This will allow to share the format conversion function with
vhost-user-gpu.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-id: 20190524130946.31736-4-marcandre.lureau@redhat.com
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
The helper functions are useful to build the vhost-user-gpu backend.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-id: 20190524130946.31736-3-marcandre.lureau@redhat.com
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Add a new vhost-user message to give a unix socket to a vhost-user
backend for GPU display updates.
Back when I started that work, I added a new GPU channel because the
vhost-user protocol wasn't bidirectional. Since then, there is a
vhost-user-slave channel for the slave to send requests to the master.
We could extend it with GPU messages. However, the GPU protocol is
quite orthogonal to vhost-user, thus I chose to have a new dedicated
channel.
See vhost-user-gpu.rst for the protocol details.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-id: 20190524130946.31736-2-marcandre.lureau@redhat.com
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
PRD (Processor recovery diagnostics) is a service available on
OpenPower systems. The opal-prd daemon initializes the PowerPC
Processor through the XSCOM bus and then waits for hardware diagnostic
events.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190527071722.31424-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Newer skiboots (after 6.3) support QEMU platforms that have
characteristics closer to real OpenPOWER systems. The CPU type is used
to define the BMC drivers: Aspeed AST2400 for POWER8 processors and
AST2500 for POWER9s.
Advertise the new platform property names, "qemu,powernv8" and
"qemu,powernv9", using the CPU type chosen for the QEMU PowerNV
machine. Also, advertise the original platform name "qemu,powernv" in
case of POWER8 processors for compatibility with older skiboots.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190527071749.31499-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Commit 0b8c89be7f7b added the hpt_maxpagesize capability to the migration
stream. This is okay for new machine types but it breaks backward migration
to older QEMUs, which don't expect the extra subsection.
Add a compatibility boolean flag to the sPAPR machine class and use it to
skip migration of the capability for machine types 4.0 and older. This
fixes migration to an older QEMU. Note that the destination will emit a
warning:
qemu-system-ppc64: warning: cap-hpt-max-page-size lower level (16) in incoming stream than on destination (24)
This is expected and harmless though. It is okay to migrate from a lower
HPT maximum page size (64k) to a greater one (16M).
Fixes: 0b8c89be7f7b "spapr: Add forgotten capability to migration stream"
Based-on: <20190522074016.10521-3-clg@kaod.org>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155853262675.1158324.17301777846476373459.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Now that XIVE support is complete (QEMU emulated and KVM devices),
change the pseries machine to advertise both interrupt modes: XICS
(P7/P8) and XIVE (P9).
The machine default interrupt modes depends on the version. Current
settings are:
pseries default interrupt mode
4.1 dual
4.0 xics
3.1 xics
3.0 legacy xics (different IRQ number space layout)
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190522074016.10521-3-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Today, when a reset occurs on a pseries machine using the 'dual'
interrupt mode, the KVM devices are released and recreated depending
on the interrupt mode selected by CAS. If XIVE is selected, the SysBus
memory regions of the SpaprXive model are initialized by the KVM
backend initialization routine each time a reset occurs. This leads to
a crash after a couple of resets because the machine reaches the
QDEV_MAX_MMIO limit of SysBusDevice :
qemu-system-ppc64: hw/core/sysbus.c:193: sysbus_init_mmio: Assertion `dev->num_mmio < QDEV_MAX_MMIO' failed.
To fix, initialize the SysBus memory regions in spapr_xive_realize()
called only once and remove the same inits from the QEMU and KVM
backend initialization routines which are called at each reset.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190522074016.10521-2-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This documents the overall XIVE architecture and the XIVE support for
sPAPR guest machines (pseries).
It also provides documentation on the 'info pic' command.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190521082411.24719-1-clg@kaod.org>
Reviewed-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The interrupt mode is chosen by the CAS negotiation process and
activated after a reset to take into account the required changes in
the machine. This brings new constraints on how the associated KVM IRQ
device is initialized.
Currently, each model takes care of the initialization of the KVM
device in their realize method but this is not possible anymore as the
initialization needs to be done globaly when the interrupt mode is
known, i.e. when machine is reseted. It also means that we need a way
to delete a KVM device when another mode is chosen.
Also, to support migration, the QEMU objects holding the state to
transfer should always be available but not necessarily activated.
The overall approach of this proposal is to initialize both interrupt
mode at the QEMU level to keep the IRQ number space in sync and to
allow switching from one mode to another. For the KVM side of things,
the whole initialization of the KVM device, sources and presenters, is
grouped in a single routine. The XICS and XIVE sPAPR IRQ reset
handlers are modified accordingly to handle the init and the delete
sequences of the KVM device.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-15-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Recent commits changed the behavior of ics_set_irq_type() to
initialize correctly LSIs at the KVM level. ics_set_irq_type() is also
called by the realize routine of the different devices of the machine
when initial interrupts are claimed, before the ICSState device is
reseted.
In the case, the ICSIRQState priority is 0x0 and the call to
ics_set_irq_type() results in configuring the target of the
interrupt. On P9, when using the KVM XICS-on-XIVE device, the target
is configured to be server 0, priority 0 and the event queue 0 is
created automatically by KVM.
With the dual interrupt mode creating the KVM device at reset, it
leads to unexpected effects on the guest, mostly blocking IPIs. This
is wrong, fix it by reseting the ICSIRQState structure when
ics_set_irq_type() is called.
Fixes: commit 6cead90c5c ("xics: Write source state to KVM at claim time")
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190513084245.25755-14-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add a check to make sure that the routine initializing the emulated
IRQ device is called once. We don't have much to test on the XICS
side, so we introduce a 'init' boolean under ICSState.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190513084245.25755-13-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The way the XICS and the XIVE devices are initialized follows the same
pattern. First, try to connect to the KVM device and if not possible
fallback on the emulated device, unless a kernel_irqchip is required.
The spapr_irq_init_device() routine implements this sequence in
generic way using new sPAPR IRQ handlers ->init_emu() and ->init_kvm().
The XIVE init sequence is moved under the associated sPAPR IRQ
->init() handler. This will change again when KVM support is added for
the dual interrupt mode.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-12-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The activation of the KVM IRQ device depends on the interrupt mode
chosen at CAS time by the machine and some methods used at reset or by
the migration need to be protected.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190513084245.25755-11-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
If a new interrupt mode is chosen by CAS, the machine generates a
reset to reconfigure. At this point, the connection with the previous
KVM device needs to be closed and a new connection needs to opened
with the KVM device operating the chosen interrupt mode.
New routines are introduced to destroy the XICS and the XIVE KVM
devices. They make use of a new KVM device ioctl which destroys the
device and also disconnects the IRQ presenters from the vCPUs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-10-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This will be used to remove the MMIO regions of the POWER9 XIVE
interrupt controller when the sPAPR machine is reseted.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-9-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
All is in place for KVM now. State synchronization and migration will
come next.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-8-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When the VM is stopped, the VM state handler stabilizes the XIVE IC
and marks the EQ pages dirty. These are then transferred to destination
before the transfer of the device vmstates starts.
The SpaprXive interrupt controller model captures the XIVE internal
tables, EAT and ENDT and the XiveTCTX model does the same for the
thread interrupt context registers.
At restart, the SpaprXive 'post_load' method restores all the XIVE
states. It is called by the sPAPR machine 'post_load' method, when all
XIVE states have been transferred and loaded.
Finally, the source states are restored in the VM change state handler
when the machine reaches the running state.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-7-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This handler is in charge of stabilizing the flow of event notifications
in the XIVE controller before migrating a guest. This is a requirement
before transferring the guest EQ pages to a destination.
When the VM is stopped, the handler sets the source PQs to PENDING to
stop the flow of events and to possibly catch a triggered interrupt
occuring while the VM is stopped. Their previous state is saved. The
XIVE controller is then synced through KVM to flush any in-flight
event notification and to stabilize the EQs. At this stage, the EQ
pages are marked dirty to make sure the EQ pages are transferred if a
migration sequence is in progress.
The previous configuration of the sources is restored when the VM
resumes, after a migration or a stop. If an interrupt was queued while
the VM was stopped, the handler simply generates the missing trigger.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-6-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This extends the KVM XIVE device backend with 'synchronize_state'
methods used to retrieve the state from KVM. The HW state of the
sources, the KVM device and the thread interrupt contexts are
collected for the monitor usage and also migration.
These get operations rely on their KVM counterpart in the host kernel
which acts as a proxy for OPAL, the host firmware. The set operations
will be added for migration support later.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190513084245.25755-5-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
XIVE hcalls are all redirected to QEMU as none are on a fast path.
When necessary, QEMU invokes KVM through specific ioctls to perform
host operations. QEMU should have done the necessary checks before
calling KVM and, in case of failure, H_HARDWARE is simply returned.
H_INT_ESB is a special case that could have been handled under KVM
but the impact on performance was low when under QEMU. Here are some
figures :
kernel irqchip OFF ON
H_INT_ESB KVM QEMU
rtl8139 (LSI ) 1.19 1.24 1.23 Gbits/sec
virtio 31.80 42.30 -- Gbits/sec
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-4-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This introduces a set of helpers when KVM is in use, which create the
KVM XIVE device, initialize the interrupt sources at a KVM level and
connect the interrupt presenters to the vCPU.
They also handle the initialization of the TIMA and the source ESB
memory regions of the controller. These have a different type under
KVM. They are 'ram device' memory mappings, similarly to VFIO, exposed
to the guest and the associated VMAs on the host are populated
dynamically with the appropriate pages using a fault handler.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-3-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Let's suggest to the user how the machine should be configured to allow
the guest to boot successfully.
Suggested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155799221739.527449.14907564571096243745.stgit@bahia.lan>
Reviewed-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
[dwg: Adjusted for style error]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When we added support for NVLink2 passthrough devices, we changed the
phb_placement hook to handle the placement of NVLink2 bridges' specific
resources. For compatibility we use a version that doesn't do this
allocation for old machine types.
However, because of the delay between when the patch was posted and when
it was merged, we ended up with that compatibility hook applying for
machine versions 3.1 and earlier whereas it should apply for 4.0 and
earlier (since the patch was applied early in the 4.1 tree).
Fixes: ec132efaa8 "spapr: Support NVIDIA V100 GPU with NVLink2"
Reported-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
The gvec expanders take care of masking the shift amount
against the element width.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20190518191430.21686-2-richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
spapr machine capabilities are supposed to be sent in the migration stream
so that we can sanity check the source and destination have compatible
configuration. Unfortunately, when we added the hpt-max-page-size
capability, we forgot to add it to the migration state. This means that we
can generate spurious warnings when both ends are configured for large
pages, or potentially fail to warn if the source is configured for huge
pages, but the destination is not.
Fixes: 2309832afd "spapr: Maximum (HPT) pagesize property"
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
The processor stop status and control register (PSSCR) is used to
control the power saving facilities of the thread. The exit criterion
bit (EC) is used to specify whether the thread should be woken by any
interrupt (EC == 0) or only an interrupt enabled in the LPCR to wake the
thread (EC == 1).
The rtas facilities start-cpu and self-stop are used to transition a
vcpu between the stopped and running states. When a vcpu is stopped it
may only be started again by the start-cpu rtas call.
Currently a vcpu in the stopped state will start again whenever an
interrupt comes along due to PSSCR_EC being cleared, and while this is
architecturally correct for a hardware thread, a vcpu is expected to
only be woken by calling start-cpu. This means when performing a reboot
on a tcg machine that the secondary threads will restart while the
primary is still in slof, this is unsupported and causes call traces
like:
SLOF **********************************************************************
QEMU Starting
Build Date = Jan 14 2019 18:00:39
FW Version = git-a5b428e1c1eae703
Press "s" to enter Open Firmware.
qemu: fatal: Trying to deliver HV exception (MSR) 70 with no HV support
NIP 6d61676963313230 LR 000000003dbe0308 CTR 6d61676963313233 XER 0000000000000000 CPU#1
MSR 0000000000000000 HID0 0000000000000000 HF 0000000000000000 iidx 3 didx 3
TB 00000026 115746031956 DECR 18446744073326238463
GPR00 000000003dbe0308 000000003e669fe0 000000003dc10700 0000000000000003
GPR04 000000003dc62198 000000003dc62178 000000003dc0ea48 0000000000000030
GPR08 000000003dc621a8 0000000000000018 000000003e466008 000000003dc50700
GPR12 c00000000093a4e0 c00000003ffff300 c00000003e533f90 0000000000000000
GPR16 0000000000000000 0000000000000000 000000003e466010 000000003dc0b040
GPR20 0000000000008000 000000000000f003 0000000000000006 000000003e66a050
GPR24 000000003dc06400 000000003dc0ae70 0000000000000003 000000000000f001
GPR28 000000003e66a060 ffffffffffffffff 6d61676963313233 0000000000000028
CR 28000222 [ E L - - - E E E ] RES ffffffffffffffff
FPR00 0000000000000000 0000000000000000 0000000000000000 0000000000000000
FPR04 0000000000000000 0000000000000000 0000000000000000 0000000000000000
FPR08 0000000000000000 0000000000000000 0000000000000000 00000000311825e0
FPR12 00000000311825e0 0000000000000000 0000000000000000 0000000000000000
FPR16 0000000000000000 0000000000000000 0000000000000000 0000000000000000
FPR20 0000000000000000 0000000000000000 0000000000000000 0000000000000000
FPR24 0000000000000000 0000000000000000 0000000000000000 0000000000000000
FPR28 0000000000000000 0000000000000000 0000000000000000 0000000000000000
FPSCR 0000000000000000
SRR0 000000003dbe06b0 SRR1 0000000000080000 PVR 00000000004e1200 VRSAVE 0000000000000000
SPRG0 000000003dbe0308 SPRG1 000000003e669fe0 SPRG2 00000000000000d8 SPRG3 000000003dbe0308
SPRG4 0000000000000000 SPRG5 0000000000000000 SPRG6 0000000000000000 SPRG7 0000000000000000
HSRR0 6d61676963313230 HSRR1 0000000000000000
CFAR 000000003dbe3e64
LPCR 0000000004020008
PTCR 0000000000000000 DAR 0000000000000000 DSISR 0000000000000000
Aborted (core dumped)
To fix this, set the PSSCR_EC bit when a vcpu is stopped to disable it
from coming back online until the start-cpu rtas call is made.
Fixes: 21c0d66a9c ("target/ppc: Fix support for "STOP light" states on POWER9")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Message-Id: <20190516005744.24366-1-sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
If a machine is started with ic-mode=xive but the guest only knows
about XICS, eg. an RHEL 7.6 guest, the kernel panics. This is
expected but a bit unfortunate since the crash doesn't provide
much information for the end user to guess what's happening.
Detect that during CAS and exit QEMU with a proper error message
instead, like it is already done for the MMU.
Even if this is less likely to happen, the opposite case of a guest
that only knows about XIVE would certainly fail all the same if the
machine is started with ic-mode=xics.
Also, the only valid values a guest can pass in byte 23 of OV5 during
CAS are 0b00 (XIVE legacy mode) and 0b01 (XIVE exploitation mode). Any
other value is a bug, at least with the current spec. Again, it does
not seem right to let the guest go on without a precise idea of the
interrupt mode it asked for.
Handle these cases as well.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155793986451.464434.12887933000007255549.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We were using set_cpu_vsr*() when we should have used get_cpu_vsr*().
Fixes: 8b3b2d75c7 ("introduce get_cpu_vsr{l,h}() and set_cpu_vsr{l,h}() helpers for VSR register access")
Signed-off-by: Anton Blanchard <anton@ozlabs.org>
Message-Id: <20190509104912.6b754dff@kryten>
Reviewed-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
A few small optimisations:
In VSX_LOAD_SCALAR_DS() we can don't need to read the VSR via
get_cpu_vsrh().
Split VSX_VECTOR_LOAD_STORE() into two functions. Loads only need to
write the VSRs (set_cpu_vsr*()) and stores only need to read the VSRs
(get_cpu_vsr*())
Thanks to Mark Cave-Ayland for the suggestions.
Signed-off-by: Anton Blanchard <anton@ozlabs.org>
Message-Id: <20190509103545.4a7fa71a@kryten>
Reviewed-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Instead of LISN i.e "Logical Interrupt Source Number" as per
Xive PAPR document "info pic" prints as LSIN, let's fix it.
Signed-off-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Message-Id: <20190509080750.21999-1-sathnaga@linux.vnet.ibm.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This proved to be a useful information when debugging issues with OS
event queues allocated above 64GB.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190508171946.657-4-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The high order bits of the address of the OS event queue is stored in
bits [4-31] of word2 of the XIVE END internal structures and the low
order bits in word3. This structure is using Big Endian ordering and
computing the value requires some simple arithmetic which happens to
be wrong. The mask removing bits [0-3] of word2 is applied to the
wrong value and the resulting address is bogus when above 64GB.
Guests with more than 64GB of RAM will allocate pages for the OS event
queues which will reside above the 64GB limit. In this case, the XIVE
device model will wake up the CPUs in case of a notification, such as
IPIs, but the update of the event queue will be written at the wrong
place in memory. The result is uncertain as the guest memory is
trashed and IPI are not delivered.
Introduce a helper xive_end_qaddr() to compute this value correctly in
all places where it is used.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190508171946.657-3-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When the OS configures the EQ page in which to receive event
notifications from the XIVE interrupt controller, the page should be
naturally aligned. Add this check.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190508171946.657-2-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
[dwg: Minor change for printf warning on some platforms]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xxspltib raises a VMX or a VSX exception depending on the register
set it is operating on. We had a check, but it was backwards.
Fixes: f113283525 ("target-ppc: add xxspltib instruction")
Signed-off-by: Anton Blanchard <anton@ozlabs.org>
Message-Id: <20190509061713.69490488@kryten>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
A recent cleanup changed the pre zeroing of the result from 64 bit
to 32 bit operations:
- result.u64[i] = 0;
+ result.VsrW(i) = 0;
This corrupts the result.
Fixes: 60594fea29 ("target/ppc: remove various HOST_WORDS_BIGENDIAN hacks in int_helper.c")
Signed-off-by: Anton Blanchard <anton@ozlabs.org>
Message-Id: <20190507004811.29968-9-anton@ozlabs.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
vslv and vsrv are broken on little endian, we append 00 to the
high byte not the low byte. Fix it by using the VsrB() accessor.
Signed-off-by: Anton Blanchard <anton@ozlabs.org>
Message-Id: <20190507004811.29968-6-anton@ozlabs.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Fix a typo in xxbrq and xxbrw where we put both results into the lower
doubleword.
Fixes: 8b3b2d75c7 ("introduce get_cpu_vsr{l,h}() and set_cpu_vsr{l,h}() helpers for VSR register access")
Signed-off-by: Anton Blanchard <anton@ozlabs.org>
Message-Id: <20190507004811.29968-3-anton@ozlabs.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Fix a typo in xvxsigdp where we put both results into the lower
doubleword.
Fixes: dd977e4f45 ("target/ppc: Optimize x[sv]xsigdp using deposit_i64()")
Signed-off-by: Anton Blanchard <anton@ozlabs.org>
Message-Id: <20190507004811.29968-1-anton@ozlabs.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The ibm,purr and ibm,spurr device tree properties are used to indicate
that the processor implements the Processor Utilisation of Resources
Register (PURR) and Scaled Processor Utilisation of Resources Registers
(SPURR), respectively. Each property has a single value which represents
the level of architecture supported. A value of 1 for ibm,purr means
support for the version of the PURR defined in book 3 in version 2.02 of
the architecture. A value of 1 for ibm,spurr means support for the
version of the SPURR defined in version 2.05 of the architecture.
Add these properties for all processors for which the PURR and SPURR
registers are generated.
Fixes: 0da6f3fef9 "spapr: Reorganize CPU dt generation code"
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Message-Id: <20190506014803.21299-1-sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
AIX 5.1 expects the base year to be 1900. Adjust accordingly.
Signed-off-by: Artyom Tarasenko <atar4qemu@gmail.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190505152839.18650-4-philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The MC146818 RTC was incorrectly added to the i82378 chipset in
commit a04ff94097. In the next commit (506b7ddf88) the PReP
machine use the i82378.
Since the MC146818 is specific to the PReP machine, move its use
there.
Fixes: a04ff94097
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190505152839.18650-3-philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190505152839.18650-2-philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Boxuan Li <liboxuan@connect.hku.hk>
Message-Id: <20190430172842.27369-1-liboxuan@connect.hku.hk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
About half of the values to which CPU_CFLAGS is set
have multiple space separated arguments.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20190501223819.8584-3-richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We cannot use the ppc64le host compiler to build ppc64(be) guest code.
Clean up confusion between cross_cc_powerpc and cross_cc_ppc; make use
of the cflags variable as well.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20190501223819.8584-2-richard.henderson@linaro.org>
[dwg: Dropped hunk relating to ppc64abi32, it doesn't test properly]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We currently have docker cross building targets for powerpc (32-bit, BE)
and ppc64el (64-bit, LE), but not for pcp64 (64-bit, BE). This is an
irritating gap in make check-tcg coverage so correct it.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This test shows that external snapshots and incremental backups are
friends.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Message-id: 20190517152111.206494-3-vsementsov@virtuozzo.com
Signed-off-by: John Snow <jsnow@redhat.com>
Add new optional parameter making possible to merge bitmaps from
different nodes. It is needed to maintain external snapshots during
incremental backup chain history.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Message-id: 20190517152111.206494-2-vsementsov@virtuozzo.com
Signed-off-by: John Snow <jsnow@redhat.com>
Shift from looking at every root BDS to *every* BDS. This will migrate
bitmaps that are attached to blockdev created nodes instead of just ones
attached to emulated storage devices.
Note that this will not migrate anonymous or internal-use bitmaps, as
those are defined as having no name.
This will also fix the Coverity issues Peter Maydell has been asking
about for the past several releases, as well as fixing a real bug.
Reported-by: Peter Maydell <peter.maydell@linaro.org>
Reported-by: Coverity 😅
Reported-by: aihua liang <aliang@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Signed-off-by: John Snow <jsnow@redhat.com>
Message-id: 20190514201926.10407-1-jsnow@redhat.com
Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1652490
Fixes: Coverity CID 1390625
CC: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: John Snow <jsnow@redhat.com>