The compiler has previously been producing binaries on the order of 1.8MB for
hello world programs "fn main() {}". This is largely a result of the compilation
model used by compiling entire libraries into a single object file and because
static linking is favored by default.
When linking, linkers will pull in the entire contents of an object file if any
symbol from the object file is used. This means that if any symbol from a rust
library is used, the entire library is pulled in unconditionally, regardless of
whether the library is used or not.
Traditional C/C++ projects do not normally encounter these large executable
problems because their archives (rust's rlibs) are composed of many objects.
Because of this, linkers can eliminate entire objects from being in the final
executable. With rustc, however, the linker does not have the opportunity to
leave out entire object files.
In order to get similar benefits from dead code stripping at link time, this
commit enables the -ffunction-sections and -fdata-sections flags in LLVM, as
well as passing --gc-sections to the linker *by default*. This means that each
function and each global will be placed into its own section, allowing the
linker to GC all unused functions and data symbols.
By enabling these flags, rust is able to generate much smaller binaries default.
On linux, a hello world binary went from 1.8MB to 597K (a 67% reduction in
size). The output size of dynamic libraries remained constant, but the output
size of rlibs increased, as seen below:
libarena - 2.27% bigger
libcollections - 0.64% bigger
libflate - 0.85% bigger
libfourcc - 14.67% bigger
libgetopts - 4.52% bigger
libglob - 2.74% bigger
libgreen - 9.68% bigger
libhexfloat - 13.68% bigger
liblibc - 10.79% bigger
liblog - 10.95% bigger
libnative - 8.34% bigger
libnum - 2.31% bigger
librand - 1.71% bigger
libregex - 6.43% bigger
librustc - 4.21% bigger
librustdoc - 8.98% bigger
librustuv - 4.11% bigger
libsemver - 2.68% bigger
libserialize - 1.92% bigger
libstd - 3.59% bigger
libsync - 3.96% bigger
libsyntax - 4.96% bigger
libterm - 13.96% bigger
libtest - 6.03% bigger
libtime - 2.86% bigger
liburl - 6.59% bigger
libuuid - 4.70% bigger
libworkcache - 8.44% bigger
This increase in size is a result of encoding many more section names into each
object file (rlib). These increases are moderate enough that this change seems
worthwhile to me, due to the drastic improvements seen in the final artifacts.
The overall increase of the stage2 target folder (not the size of an install)
went from 337MB to 348MB (3% increase).
Additionally, linking is generally slower when executed with all these new
sections plus the --gc-sections flag. The stage0 compiler takes 1.4s to link the
`rustc` binary, where the stage1 compiler takes 1.9s to link the binary. Three
megabytes are shaved off the binary. I found this increase in link time to be
acceptable relative to the benefits of code size gained.
This commit only enables --gc-sections for *executables*, not dynamic libraries.
LLVM does all the heavy lifting when producing an object file for a dynamic
library, so there is little else for the linker to do (remember that we only
have one object file).
I conducted similar experiments by putting a *module's* functions and data
symbols into its own section (granularity moved to a module level instead of a
function/static level). The size benefits of a hello world were seen to be on
the order of 400K rather than 1.2MB. It seemed that enough benefit was gained
using ffunction-sections that this route was less desirable, despite the lesser
increases in binary rlib size.
Also move prelude explanation to the prelude module.
This tries to provide a guide to what's in the standard library, organized bottom up from primitives to I/O.
There is currently not much precedent for target crates requiring syntax
extensions to compile their test versions. This dependency is possible, but
can't be encoded through the normal means of DEPS_regex because it is a
test-only dependency and it must be a *host* dependency (it's a syntax
extension).
Closes#13844
The compiler has previously been producing binaries on the order of 1.8MB for
hello world programs "fn main() {}". This is largely a result of the compilation
model used by compiling entire libraries into a single object file and because
static linking is favored by default.
When linking, linkers will pull in the entire contents of an object file if any
symbol from the object file is used. This means that if any symbol from a rust
library is used, the entire library is pulled in unconditionally, regardless of
whether the library is used or not.
Traditional C/C++ projects do not normally encounter these large executable
problems because their archives (rust's rlibs) are composed of many objects.
Because of this, linkers can eliminate entire objects from being in the final
executable. With rustc, however, the linker does not have the opportunity to
leave out entire object files.
In order to get similar benefits from dead code stripping at link time, this
commit enables the -ffunction-sections and -fdata-sections flags in LLVM, as
well as passing --gc-sections to the linker *by default*. This means that each
function and each global will be placed into its own section, allowing the
linker to GC all unused functions and data symbols.
By enabling these flags, rust is able to generate much smaller binaries default.
On linux, a hello world binary went from 1.8MB to 597K (a 67% reduction in
size). The output size of dynamic libraries remained constant, but the output
size of rlibs increased, as seen below:
libarena - 2.27% bigger ( 292872 => 299508)
libcollections - 0.64% bigger ( 6765884 => 6809076)
libflate - 0.83% bigger ( 186516 => 188060)
libfourcc - 14.71% bigger ( 307290 => 352498)
libgetopts - 4.42% bigger ( 761468 => 795102)
libglob - 2.73% bigger ( 899932 => 924542)
libgreen - 9.63% bigger ( 1281718 => 1405124)
libhexfloat - 13.88% bigger ( 333738 => 380060)
liblibc - 10.79% bigger ( 551280 => 610736)
liblog - 10.93% bigger ( 218208 => 242060)
libnative - 8.26% bigger ( 1362096 => 1474658)
libnum - 2.34% bigger ( 2583400 => 2643916)
librand - 1.72% bigger ( 1608684 => 1636394)
libregex - 6.50% bigger ( 1747768 => 1861398)
librustc - 4.21% bigger (151820192 => 158218924)
librustdoc - 8.96% bigger ( 13142604 => 14320544)
librustuv - 4.13% bigger ( 4366896 => 4547304)
libsemver - 2.66% bigger ( 396166 => 406686)
libserialize - 1.91% bigger ( 6878396 => 7009822)
libstd - 3.59% bigger ( 39485286 => 40902218)
libsync - 3.95% bigger ( 1386390 => 1441204)
libsyntax - 4.96% bigger ( 35757202 => 37530798)
libterm - 13.99% bigger ( 924580 => 1053902)
libtest - 6.04% bigger ( 2455720 => 2604092)
libtime - 2.84% bigger ( 1075708 => 1106242)
liburl - 6.53% bigger ( 590458 => 629004)
libuuid - 4.63% bigger ( 326350 => 341466)
libworkcache - 8.45% bigger ( 1230702 => 1334750)
This increase in size is a result of encoding many more section names into each
object file (rlib). These increases are moderate enough that this change seems
worthwhile to me, due to the drastic improvements seen in the final artifacts.
The overall increase of the stage2 target folder (not the size of an install)
went from 337MB to 348MB (3% increase).
Additionally, linking is generally slower when executed with all these new
sections plus the --gc-sections flag. The stage0 compiler takes 1.4s to link the
`rustc` binary, where the stage1 compiler takes 1.9s to link the binary. Three
megabytes are shaved off the binary. I found this increase in link time to be
acceptable relative to the benefits of code size gained.
This commit only enables --gc-sections for *executables*, not dynamic libraries.
LLVM does all the heavy lifting when producing an object file for a dynamic
library, so there is little else for the linker to do (remember that we only
have one object file).
I conducted similar experiments by putting a *module's* functions and data
symbols into its own section (granularity moved to a module level instead of a
function/static level). The size benefits of a hello world were seen to be on
the order of 400K rather than 1.2MB. It seemed that enough benefit was gained
using ffunction-sections that this route was less desirable, despite the lesser
increases in binary rlib size.
There is currently not much precedent for target crates requiring syntax
extensions to compile their test versions. This dependency is possible, but
can't be encoded through the normal means of DEPS_regex because it is a
test-only dependency and it must be a *host* dependency (it's a syntax
extension).
Closes#13844
This flag to the linker asks it to strip away all dead code during linking, as
well as dead data. This reduces the size of hello world from 1.7MB to 458K on my
system (70% reduction).
I have not seen this impact link times negatively, and I have seen this pass
'make check' successfully. I am slightly wary of adding this option, but the
benefits are so huge tha I think we should work hard to work around any issues
rather than avoid using the flag entirely.
All links inside docblocks will have their color set to `#4e8bca` (a
light blue color to contrast against the black text). This color also
offers a visible contrast from the surrounding text if viewed as
grayscale, making it suitable for accessability.
Docblock links will also be underlined when hovered over.
Currently, in both chrome and firefox, if I type something in the search box in the reference docs I get immediately the search results. That's great. However, if I want to go back to the doc I was reading and try to press the back button, I am immediately forwarded again to the search results. This is caused by the fact that the search term is (deliberately) left in the search box, and the search() function is called as if I typed the search term again.
I disabled calling the search() function if there's no search term in the URL, and now it seems to work fine.
I hope I'm sending the pull request correctly - I'm not really used to git and github.
Similar to my recent changes to ~[T]/&[T], these changes remove the vstore abstraction and represent str types as ~(str) and &(str). The Option<uint> in ty_str is the length of the string, None if the string is dynamically sized.
This flag to the linker asks it to strip away all dead code during linking, as
well as dead data. This reduces the size of hello world from 1.7MB to 458K on my
system (70% reduction).
I have not seen this impact link times negatively, and I have seen this pass
'make check' successfully. I am slightly wary of adding this option, but the
benefits are so huge tha I think we should work hard to work around any issues
rather than avoid using the flag entirely.
This PR is primarily motivated by (and fixes) #12926.
We currently only have a span for the individual item itself and not for the referred contents. This normally does not cause a problem since both are located in the same file; it *is* possible that the contained statement or item is located in the other file (the syntax extension can do that), but even in that case the syntax extension should be located in the same file as the item. The module item (i.e. `mod foo;`) is the only exception here, and thus warrants a special treatment.
Rustdoc would now distinguish `mod foo;` from `mod foo {...}` by checking if the span for the module item and module contents is in different files. If it's the case, we'd prefer module contents over module item. There are alternative strategies, but as noted above we will have some corner cases if we don't record the contents span explicitly.
Similar to my recent changes to ~[T]/&[T], these changes remove the vstore abstraction and represent str types as ~(str) and &(str). The Option<uint> in ty_str is the length of the string, None if the string is dynamically sized.
As of cc6ec8df, the Owned closures example uses println! instead of
debug!, making a note about seeing debug seem out-of-place in this
section.
Since debug! is not used elsewhere in the tutorial, remove the note
entirely.
Hello,
With the latest version of Rust, calling to the function [`std::io::standard_error()`](http://static.rust-lang.org/doc/master/std/io/fn.standard_error.html) succeeds only if the value of the argument is `EndOfFile`, `IoUnavailable` or `InvalidInput`. If the function is called with another value as argument, it fails without message.
Here is a piece of code that reproduces the problem:
```rust
use std::io::{standard_error,EndOfFile,FileNotFound,PermissionDenied};
fn main() {
println!("Error 1: {}", standard_error(EndOfFile)); // does not fail
println!("Error 2: {}", standard_error(FileNotFound)); // fails
println!("Error 3: {}", standard_error(PermissionDenied)); //fails
}
```
This was because the `IoErrorKind` passed as argument wasn't matched against all the possible values.
I added the missing branches in the `match` statement inside the function, and i removed the call to the `fail!()` macro. I rebuilt the crate with the latest `rustc` version and it seems to works.
As of cc6ec8df, the Owned closures example uses println! instead of
debug!, making a note about seeing debug seem out-of-place in this
section.
Since debug! is not used elsewhere in the tutorial, remove the note
entirely.
Just modified the documentation for parse_bytes to make it more clear how the bytes were parsed (big endian) and to show an example of what it returned. I also added documentation for the to_str_bytes which previously had no documentation (besides one stackoverflow post).
the basic strategy is to distinguish `mod foo;` from `mod foo {...}`
by checking if the span for the module item and module contents is
in different files. if it's the case, we prefer module contents.
it is technically possible to fix#12926 without changing the AST,
probably by checking the individual items' span. this is not without
a problem though, since it is possible that some items inside
`mod foo {...}` may have originated from other file (e.g. `include!`).
therefore it is better to record both spans explicitly.
I filed bugs #13734 and #13759 recently, and then realized I could probably fix them myself. This does exactly that, with a couple additional modifications and additions to the test-suite to pick up on that.
I've never done this before, so please feel free to tell me all the things I'm doing wrong or could be doing better.
this is useful when the module item and module contents are defined
from different files (like rustdoc). in most cases the original span
for the module item would be used; in other cases, the span for
module contents is available separately at the `inner` field.
It reflected the obsolete syntax `use a, b, c;` and did not make past the parser (though it was a non-fatal error so we can continue). This legacy affected many portions of rustc and rustdoc as well, so this PR cleans them up altogether.
As a side effect of cleanup, we now have `SCHEMA_VERSION` in `rustdoc::clean` (instead of the crate root), so it has a better chance to be updated when `rustdoc::clean` gets updated.
This addresses the ICE from #13763, but it does not allow the test to compile,
due to #13768. An alternate test was checked in in the meantime.
Closes#13763