:
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
/*
* R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
* NS changes the output to non-secure space.
*/
if (ns) {
out_space = ARMSS_NonSecure;
}
break;
default:
g_assert_not_reached();
}
break;
case ARMSS_NonSecure:
/* R_QRMFF: For NonSecure state, the NS bit is RES0. */
break;
default:
g_assert_not_reached();
}
xn = extract64(attrs, 54, 1);
pxn = extract64(attrs, 53, 1);
result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
/*
* Note that we modified ptw->in_space earlier for NSTable, but
* result->f.attrs retains a copy of the original security space.
*/
result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
result->f.attrs.space, out_space);
}
if (!(result->f.prot & (1 << access_type))) {
@ -1611,14 +1917,8 @@ static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
}
}
if (ns) {
/*
* The NS bit will (as required by the architecture) have no effect if
* the CPU doesn't support TZ or this is a non-secure translation
* regime, because the attribute will already be non-secure.
*/
result->f.attrs.secure = false;
}
result->f.attrs.space = out_space;
result->f.attrs.secure = arm_space_is_secure(out_space);
if (regime_is_stage2(mmu_idx)) {
result->cacheattrs.is_s2_format = true;
@ -2402,6 +2702,7 @@ static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
*/
if (sattrs.ns) {
result->f.attrs.secure = false;
result->f.attrs.space = ARMSS_NonSecure;
} else if (!secure) {
/*
* NS access to S memory must fault.
@ -2668,14 +2969,16 @@ static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
ARMMMUFaultInfo *fi)
{
uint8_t memattr = 0x00; /* Device nGnRnE */
uint8_t shareability = 0; /* non-sharable */
uint8_t shareability = 0; /* non-shareable */
int r_el;
switch (mmu_idx) {
case ARMMMUIdx_Stage2:
case ARMMMUIdx_Stage2_S:
case ARMMMUIdx_Phys_NS:
case ARMMMUIdx_Phys_S:
case ARMMMUIdx_Phys_NS:
case ARMMMUIdx_Phys_Root:
case ARMMMUIdx_Phys_Realm:
break;
default:
@ -2725,7 +3028,7 @@ static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
} else {
memattr = 0x44; /* Normal, NC, No */
}
shareability = 2; /* outer sharable */
shareability = 2; /* outer shareable */
}
result->cacheattrs.is_s2_format = false;
break;
@ -2750,10 +3053,10 @@ static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
bool is_secure = ptw->in_secure;
bool ret, ipa_secure;
ARMCacheAttrs cacheattrs1;
bool is_el0;
ARMSecuritySpace ipa_space;
uint64_t hcr;
ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
/* If S1 fails, return early. */
if (ret) {
@ -2762,10 +3065,12 @@ static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
ipa = result->f.phys_addr;
ipa_secure = result->f.attrs.secure;
ipa_space = result->f.attrs.space;
is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
ptw->in_secure = ipa_secure;
ptw->in_space = ipa_space;
ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
/*
@ -2777,13 +3082,7 @@ static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
cacheattrs1 = result->cacheattrs;
memset(result, 0, sizeof(*result));
if (arm_feature(env, ARM_FEATURE_PMSA)) {
ret = get_phys_addr_pmsav8(env, ipa, access_type,
ptw->in_mmu_idx, is_secure, result, fi);
} else {
ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
is_el0, result, fi);
}
ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
fi->s2addr = ipa;
/* Combine the S1 and S2 perms. */
@ -2843,7 +3142,7 @@ static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
return false;
}
static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
target_ulong address,
MMUAccessType access_type,
GetPhysAddrResult *result,
@ -2854,15 +3153,18 @@ static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
ARMMMUIdx s1_mmu_idx;
/*
* The page table entries may downgrade secure to non-secure, but
* cannot upgrade an non-secure translation regime's attributes
* to secure.
* The page table entries may downgrade Secure to NonSecure, but
* cannot upgrade a NonSecure translation regime's attributes
* to Secure or Realm.
*/
result->f.attrs.secure = is_secure;
result->f.attrs.space = ptw->in_space;
switch (mmu_idx) {
case ARMMMUIdx_Phys_S:
case ARMMMUIdx_Phys_NS:
case ARMMMUIdx_Phys_Root:
case ARMMMUIdx_Phys_Realm:
/* Checking Phys early avoids special casing later vs regime_el. */
return get_phys_addr_disabled(env, address, access_type, mmu_idx,
is_secure, result, fi);
@ -2908,7 +3210,7 @@ static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
default:
/* Single stage uses physical for ptw. */
ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
break;
}
@ -2965,8 +3267,7 @@ static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
}
if (regime_using_lpae_format(env, mmu_idx)) {
return get_phys_addr_lpae(env, ptw, address, access_type, false,
result, fi);
return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
} else if (arm_feature(env, ARM_FEATURE_V7) ||
regime_sctlr(env, mmu_idx) & SCTLR_XP) {
return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
@ -2975,6 +3276,23 @@ static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
}
}
static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
target_ulong address,
MMUAccessType access_type,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
{
if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
return true;
}
if (!granule_protection_check(env, result->f.phys_addr,
result->f.attrs.space, fi)) {
fi->type = ARMFault_GPCFOnOutput;
return true;
}
return false;
}
bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool is_secure, GetPhysAddrResult *result,
@ -2983,16 +3301,19 @@ bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
S1Translate ptw = {
.in_mmu_idx = mmu_idx,
.in_secure = is_secure,
.in_space = arm_secure_to_space(is_secure),
};
return get_phys_addr_with_struct(env, &ptw, address, access_type,
result, fi);
return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
}
bool get_phys_addr(CPUARMState *env, target_ulong address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
{
bool is_secure;
S1Translate ptw = {
.in_mmu_idx = mmu_idx,
};
ARMSecuritySpace ss;
switch (mmu_idx) {
case ARMMMUIdx_E10_0:
@ -3005,30 +3326,54 @@ bool get_phys_addr(CPUARMState *env, target_ulong address,
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
case ARMMMUIdx_E2:
is_secure = arm_is_secure_below_el3(env);
ss = arm_security_space_below_el3(env);
break;
case ARMMMUIdx_Stage2:
/*
* For Secure EL2, we need this index to be NonSecure;
* otherwise this will already be NonSecure or Realm.
*/
ss = arm_security_space_below_el3(env);
if (ss == ARMSS_Secure) {
ss = ARMSS_NonSecure;
}
break;
case ARMMMUIdx_Phys_NS:
case ARMMMUIdx_MPrivNegPri:
case ARMMMUIdx_MUserNegPri:
case ARMMMUIdx_MPriv:
case ARMMMUIdx_MUser:
is_secure = false;
ss = ARMSS_NonSecure;
break;
case ARMMMUIdx_E3:
case ARMMMUIdx_Stage2_S:
case ARMMMUIdx_Phys_S:
case ARMMMUIdx_MSPrivNegPri:
case ARMMMUIdx_MSUserNegPri:
case ARMMMUIdx_MSPriv:
case ARMMMUIdx_MSUser:
is_secure = true;
ss = ARMSS_Secure;
break;
case ARMMMUIdx_E3:
if (arm_feature(env, ARM_FEATURE_AARCH64) &&
cpu_isar_feature(aa64_rme, env_archcpu(env))) {
ss = ARMSS_Root;
} else {
ss = ARMSS_Secure;
}
break;
case ARMMMUIdx_Phys_Root:
ss = ARMSS_Root;
break;
case ARMMMUIdx_Phys_Realm:
ss = ARMSS_Realm;
break;
default:
g_assert_not_reached();
}
return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
is_secure, result, fi);
ptw.in_space = ss;
ptw.in_secure = arm_space_is_secure(ss);
return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
}
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
@ -3036,16 +3381,19 @@ hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
ARMMMUIdx mmu_idx = arm_mmu_idx(env);
ARMSecuritySpace ss = arm_security_space(env);
S1Translate ptw = {
.in_mmu_idx = arm_mmu_idx(env),
.in_secure = arm_is_secure(env),
.in_mmu_idx = mmu_idx,
.in_space = ss,
.in_secure = arm_space_is_secure(ss),
.in_debug = true,
};
GetPhysAddrResult res = {};
ARMMMUFaultInfo fi = {};
bool ret;
ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
*attrs = res.f.attrs;
if (ret) {

View File

@ -50,6 +50,7 @@ enum arm_exception_class {
EC_SVEACCESSTRAP = 0x19,
EC_ERETTRAP = 0x1a,
EC_SMETRAP = 0x1d,
EC_GPC = 0x1e,
EC_INSNABORT = 0x20,
EC_INSNABORT_SAME_EL = 0x21,
EC_PCALIGNMENT = 0x22,
@ -247,6 +248,15 @@ static inline uint32_t syn_bxjtrap(int cv, int cond, int rm)
(cv << 24) | (cond << 20) | rm;
}
static inline uint32_t syn_gpc(int s2ptw, int ind, int gpcsc,
int cm, int s1ptw, int wnr, int fsc)
{
/* TODO: FEAT_NV2 adds VNCR */
return (EC_GPC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (s2ptw << 21)
| (ind << 20) | (gpcsc << 14) | (cm << 8) | (s1ptw << 7)
| (wnr << 6) | fsc;
}
static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
{
return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)

View File

@ -142,6 +142,56 @@ static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
cpu->sve_max_vq = max_vq;
}
static bool cpu_arm_get_rme(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return cpu_isar_feature(aa64_rme, cpu);
}
static void cpu_arm_set_rme(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint64_t t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, RME, value);
cpu->isar.id_aa64pfr0 = t;
}
static void cpu_max_set_l0gptsz(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t value;
if (!visit_type_uint32(v, name, &value, errp)) {
return;
}
/* Encode the value for the GPCCR_EL3 field. */
switch (value) {
case 30:
case 34:
case 36:
case 39:
cpu->reset_l0gptsz = value - 30;
break;
default:
error_setg(errp, "invalid value for l0gptsz");
error_append_hint(errp, "valid values are 30, 34, 36, 39\n");
break;
}
}
static void cpu_max_get_l0gptsz(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t value = cpu->reset_l0gptsz + 30;
visit_type_uint32(v, name, &value, errp);
}
static Property arm_cpu_lpa2_property =
DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
@ -700,6 +750,9 @@ void aarch64_max_tcg_initfn(Object *obj)
aarch64_add_sme_properties(obj);
object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
cpu_max_set_sve_max_vq, NULL, NULL);
object_property_add_bool(obj, "x-rme", cpu_arm_get_rme, cpu_arm_set_rme);
object_property_add(obj, "x-l0gptsz", "uint32", cpu_max_get_l0gptsz,
cpu_max_set_l0gptsz, NULL, NULL);
qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
}

View File

@ -107,17 +107,106 @@ static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi,
return fsr;
}
static bool report_as_gpc_exception(ARMCPU *cpu, int current_el,
ARMMMUFaultInfo *fi)
{
bool ret;
switch (fi->gpcf) {
case GPCF_None:
return false;
case GPCF_AddressSize:
case GPCF_Walk:
case GPCF_EABT:
/* R_PYTGX: GPT faults are reported as GPC. */
ret = true;
break;
case GPCF_Fail:
/*
* R_BLYPM: A GPF at EL3 is reported as insn or data abort.
* R_VBZMW, R_LXHQR: A GPF at EL[0-2] is reported as a GPC
* if SCR_EL3.GPF is set, otherwise an insn or data abort.
*/
ret = (cpu->env.cp15.scr_el3 & SCR_GPF) && current_el != 3;
break;
default:
g_assert_not_reached();
}
assert(cpu_isar_feature(aa64_rme, cpu));
assert(fi->type == ARMFault_GPCFOnWalk ||
fi->type == ARMFault_GPCFOnOutput);
if (fi->gpcf == GPCF_AddressSize) {
assert(fi->level == 0);
} else {
assert(fi->level >= 0 && fi->level <= 1);
}
return ret;
}
static unsigned encode_gpcsc(ARMMMUFaultInfo *fi)
{
static uint8_t const gpcsc[] = {
[GPCF_AddressSize] = 0b000000,
[GPCF_Walk] = 0b000100,
[GPCF_Fail] = 0b001100,
[GPCF_EABT] = 0b010100,
};
/* Note that we've validated fi->gpcf and fi->level above. */
return gpcsc[fi->gpcf] | fi->level;
}
static G_NORETURN
void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx, ARMMMUFaultInfo *fi)
{
CPUARMState *env = &cpu->env;
int target_el;
int target_el = exception_target_el(env);
int current_el = arm_current_el(env);
bool same_el;
uint32_t syn, exc, fsr, fsc;
target_el = exception_target_el(env);
if (report_as_gpc_exception(cpu, current_el, fi)) {
target_el = 3;
fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
syn = syn_gpc(fi->stage2 && fi->type == ARMFault_GPCFOnWalk,
access_type == MMU_INST_FETCH,
encode_gpcsc(fi), 0, fi->s1ptw,
access_type == MMU_DATA_STORE, fsc);
env->cp15.mfar_el3 = fi->paddr;
switch (fi->paddr_space) {
case ARMSS_Secure:
break;
case ARMSS_NonSecure:
env->cp15.mfar_el3 |= R_MFAR_NS_MASK;
break;
case ARMSS_Root:
env->cp15.mfar_el3 |= R_MFAR_NSE_MASK;
break;
case ARMSS_Realm:
env->cp15.mfar_el3 |= R_MFAR_NSE_MASK | R_MFAR_NS_MASK;
break;
default:
g_assert_not_reached();
}
exc = EXCP_GPC;
goto do_raise;
}
/* If SCR_EL3.GPF is unset, GPF may still be routed to EL2. */
if (fi->gpcf == GPCF_Fail && target_el < 2) {
if (arm_hcr_el2_eff(env) & HCR_GPF) {
target_el = 2;
}
}
if (fi->stage2) {
target_el = 2;
env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
@ -125,8 +214,8 @@ void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
env->cp15.hpfar_el2 |= HPFAR_NS;
}
}
same_el = (arm_current_el(env) == target_el);
same_el = current_el == target_el;
fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
if (access_type == MMU_INST_FETCH) {
@ -143,6 +232,7 @@ void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
exc = EXCP_DATA_ABORT;
}
do_raise:
env->exception.vaddress = addr;
env->exception.fsr = fsr;
raise_exception(env, exc, syn, target_el);

View File

@ -4329,7 +4329,7 @@ void gen_sve_str(DisasContext *s, TCGv_ptr base, int vofs,
/* Predicate register stores can be any multiple of 2. */
if (len_remain >= 8) {
t0 = tcg_temp_new_i64();
tcg_gen_st_i64(t0, base, vofs + len_align);
tcg_gen_ld_i64(t0, base, vofs + len_align);
tcg_gen_qemu_st_i64(t0, clean_addr, midx, MO_LEUQ | MO_ATOM_NONE);
len_remain -= 8;
len_align += 8;