The PoP states:
When EDAT-1 does not apply, and a program interruption due to a
page-translation exception is recognized by the MOVE PAGE
instruction, the contents of the R1 field of the instruction are
stored in bit positions 0-3 of location 162, and the contents of
the R2 field are stored in bit positions 4-7.
If [...] an ASCE-type, region-first-translation,
region-second-translation, region-third-translation, or
segment-translation exception was recognized, the contents of
location 162 are unpredictable.
So we have to write r1/r2 into the lowcore on page-translation
exceptions. Simply handle all exceptions inside our mvpg helper now.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20210315085449.34676-3-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Recent upstream Linux uses the MONITOR CALL instruction for things like
BUG_ON() and WARN_ON(). We currently inject an operation exception when
we hit a MONITOR CALL instruction - which is wrong, as the instruction
is not glued to specific CPU features.
Doing a simple WARN_ON_ONCE() currently results in a panic:
[ 18.162801] illegal operation: 0001 ilc:2 [#1] SMP
[ 18.162889] Modules linked in:
[...]
[ 18.165476] Kernel panic - not syncing: Fatal exception: panic_on_oops
With a proper implementation, we now get:
[ 18.242754] ------------[ cut here ]------------
[ 18.242855] WARNING: CPU: 7 PID: 1 at init/main.c:1534 [...]
[ 18.242919] Modules linked in:
[...]
[ 18.246262] ---[ end trace a420477d71dc97b4 ]---
[ 18.259014] Freeing unused kernel memory: 4220K
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200918085122.26132-1-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Merge VERLL and VERLLV into op_vesv and op_ves, alongside
all of the other vector shift operations.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
These are trivially done by performing a memory operation
with the correct mmu_idx. The only tricky part is using
get_address directly in order to get the address wrapped;
we cannot use la2 because of the format.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20191211203614.15611-3-richard.henderson@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Split the PER handling for store-to-real-address into its
own helper function, conditionally called when PER is
enabled, just as we do for per_branch and per_ifetch.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20191211203614.15611-2-richard.henderson@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
24 and 31-bit address space handling is wrong when it comes to storing
back the addresses to the register.
While at it, read gprs 0 implicitly.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Simulate XxC=0 and ERM=0 (current mode), so we can use the existing
helper function.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
We can reuse some of the infrastructure introduced for
VECTOR FP CONVERT FROM FIXED 64-BIT and friends.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Take care of reading/indicating the 32-bit elements.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
We can reuse most of the infrastructure introduced for
VECTOR FP CONVERT FROM FIXED 64-BIT and friends.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
We can reuse most of the infrastructure added for VECTOR FP ADD.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
1. We'll reuse op_vcdg() for similar instructions later, prepare for
that.
2. We'll reuse vop64_2() later for other instructions.
We have to mangle the erm (effective rounding mode) and the m4 into
the simd_data(), and properly unmangle them again.
Make sure to restore the erm before triggering an exception.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Provide for all three instructions all four combinations of cc bit and
s bit.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
As far as I can see, there is only a tiny difference.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
1. We'll reuse op_vfa() for similar instructions later, prepare for
that.
2. We'll reuse vop64_3() for other instructions later.
3. Take care of modifying the vector register only if no trap happened.
- on traps, flags are not updated and no elements are modified
- traps don't modify the fpc flags
- without traps, all exceptions of all elements are merged
4. We'll reuse check_ieee_exc() later when we need the XxC flag.
We have to check for exceptions after processing each element.
Provide separate handlers for single/all element processing. We'll do
the same for all applicable FP instructions.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Unfortunately, there is no easy way to avoid looping over all elements
in v2. Provide specialized variants for !cc,!rt/!cc,rt/cc,!rt/cc,rt and
all element types. Especially for different values of rt, the compiler
might be able to optimize the code a lot.
Add s390_vec_write_element().
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Similar to VECTOR FIND ELEMENT EQUAL. Core logic courtesy of Richard H.
Add s390_vec_read_element() that can deal with element sizes.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Complicated stuff. Provide two different helpers for CC an !CC handling.
We might want to add more helpers later.
zero_search() and match_index() are courtesy of Richard H.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Let's return the cc value directly via cpu_env. Unfortunately there
isn't a simple way to calculate the value lazily - one would have to
calculate and store e.g. the population count of the mask and the
result so it can be evaluated in a cc helper.
But as VTM only sets the cc, we can assume the value will be needed soon
either way.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Let's keep it simple for now and handle 8/16 bit elements via helpers.
Especially for 8/16, we could come up with some bit tricks.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Similar to VECTOR SHIFT RIGHT ARITHMETICAL.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Similar to VECTOR SHIFT LEFT ARITHMETIC. Add s390_vec_sar() similar to
s390_vec_shr().
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
We can reuse the existing 128-bit shift utility function.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Use the new vector expansion for GVecGen3i.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Take care of properly taking the modulo of the count. We might later
want to come back and create a variant of VERLL where the base register
is 0, resulting in an immediate.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Similar to VECTOR COUNT TRAILING ZEROES.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Yet another set of variants. Implement it similar to VECTOR MULTIPLY AND
ADD *. At least for one variant we have a gvec helper we can reuse.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Quite some variants to handle. At least handle some 32-bit element
variants via gvec expansion (we could also handle 16/32-bit variants
for ODD and EVEN easily via gvec expansion, but let's keep it simple
for now).
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
A galois field multiplication in field 2 is like binary multiplication,
however instead of doing ordinary binary additions, xor's are performed.
So no carries are considered.
Implement all variants via helpers. s390_vec_sar() and s390_vec_shr()
will be reused later on.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Implement it similar to VECTOR COUNT LEADING ZEROS.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
For 8/16, use the 32 bit variant and properly subtract the added
leading zero bits.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Similar to VECTOR AVERAGE but without sign extension.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Handle 32/64-bit elements via gvec expansion and the 8/16 bits via
ool helpers.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Very similar to VECTOR LOAD WITH LENGTH, just the opposite direction.
Properly probe write access before modifying memory.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190307121539.12842-32-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Instead of checking e.g. the first access on every touched page, we should
check the actual access, otherwise we might get false positives when Low
Address Protection (LAP) is active. As probe_write() can only deal with
accesses to one page, we have to loop.
Use i64 for the length, although not needed - easier to reuse
TCG temps we already have in the translation functions where this will
be used. Also allow it to be used from other helpers.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190307121539.12842-28-david@redhat.com>
[CH: add missing page_check_range()]
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Take care of overlying inputs and outputs by using a temporary vector.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190307121539.12842-21-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
This is a big one. Luckily we only have a limited set of such nasty
instructions.
We'll implement all variants with helpers, except when sources and
the destination don't overlap for VECTOR PACK. Provide different helpers
when the cc is to be modified. We'll return the cc then via env->cc_op.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190307121539.12842-20-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Very similar to LOAD COUNT TO BLOCK BOUNDARY, but instead of only
calculating, the actual vector is loaded. Use a temporary vector to
not modify the real vector on exceptions. Initialize that one to zero,
to not leak any data. Provide a fast path if we're loading a full
vector.
As we don't have gvec ool handlers for single vectors, just calculate
the vector address manually.
We can reuse the helper later on for VECTOR LOAD WITH LENGTH. In fact,
we are going to name it "vll" right from the beginning, because that's
a better match.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190307121539.12842-15-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
With the floating-point extension facility, LOAD ROUNDED has
a rounding mode specification and the inexact-exception control (XxC).
Handle them just like e.g. LOAD FP INTEGER.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190218122710.23639-14-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Let's split handling of BFP/DFP rounding mode configuration. Also,
let's not reuse the sfpc handler, use a separate handler so we can
properly check for specification exceptions for SRNMB.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190218122710.23639-10-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
We already forward the 3 bits correctly in the translation functions. We
also have to handle them properly and check for specification
exceptions.
Setting an invalid rounding mode (BFP only, all DFP rounding modes)
results in a specification exception. Setting unassigned bits in the
fpc, results in a specification exception.
This fixes LOAD FPC (AND SIGNAL), SET FPC (AND SIGNAL). Also for,
SET BFP ROUNDING MODE, 3-bit rounding mode is now explicitly checked.
Note: TCG_CALL_NO_WG is required for sfpc handler, as we now inject
exceptions.
We won't be modeling abscence of the "floating-point extension facility"
for now, not necessary as most take the facility for granted without
checking.
z14 PoP, 9-23, "LOAD FPC"
When the floating-point extension facility is
installed, bits 29-31 of the second operand must
specify a valid BFP rounding mode and bits 6-7,
14-15, 24, and 28 must be zero; otherwise, a
specification exception is recognized.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190218122710.23639-9-david@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>