Peter Maydell
e73b8bb8a3
hw/arm: Set number of MPU regions correctly for an505, an521, an524
The IoTKit, SSE200 and SSE300 all default to 8 MPU regions. The MPS2/MPS3 FPGA images don't override these except in the case of AN547, which uses 16 MPU regions. Define properties on the ARMSSE object for the MPU regions (using the same names as the documented RTL configuration settings, and following the pattern we already have for this device of using all-caps names as the RTL does), and set them in the board code. We don't actually need to override the default except on AN547, but it's simpler code to have the board code set them always rather than tracking which board subtypes want to set them to a non-default value separately from what that value is. Tho overall effect is that for mps2-an505, mps2-an521 and mps3-an524 we now correctly use 8 MPU regions, while mps3-an547 stays at its current 16 regions. It's possible some guest code wrongly depended on the previous incorrectly modeled number of memory regions. (Such guest code should ideally check the number of regions via the MPU_TYPE register.) The old behaviour can be obtained with additional -global arguments to QEMU: For mps2-an521 and mps2-an524: -global sse-200.CPU0_MPU_NS=16 -global sse-200.CPU0_MPU_S=16 -global sse-200.CPU1_MPU_NS=16 -global sse-200.CPU1_MPU_S=16 For mps2-an505: -global sse-200.CPU0_MPU_NS=16 -global sse-200.CPU0_MPU_S=16 NB that the way the implementation allows this use of -global is slightly fragile: if the board code explicitly sets the properties on the sse-200 object, this overrides the -global command line option. So we rely on: - the boards that need fixing all happen to use the SSE defaults - we can write the board code to only set the property if it is different from the default, rather than having all boards explicitly set the property - the board that does need to use a non-default value happens to need to set it to the same value (16) we previously used This works, but there are some kinds of refactoring of the mps2-tz.c code that would break the support for -global here. Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1772 Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Message-id: 20230724174335.2150499-4-peter.maydell@linaro.org
…
=========== QEMU README =========== QEMU is a generic and open source machine & userspace emulator and virtualizer. QEMU is capable of emulating a complete machine in software without any need for hardware virtualization support. By using dynamic translation, it achieves very good performance. QEMU can also integrate with the Xen and KVM hypervisors to provide emulated hardware while allowing the hypervisor to manage the CPU. With hypervisor support, QEMU can achieve near native performance for CPUs. When QEMU emulates CPUs directly it is capable of running operating systems made for one machine (e.g. an ARMv7 board) on a different machine (e.g. an x86_64 PC board). QEMU is also capable of providing userspace API virtualization for Linux and BSD kernel interfaces. This allows binaries compiled against one architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a different architecture ABI (e.g. the Linux x86_64 ABI). This does not involve any hardware emulation, simply CPU and syscall emulation. QEMU aims to fit into a variety of use cases. It can be invoked directly by users wishing to have full control over its behaviour and settings. It also aims to facilitate integration into higher level management layers, by providing a stable command line interface and monitor API. It is commonly invoked indirectly via the libvirt library when using open source applications such as oVirt, OpenStack and virt-manager. QEMU as a whole is released under the GNU General Public License, version 2. For full licensing details, consult the LICENSE file. Documentation ============= Documentation can be found hosted online at `<https://www.qemu.org/documentation/>`_. The documentation for the current development version that is available at `<https://www.qemu.org/docs/master/>`_ is generated from the ``docs/`` folder in the source tree, and is built by `Sphinx <https://www.sphinx-doc.org/en/master/>`_. Building ======== QEMU is multi-platform software intended to be buildable on all modern Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety of other UNIX targets. The simple steps to build QEMU are: .. code-block:: shell mkdir build cd build ../configure make Additional information can also be found online via the QEMU website: * `<https://wiki.qemu.org/Hosts/Linux>`_ * `<https://wiki.qemu.org/Hosts/Mac>`_ * `<https://wiki.qemu.org/Hosts/W32>`_ Submitting patches ================== The QEMU source code is maintained under the GIT version control system. .. code-block:: shell git clone https://gitlab.com/qemu-project/qemu.git When submitting patches, one common approach is to use 'git format-patch' and/or 'git send-email' to format & send the mail to the qemu-devel@nongnu.org mailing list. All patches submitted must contain a 'Signed-off-by' line from the author. Patches should follow the guidelines set out in the `style section <https://www.qemu.org/docs/master/devel/style.html>`_ of the Developers Guide. Additional information on submitting patches can be found online via the QEMU website * `<https://wiki.qemu.org/Contribute/SubmitAPatch>`_ * `<https://wiki.qemu.org/Contribute/TrivialPatches>`_ The QEMU website is also maintained under source control. .. code-block:: shell git clone https://gitlab.com/qemu-project/qemu-web.git * `<https://www.qemu.org/2017/02/04/the-new-qemu-website-is-up/>`_ A 'git-publish' utility was created to make above process less cumbersome, and is highly recommended for making regular contributions, or even just for sending consecutive patch series revisions. It also requires a working 'git send-email' setup, and by default doesn't automate everything, so you may want to go through the above steps manually for once. For installation instructions, please go to * `<https://github.com/stefanha/git-publish>`_ The workflow with 'git-publish' is: .. code-block:: shell $ git checkout master -b my-feature $ # work on new commits, add your 'Signed-off-by' lines to each $ git publish Your patch series will be sent and tagged as my-feature-v1 if you need to refer back to it in the future. Sending v2: .. code-block:: shell $ git checkout my-feature # same topic branch $ # making changes to the commits (using 'git rebase', for example) $ git publish Your patch series will be sent with 'v2' tag in the subject and the git tip will be tagged as my-feature-v2. Bug reporting ============= The QEMU project uses GitLab issues to track bugs. Bugs found when running code built from QEMU git or upstream released sources should be reported via: * `<https://gitlab.com/qemu-project/qemu/-/issues>`_ If using QEMU via an operating system vendor pre-built binary package, it is preferable to report bugs to the vendor's own bug tracker first. If the bug is also known to affect latest upstream code, it can also be reported via GitLab. For additional information on bug reporting consult: * `<https://wiki.qemu.org/Contribute/ReportABug>`_ ChangeLog ========= For version history and release notes, please visit `<https://wiki.qemu.org/ChangeLog/>`_ or look at the git history for more detailed information. Contact ======= The QEMU community can be contacted in a number of ways, with the two main methods being email and IRC * `<mailto:qemu-devel@nongnu.org>`_ * `<https://lists.nongnu.org/mailman/listinfo/qemu-devel>`_ * #qemu on irc.oftc.net Information on additional methods of contacting the community can be found online via the QEMU website: * `<https://wiki.qemu.org/Contribute/StartHere>`_
Description
Languages
C
83.1%
C++
6.3%
Python
3.2%
Dylan
2.8%
Shell
1.6%
Other
2.8%