The Exynos4210 SoC device currently uses a custom device
"exynos4210.irq_gate" to model the OR gate that feeds each CPU's IRQ
line. We have a standard TYPE_OR_IRQ device for this now, so use
that instead.
(This is a migration compatibility break, but that is OK for this
machine type.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220404154658.565020-2-peter.maydell@linaro.org
Connect the CRL (Clock Reset LPD) to the Versal SoC.
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@amd.com>
Reviewed-by: Frederic Konrad <fkonrad@amd.com>
Reviewed-by: Francisco Iglesias <francisco.iglesias@amd.com>
Message-id: 20220406174303.2022038-5-edgar.iglesias@xilinx.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add the Cortex-R5Fs of the Versal RPU (Real-time Processing Unit)
subsystem.
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@amd.com>
Reviewed-by: Francisco Iglesias <francisco.iglesias@amd.com>
Message-id: 20220406174303.2022038-3-edgar.iglesias@xilinx.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Create an APU CPU Cluster. This is in preparation to add the RPU.
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@amd.com>
Reviewed-by: Francisco Iglesias <francisco.iglesias@amd.com>
Message-id: 20220406174303.2022038-2-edgar.iglesias@xilinx.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Connect the 4 TTC timers on the ZynqMP.
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@amd.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Reviewed-by: Francisco Iglesias <frasse.iglesias@gmail.com>
Message-id: 20220331222017.2914409-3-edgar.iglesias@gmail.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Connect the ZynqMP APU Control device.
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Francisco Iglesias <francisco.iglesias@xilinx.com>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20220316164645.2303510-7-edgar.iglesias@gmail.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Connect the ZynqMP CRF - Clock Reset FPD device.
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Francisco Iglesias <francisco.iglesias@xilinx.com>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20220316164645.2303510-5-edgar.iglesias@gmail.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add an unimplemented SERDES (Serializer/Deserializer) area.
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Francisco Iglesias <francisco.iglesias@xilinx.com>
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20220316164645.2303510-2-edgar.iglesias@gmail.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
There is a Linux kernel bug present until v5.12 that prevents
booting with FEAT_LPA2 enabled. As a workaround for TCG,
disable this feature for machine versions prior to 7.0.
Cc: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Just a stub that indicates the system has booted in secure boot mode.
Used for testing the driver:
https://lore.kernel.org/all/20211019080608.283324-1-joel@jms.id.au/
Signed-off-by: Joel Stanley <joel@jms.id.au>
[ clg: - Fixed typo
- Adjusted Copyright dates ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
We use the arm_boot_info::nb_cpus field in only one place, and that
place can easily get the number of CPUs locally rather than relying
on the board code to have set the field correctly. (At least one
board, xlnx-versal-virt, does not set the field despite having more
than one CPU.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Tested-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Message-id: 20220127154639.2090164-16-peter.maydell@linaro.org
If we're using PSCI emulation to start secondary CPUs, there is no
point in writing the "secondary boot" stub code, because it will
never be used -- secondary CPUs start powered-off, and when powered
on are set to begin execution at the address specified by the guest's
power-on PSCI call, not at the stub.
Move the call to the hook that writes the secondary boot stub code so
that we can do it only if we're starting a Linux kernel and not using
PSCI.
(None of the users of the hook care about the ordering of its call
relative to anything else: they only use it to write a rom blob to
guest memory.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Tested-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Message-id: 20220127154639.2090164-14-peter.maydell@linaro.org
Instead of setting the CPU psci-conduit and start-powered-off
properties in the xlnx-versal-virt board code, set the arm_boot_info
psci_conduit field so that the boot.c code can do it.
This will fix a corner case where we were incorrectly enabling PSCI
emulation when booting guest code into EL3 because it was an ELF file
passed to -kernel. (EL3 guest code started via -bios, -pflash, or
the generic loader was already being run with PSCI emulation
disabled.)
Note that EL3 guest code has no way to turn on the secondary CPUs
because there's no emulated power controller, but this was already
true for EL3 guest code run via -bios, -pflash, or the generic
loader.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Tested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Tested-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Message-id: 20220127154639.2090164-8-peter.maydell@linaro.org
Currently we expect board code to set the psci-conduit property on
CPUs and ensure that secondary CPUs are created with the
start-powered-off property set to false, if the board wishes to use
QEMU's builtin PSCI emulation. This worked OK for the virt board
where we first wanted to use it, because the virt board directly
creates its CPUs and is in a reasonable position to set those
properties. For other boards which model real hardware and use a
separate SoC object, however, it is more awkward. Most PSCI-using
boards just set the psci-conduit board unconditionally.
This was never strictly speaking correct (because you would not be
able to run EL3 guest firmware that itself provided the PSCI
interface, as the QEMU implementation would overrule it), but mostly
worked in practice because for non-PSCI SMC calls QEMU would emulate
the SMC instruction as normal (by trapping to guest EL3). However,
we would like to make our PSCI emulation follow the part of the SMCC
specification that mandates that SMC calls with unknown function
identifiers return a failure code, which means that all SMC calls
will be handled by the PSCI code and the "emulate as normal" path
will no longer be taken.
We tried to implement that in commit 9fcd15b919
("arm: tcg: Adhere to SMCCC 1.3 section 5.2"), but this
regressed attempts to run EL3 guest code on the affected boards:
* mcimx6ul-evk, mcimx7d-sabre, orangepi, xlnx-zcu102
* for the case only of EL3 code loaded via -kernel (and
not via -bios or -pflash), virt and xlnx-versal-virt
so for the 7.0 release we reverted it (in commit 4825eaae4f).
This commit provides a mechanism that boards can use to arrange that
psci-conduit is set if running guest code at a low enough EL but not
if it would be running at the same EL that the conduit implies that
the QEMU PSCI implementation is using. (Later commits will convert
individual board models to use this mechanism.)
We do this by moving the setting of the psci-conduit and
start-powered-off properties to arm_load_kernel(). Boards which want
to potentially use emulated PSCI must set a psci_conduit field in the
arm_boot_info struct to the type of conduit they want to use (SMC or
HVC); arm_load_kernel() will then set the CPUs up accordingly if it
is not going to start the guest code at the same or higher EL as the
fake QEMU firmware would be at.
Board/SoC code which uses this mechanism should no longer set the CPU
psci-conduit property directly. It should only set the
start-powered-off property for secondaries if EL3 guest firmware
running bare metal expects that rather than the alternative "all CPUs
start executing the firmware at once".
Note that when calculating whether we are going to run guest
code at EL3, we ignore the setting of arm_boot_info::secure_board_setup,
which might cause us to run a stub bit of guest code at EL3 which
does some board-specific setup before dropping to EL2 or EL1 to
run the guest kernel. This is OK because only one board that
enables PSCI sets secure_board_setup (the highbank board), and
the stub code it writes will behave the same way whether the
one SMC call it makes is handled by "emulate the SMC" or by
"PSCI default returns an error code". So we can leave that stub
code in place until after we've changed the PSCI default behaviour;
at that point we will remove it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Tested-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20220127154639.2090164-4-peter.maydell@linaro.org
'Or' the IRQs coming from the QSPI and QSPI DMA models. This is done for
avoiding the situation where one of the models incorrectly deasserts an
interrupt asserted from the other model (which will result in that the IRQ
is lost and will not reach guest SW).
Signed-off-by: Francisco Iglesias <francisco.iglesias@xilinx.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Message-id: 20220203151742.1457-1-francisco.iglesias@xilinx.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Connect the OSPI flash memory controller model (including the source and
destination DMA).
Signed-off-by: Francisco Iglesias <francisco.iglesias@xilinx.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20220121161141.14389-8-francisco.iglesias@xilinx.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add an orgate and 'or' the interrupts from the BBRAM and RTC models.
Signed-off-by: Francisco Iglesias <francisco.iglesias@xilinx.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Message-id: 20220121161141.14389-3-francisco.iglesias@xilinx.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Just like we can control the enablement of the highmem PCIe region
using highmem_ecam, let's add a control for the highmem GICv3
redistributor region.
Similarily to highmem_ecam, these redistributors are disabled when
highmem is off.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Message-id: 20220114140741.1358263-3-maz@kernel.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Just like we can control the enablement of the highmem PCIe ECAM
region using highmem_ecam, let's add a control for the highmem
PCIe MMIO region.
Similarily to highmem_ecam, this region is disabled when highmem
is off.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Message-id: 20220114140741.1358263-2-maz@kernel.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Generally a guest needs an external source of randomness to properly
enable things like address space randomisation. However in a trusted
boot environment where the firmware will cryptographically verify
components having random data in the DTB will cause verification to
fail. Add a control knob so we can prevent this being added to the
system DTB.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Acked-by: Jerome Forissier <jerome@forissier.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20220105135009.1584676-22-alex.bennee@linaro.org>
AST2600 Display Port MCU introduces 0x18000000~0x1803FFFF as it's memory
and io address. If guest machine try to access DPMCU memory, it will
cause a fatal error.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20211210083034.726610-1-troy_lee@aspeedtech.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
On existing older machine types, without cpu topology described
in ACPI or DT, the guest will populate one by default. With the
topology described, it will read the information and set up its
topology as instructed, but that may not be the same as what was
getting used by default. It's possible that an user application
has a dependency on the default topology and if the default one
gets changed it will probably behave differently.
Based on above consideration we'd better only describe topology
information to the guest on 6.2 and later machine types.
Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20211020142125.7516-2-wangyanan55@huawei.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Peter Delevoryas <pdel@fb.com>
Message-Id: <20211005052604.1674891-3-pdel@fb.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Connect the support for ZynqMP eFUSE one-time field-programmable
bit array.
The command argument:
-drive if=pflash,index=3,...
Can be used to optionally connect the bit array to a
backend storage, such that field-programmed values
in one invocation can be made available to next
invocation.
The backend storage must be a seekable binary file, and
its size must be 768 bytes or larger. A file with all
binary 0's is a 'blank'.
Signed-off-by: Tong Ho <tong.ho@xilinx.com>
Message-id: 20210917052400.1249094-9-tong.ho@xilinx.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Connect the support for Xilinx ZynqMP Battery-Backed RAM (BBRAM)
The command argument:
-drive if=pflash,index=2,...
Can be used to optionally connect the bbram to a backend
storage, such that field-programmed values in one
invocation can be made available to next invocation.
The backend storage must be a seekable binary file, and
its size must be 36 bytes or larger. A file with all
binary 0's is a 'blank'.
Signed-off-by: Tong Ho <tong.ho@xilinx.com>
Message-id: 20210917052400.1249094-8-tong.ho@xilinx.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Connect the support for Versal eFUSE one-time field-programmable
bit array.
The command argument:
-drive if=pflash,index=1,...
Can be used to optionally connect the bit array to a
backend storage, such that field-programmed values
in one invocation can be made available to next
invocation.
The backend storage must be a seekable binary file, and
its size must be 3072 bytes or larger. A file with all
binary 0's is a 'blank'.
Signed-off-by: Tong Ho <tong.ho@xilinx.com>
Message-id: 20210917052400.1249094-7-tong.ho@xilinx.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Connect the support for Versal Battery-Backed RAM (BBRAM)
The command argument:
-drive if=pflash,index=0,...
Can be used to optionally connect the bbram to a backend
storage, such that field-programmed values in one
invocation can be made available to next invocation.
The backend storage must be a seekable binary file, and
its size must be 36 bytes or larger. A file with all
binary 0's is a 'blank'.
Signed-off-by: Tong Ho <tong.ho@xilinx.com>
Message-id: 20210917052400.1249094-6-tong.ho@xilinx.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
When you run QEMU with an Aspeed machine and a single serial device
using stdio like this:
qemu -machine ast2600-evb -drive ... -serial stdio
The guest OS can read and write to the UART5 registers at 0x1E784000 and
it will receive from stdin and write to stdout. The Aspeed SoC's have a
lot more UART's though (AST2500 has 5, AST2600 has 13) and depending on
the board design, may be using any of them as the serial console. (See
"stdout-path" in a DTS to check which one is chosen).
Most boards, including all of those currently defined in
hw/arm/aspeed.c, just use UART5, but some use UART1. This change adds
some flexibility for different boards without requiring users to change
their command-line invocation of QEMU.
I tested this doesn't break existing code by booting an AST2500 OpenBMC
image and an AST2600 OpenBMC image, each using UART5 as the console.
Then I tested switching the default to UART1 and booting an AST2600
OpenBMC image that uses UART1, and that worked too.
Signed-off-by: Peter Delevoryas <pdel@fb.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20210901153615.2746885-2-pdel@fb.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Included creation of ITS as part of virt platform GIC
initialization. This Emulated ITS model now co-exists with kvm
ITS and is enabled in absence of kvm irq kernel support in a
platform.
Signed-off-by: Shashi Mallela <shashi.mallela@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20210910143951.92242-9-shashi.mallela@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Wire up the refclk for the msf2 SoC. This SoC runs the refclk at a
frequency which is programmably either /4, /8, /16 or /32 of the main
CPU clock. We don't currently model the register which allows the
guest to set the divisor, so implement the refclk as a fixed /32 of
the CPU clock (which is the value of the divisor at reset).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Damien Hedde <damien.hedde@greensocs.com>
Message-id: 20210812093356.1946-21-peter.maydell@linaro.org
Instead of passing the MSF2 SoC an integer property specifying the
CPU clock rate, pass it a Clock instead. This lets us wire that
clock up to the armv7m object.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alexandre Iooss <erdnaxe@crans.org>
Message-id: 20210812093356.1946-20-peter.maydell@linaro.org
In the realize method of the msf2-soc SoC object, we call g_new() to
create new MemoryRegion objects for the nvm, nvm_alias, and sram.
This is unnecessary; make these MemoryRegions member fields of the
device state struct instead.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alexandre Iooss <erdnaxe@crans.org>
Message-id: 20210812093356.1946-19-peter.maydell@linaro.org
Wire up the sysclk input to the armv7m object.
Strictly this SoC should not have a systick device at all, but our
armv7m container object doesn't currently support disabling the
systick device. For the moment, add a TODO comment, but note that
this is why we aren't wiring up a refclk (no need for one).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alexandre Iooss <erdnaxe@crans.org>
Message-id: 20210812093356.1946-16-peter.maydell@linaro.org
Wire up the sysclk and refclk for the stm32f405 SoC. This SoC always
runs the systick refclk at 1/8 the frequency of the main CPU clock,
so the board code only needs to provide a single sysclk clock.
Because there is only one board using this SoC, we convert the SoC
and the board together, rather than splitting it into "add clock to
SoC; connect clock in board; add error check in SoC code that clock
is wired up".
When the systick device starts honouring its clock inputs, this will
fix an emulation inaccuracy in the netduinoplus2 board where the
systick reference clock was running at 1MHz rather than 21MHz.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Alexandre Iooss <erdnaxe@crans.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Message-id: 20210812093356.1946-14-peter.maydell@linaro.org
Wire up the sysclk and refclk for the stm32f205 SoC. This SoC always
runs the systick refclk at 1/8 the frequency of the main CPU clock,
so the board code only needs to provide a single sysclk clock.
Because there is only one board using this SoC, we convert the SoC
and the board together, rather than splitting it into "add clock to
SoC; connect clock in board; add error check in SoC code that clock
is wired up".
When the systick device starts honouring its clock inputs, this will
fix an emulation inaccuracy in the netduino2 board where the systick
reference clock was running at 1MHz rather than 15MHz.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Alexandre Iooss <erdnaxe@crans.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Message-id: 20210812093356.1946-13-peter.maydell@linaro.org
Wire up the sysclk and refclk for the stm32f100 SoC. This SoC always
runs the systick refclk at 1/8 the frequency of the main CPU clock,
so the board code only needs to provide a single sysclk clock.
Because there is only one board using this SoC, we convert the SoC
and the board together, rather than splitting it into "add clock to
SoC; connect clock in board; add error check in SoC code that clock
is wired up".
When the systick device starts honouring its clock inputs, this will
fix an emulation inaccuracy in the stm32vldiscovery board where the
systick reference clock was running at 1MHz rather than 3MHz.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Alexandre Iooss <erdnaxe@crans.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Message-id: 20210812093356.1946-12-peter.maydell@linaro.org
In the realize methods of the stm32f100 and stm32f205 SoC objects, we
call g_new() to create new MemoryRegion objects for the sram, flash,
and flash_alias. This is unnecessary (and leaves open the
possibility of leaking the allocations if we exit from realize with
an error). Make these MemoryRegions member fields of the device
state struct instead, as stm32f405 already does.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alexandre Iooss <erdnaxe@crans.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Message-id: 20210812093356.1946-11-peter.maydell@linaro.org
Create input clocks on the armv7m container object which pass through
to the systick timers, so that users of the armv7m object can specify
the clocks being used.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Message-id: 20210812093356.1946-7-peter.maydell@linaro.org
Instead of having the NVIC device provide a single sysbus memory
region covering the whole of the "System PPB" space, which implements
the default behaviour for unimplemented ranges and provides the NS
alias window to the sysregs as well as the main sysreg MR, move this
handling to the container armv7m device. The NVIC now provides a
single memory region which just implements the system registers.
This consolidates all the handling of "map various devices in the
PPB" into the armv7m container where it belongs.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alexandre Iooss <erdnaxe@crans.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Message-id: 20210812093356.1946-4-peter.maydell@linaro.org
There's no particular reason why the NVIC should be owning the
SysTick device objects; move them into the ARMv7M container object
instead, as part of consolidating the "create the devices which are
built into an M-profile CPU and map them into their architected
locations in the address space" work into one place.
This involves temporarily creating a duplicate copy of the
nvic_sysreg_ns_ops struct and its read/write functions (renamed as
v7m_sysreg_ns_*), but we will delete the NVIC's copy of this code in
a subsequent patch.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Message-id: 20210812093356.1946-3-peter.maydell@linaro.org
Currently we implement the RAS register block within the NVIC device.
It isn't really very tightly coupled with the NVIC proper, so instead
move it out into a sysbus device of its own and have the top level
ARMv7M container create it and map it into memory at the right
address.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alexandre Iooss <erdnaxe@crans.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Reviewed-by: Damien Hedde <damien.hedde@greensocs.com>
Message-id: 20210812093356.1946-2-peter.maydell@linaro.org
Add a default_bus_bypass_iommu machine option to enable/disable
bypass_iommu for default root bus. The option is disabled by
default and can be enabled with:
$QEMU -machine virt,iommu=smmuv3,default_bus_bypass_iommu=true
Signed-off-by: Xingang Wang <wangxingang5@huawei.com>
Message-Id: <1625748919-52456-4-git-send-email-wangxingang5@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This SoC is similar to stm32f205 SoC.
This will be used by the STM32VLDISCOVERY to create a machine.
Signed-off-by: Alexandre Iooss <erdnaxe@crans.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20210617165647.2575955-2-erdnaxe@crans.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This is just enough to make reboot and poweroff work. Works for
linux, u-boot, and the arm trusted firmware. Not tested, but should
work for plan9, and bare-metal/hobby OSes, since they seem to generally
do what linux does for reset.
The watchdog timer functionality is not yet implemented.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/64
Signed-off-by: Nolan Leake <nolan@sigbus.net>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20210625210209.1870217-1-nolan@sigbus.net
[PMM: tweaked commit title; fixed region size to 0x200;
moved header file to include/]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>