dee35d026c
79 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Nelson Chu
|
bd0cf5a6ba |
RISC-V: Support the ISA-dependent CSR checking.
According to the riscv privilege spec, some CSR are only valid when rv32 or the specific extension is set. We extend the DECLARE_CSR and DECLARE_CSR_ALIAS to record more informaton we need, and then check whether the CSR is valid according to these information. We report warning message when the CSR is invalid, so we have a choice between error and warning by --fatal-warnings option. Also, a --no-warn/-W option is used to turn the warnings off, if people don't want the warnings. gas/ * config/tc-riscv.c (enum riscv_csr_class): New enum. Used to decide whether or not this CSR is legal in the current ISA string. (struct riscv_csr_extra): New structure to hold all extra information of CSR. (riscv_init_csr_hash): New function. According to the DECLARE_CSR and DECLARE_CSR_ALIAS, insert CSR extra information into csr_extra_hash. Call hash_reg_name to insert CSR address into reg_names_hash. (md_begin): Call riscv_init_csr_hashes for each DECLARE_CSR. (reg_csr_lookup_internal, riscv_csr_class_check): New functions. Decide whether the CSR is valid according to the csr_extra_hash. (init_opcode_hash): Update 'if (hash_error != NULL)' as hash_error is not a boolean. This is same as riscv_init_csr_hash, so keep the consistent usage. * testsuite/gas/riscv/csr-dw-regnums.d: Add -march=rv32if option. * testsuite/gas/riscv/priv-reg.d: Add f-ext by -march option. * testsuite/gas/riscv/priv-reg-fail-fext.d: New testcase. The source file is `priv-reg.s`, and the ISA is rv32i without f-ext, so the f-ext CSR are not allowed. * testsuite/gas/riscv/priv-reg-fail-fext.l: Likewise. * testsuite/gas/riscv/priv-reg-fail-rv32-only.d: New testcase. The source file is `priv-reg.s`, and the ISA is rv64if, so the rv32-only CSR are not allowed. * testsuite/gas/riscv/priv-reg-fail-rv32-only.l: Likewise. include/ * opcode/riscv-opc.h: Extend DECLARE_CSR and DECLARE_CSR_ALIAS to record riscv_csr_class. opcodes/ * riscv-dis.c (print_insn_args): Updated since the DECLARE_CSR is changed. gdb/ * riscv-tdep.c: Updated since the DECLARE_CSR is changed. * riscv-tdep.h: Likewise. * features/riscv/rebuild-csr-xml.sh: Generate the 64bit-csr.xml without rv32-only CSR. * features/riscv/64bit-csr.xml: Regernated. binutils/ * dwarf.c: Updated since the DECLARE_CSR is changed. |
||
Andrew Burgess
|
d1c9b20ff9 |
gdb/riscv: Update API for looking up target descriptions
In preparation for adding the RISC-V gdbserver, this commit restructures the API for looking up target descriptions. The current API is riscv_create_target_description, which creates a target description from a riscv_gdbarch_features, but also caches the created target descriptions so that for a given features object we always get back the same target description object. This is important for GDB due to the way gdbarch objects are reused. As the same target description is always returned to GDB, and can be returned multiple times, it is returned as a const, however, the current cache actually stores a non-const target description. This is improved in this patch so that the cache holds a const target description. For gdbsever, this caching of the target descriptions is not needed, the gdbserver looks up one target description to describe the target it is actually running on and that is it. Further the gdbserver actually needs to modify the target description that is looked up, so for the gdbsever, returning a const target description is not acceptable. This commit aims to address this by creating two parallel target description APIs, on is the old riscv_create_target_description, however, this no longer performs any caching, and just creates a new target description, and returns it as non-const. The second API is riscv_lookup_target_description, this one performs the caching, and calls riscv_create_target_description to create a target description when needed. In order to make sure the correct API is used in the correct place I have guarded the code using the GDBSERVER define. For GDB the riscv_create_target_description is static, and not generally usable throughout GDB, only the lookup API is global. In gdbserver, the lookup functions, and the cache are not defined or created at all, only the riscv_create_target_description API is available. There should be no user visible changes after this commit. gdb/ChangeLog: * arch/riscv.c (struct riscv_gdbarch_features_hasher): Only define if GDBSERVER is not defined. (riscv_tdesc_cache): Likewise, also store const target_desc. (STATIC_IN_GDB): Define. (riscv_create_target_description): Update declaration with STATIC_IN_GDB. (riscv_lookup_target_description): New function, only define if GDBSERVER is not defined. * arch/riscv.h (riscv_create_target_description): Declare only when GDBSERVER is defined. (riscv_lookup_target_description): New declaration when GDBSERVER is not defined. * nat/riscv-linux-tdesc.c (riscv_linux_read_description): Rename to... (riscv_linux_read_features): ...this, and return riscv_gdbarch_features instead of target_desc. * nat/riscv-linux-tdesc.h: Include 'arch/riscv.h'. (riscv_linux_read_description): Rename to... (riscv_linux_read_features): ...this. * riscv-linux-nat.c (riscv_linux_nat_target::read_description): Update to use riscv_gdbarch_features and riscv_lookup_target_description. * riscv-tdep.c (riscv_find_default_target_description): Use riscv_lookup_target_description instead of riscv_create_target_description. |
||
Tom Tromey
|
82ca895718 |
Move DWARF code to dwarf2/ subdirectory
This moves all the remaining DWARF code to the new dwarf2 subdirectory. This is just a simple renaming, with updates to includes as needed. gdb/ChangeLog 2020-02-08 Tom Tromey <tom@tromey.com> * dwarf2/expr.c: Rename from dwarf2expr.c. * dwarf2/expr.h: Rename from dwarf2expr.h. * dwarf2/frame-tailcall.c: Rename from dwarf2-frame-tailcall.c. * dwarf2/frame-tailcall.h: Rename from dwarf2-frame-tailcall.h. * dwarf2/frame.c: Rename from dwarf2-frame.c. * dwarf2/frame.h: Rename from dwarf2-frame.h. * dwarf2/index-cache.c: Rename from dwarf-index-cache.c. * dwarf2/index-cache.h: Rename from dwarf-index-cache.h. * dwarf2/index-common.c: Rename from dwarf-index-common.c. * dwarf2/index-common.h: Rename from dwarf-index-common.h. * dwarf2/index-write.c: Rename from dwarf-index-write.c. * dwarf2/index-write.h: Rename from dwarf-index-write.h. * dwarf2/loc.c: Rename from dwarf2loc.c. * dwarf2/loc.h: Rename from dwarf2loc.h. * dwarf2/read.c: Rename from dwarf2read.c. * dwarf2/read.h: Rename from dwarf2read.h. * dwarf2/abbrev.c, aarch64-tdep.c, alpha-tdep.c, amd64-darwin-tdep.c, arc-tdep.c, arm-tdep.c, bfin-tdep.c, compile/compile-c-symbols.c, compile/compile-cplus-symbols.c, compile/compile-loc2c.c, cris-tdep.c, csky-tdep.c, findvar.c, gdbtypes.c, guile/scm-type.c, h8300-tdep.c, hppa-bsd-tdep.c, hppa-linux-tdep.c, i386-darwin-tdep.c, i386-linux-tdep.c, i386-tdep.c, iq2000-tdep.c, m32c-tdep.c, m68hc11-tdep.c, m68k-tdep.c, microblaze-tdep.c, mips-tdep.c, mn10300-tdep.c, msp430-tdep.c, nds32-tdep.c, nios2-tdep.c, or1k-tdep.c, riscv-tdep.c, rl78-tdep.c, rs6000-tdep.c, rx-tdep.c, s12z-tdep.c, s390-tdep.c, score-tdep.c, sh-tdep.c, sparc-linux-tdep.c, sparc-tdep.c, sparc64-linux-tdep.c, sparc64-tdep.c, tic6x-tdep.c, tilegx-tdep.c, v850-tdep.c, xstormy16-tdep.c, xtensa-tdep.c: Update. * Makefile.in (COMMON_SFILES): Update. (HFILES_NO_SRCDIR): Update. Change-Id: Ied9ce1436cd27ac4a4cffef10ec92e396f181928 |
||
Simon Marchi
|
6c2659886f |
gdb: add back declarations for _initialize functions
I'd like to enable the -Wmissing-declarations warning. However, it
warns for every _initialize function, for example:
CXX dcache.o
/home/smarchi/src/binutils-gdb/gdb/dcache.c: In function ‘void _initialize_dcache()’:
/home/smarchi/src/binutils-gdb/gdb/dcache.c:688:1: error: no previous declaration for ‘void _initialize_dcache()’ [-Werror=missing-declarations]
_initialize_dcache (void)
^~~~~~~~~~~~~~~~~~
The only practical way forward I found is to add back the declarations,
which were removed by this commit:
commit
|
||
Joel Brobecker
|
b811d2c292 |
Update copyright year range in all GDB files.
gdb/ChangeLog: Update copyright year range in all GDB files. |
||
Tom Tromey
|
db3ad2f031 |
Ravenscar port for RISC-V
This adds Ravenscar support to gdb for RISC-V targets. This was tested internally using AdaCore's test suite and qemu. gdb/ChangeLog 2019-12-12 Tom Tromey <tromey@adacore.com> * Makefile.in (ALL_TARGET_OBS): Add riscv-ravenscar-thread.o. (HFILES_NO_SRCDIR): Add riscv-ravenscar-thread.h. (ALLDEPFILES): Add riscv-ravenscar-thread.c. * configure.tgt (riscv-*-*): Add riscv-ravenscar-thread.o. * riscv-ravenscar-thread.c: New file. * riscv-ravenscar-thread.h: New file. * riscv-tdep.c (riscv_gdbarch_init): Call register_riscv_ravenscar_ops. Change-Id: Ic47a3b3cfbbe80c2c82a5f48d2e0481845cac8b0 |
||
Peeter Joot
|
34877895ca |
Adjust byte order variable display/change if DW_AT_endianity is present.
- Rationale: It is possible for compilers to indicate the desired byte order interpretation of scalar variables using the DWARF attribute: DW_AT_endianity A type flagged with this variable would typically use one of: DW_END_big DW_END_little which instructs the debugger what the desired byte order interpretation of the variable should be. The GCC compiler (as of V6) has a mechanism for setting the desired byte ordering of the fields within a structure or union. For, example, on a little endian target, a structure declared as: struct big { int v; short a[4]; } __attribute__( ( scalar_storage_order( "big-endian" ) ) ); could be used to ensure all the structure members have a big-endian interpretation (the compiler would automatically insert byte swap instructions before and after respective store and load instructions). - To reproduce GCC V8 is required to correctly emit DW_AT_endianity DWARF attributes in all situations when the scalar_storage_order attribute is used. A fix for (dwarf endianity instrumentation) for GCC V6-V7 can be found in the URL field of the following PR: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82509 - Test-case: A new test case (testsuite/gdb.base/endianity.*) is included with this patch. Manual testing for mixed endianity code has also been done with GCC V8. See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82509#c4 - Observed vs. expected: Without this change, using scalar_storage_order that doesn't match the target, such as struct otherendian { int v; } __attribute__( ( scalar_storage_order( "big-endian" ) ) ); would behave like the following on a little endian target: Breakpoint 1 at 0x401135: file endianity.c, line 41. (gdb) run Starting program: /home/pjoot/freeware/t/a.out Missing separate debuginfos, use: debuginfo-install glibc-2.17-292.el7.x86_64 Breakpoint 1, main () at endianity.c:41 41 struct otherendian o = {3}; (gdb) n 43 do_nothing (&o); /* START */ (gdb) p o $1 = {v = 50331648} (gdb) p /x $2 = {v = 0x3000000} whereas with this gdb enhancement we can access the variable with the user specified endianity: Breakpoint 1, main () at endianity.c:41 41 struct otherendian o = {3}; (gdb) p o $1 = {v = 0} (gdb) n 43 do_nothing (&o); /* START */ (gdb) p o $2 = {v = 3} (gdb) p o.v = 4 $3 = 4 (gdb) p o.v $4 = 4 (gdb) x/4xb &o.v 0x7fffffffd90c: 0x00 0x00 0x00 0x04 (observe that the 4 byte int variable has a big endian representation in the hex dump.) gdb/ChangeLog 2019-11-21 Peeter Joot <peeter.joot@lzlabs.com> Byte reverse display of variables with DW_END_big, DW_END_little (DW_AT_endianity) dwarf attributes if different than the native byte order. * ada-lang.c (ada_value_binop): Use type_byte_order instead of gdbarch_byte_order. * ada-valprint.c (printstr): (ada_val_print_string): * ada-lang.c (value_pointer): (ada_value_binop): Use type_byte_order instead of gdbarch_byte_order. * c-lang.c (c_get_string): Use type_byte_order instead of gdbarch_byte_order. * c-valprint.c (c_val_print_array): Use type_byte_order instead of gdbarch_byte_order. * cp-valprint.c (cp_print_class_member): Use type_byte_order instead of gdbarch_byte_order. * dwarf2loc.c (rw_pieced_value): Use type_byte_order instead of gdbarch_byte_order. * dwarf2read.c (read_base_type): Handle DW_END_big, DW_END_little * f-lang.c (f_get_encoding): Use type_byte_order instead of gdbarch_byte_order. * findvar.c (default_read_var_value): Use type_byte_order instead of gdbarch_byte_order. * gdbtypes.c (check_types_equal): Require matching TYPE_ENDIANITY_NOT_DEFAULT if set. (recursive_dump_type): Print TYPE_ENDIANITY_BIG, and TYPE_ENDIANITY_LITTLE if set. (type_byte_order): new function. * gdbtypes.h (TYPE_ENDIANITY_NOT_DEFAULT): New macro. (struct main_type) <flag_endianity_not_default>: New field. (type_byte_order): New function. * infcmd.c (default_print_one_register_info): Use type_byte_order instead of gdbarch_byte_order. * p-lang.c (pascal_printstr): Use type_byte_order instead of gdbarch_byte_order. * p-valprint.c (pascal_val_print): Use type_byte_order instead of gdbarch_byte_order. * printcmd.c (print_scalar_formatted): Use type_byte_order instead of gdbarch_byte_order. * solib-darwin.c (darwin_current_sos): Use type_byte_order instead of gdbarch_byte_order. * solib-svr4.c (solib_svr4_r_ldsomap): Use type_byte_order instead of gdbarch_byte_order. * stap-probe.c (stap_modify_semaphore): Use type_byte_order instead of gdbarch_byte_order. * target-float.c (target_float_same_format_p): Use type_byte_order instead of gdbarch_byte_order. * valarith.c (scalar_binop): (value_bit_index): Use type_byte_order instead of gdbarch_byte_order. * valops.c (value_cast): Use type_byte_order instead of gdbarch_byte_order. * valprint.c (generic_emit_char): (generic_printstr): (val_print_string): Use type_byte_order instead of gdbarch_byte_order. * value.c (unpack_long): (unpack_bits_as_long): (unpack_value_bitfield): (modify_field): (pack_long): (pack_unsigned_long): Use type_byte_order instead of gdbarch_byte_order. * findvar.c (unsigned_pointer_to_address): (signed_pointer_to_address): (unsigned_address_to_pointer): (address_to_signed_pointer): (default_read_var_value): (default_value_from_register): Use type_byte_order instead of gdbarch_byte_order. * gnu-v3-abi.c (gnuv3_make_method_ptr): Use type_byte_order instead of gdbarch_byte_order. * riscv-tdep.c (riscv_print_one_register_info): Use type_byte_order instead of gdbarch_byte_order. gdb/testsuite/ChangeLog 2019-11-21 Peeter Joot <peeter.joot@lzlabs.com> * gdb.base/endianity.c: New test. * gdb.base/endianity.exp: New file. Change-Id: I4bd98c1b4508c2d7c5a5dbb15d7b7b1cb4e667e2 |
||
Tom de Vries
|
405feb71d4 |
[gdb] Fix typos in comments
Fix typos in comments. NFC. Tested on x86_64-linux. gdb/ChangeLog: 2019-10-17 Tom de Vries <tdevries@suse.de> * arm-nbsd-nat.c: Fix typos in comments. * arm-tdep.c: Same. * darwin-nat-info.c: Same. * dwarf2read.c: Same. * elfread.c: Same. * event-top.c: Same. * findvar.c: Same. * gdbtypes.c: Same. * hppa-tdep.c: Same. * i386-tdep.c: Same. * jit.c: Same. * main.c: Same. * mdebugread.c: Same. * moxie-tdep.c: Same. * nto-procfs.c: Same. * osabi.c: Same. * ppc-linux-tdep.c: Same. * remote.c: Same. * riscv-tdep.c: Same. * s390-tdep.c: Same. * sh-tdep.c: Same. * sparc-linux-tdep.c: Same. * sparc-nat.c: Same. * stack.c: Same. * target-descriptions.c: Same. * top.c: Same. * varobj.c: Same. Change-Id: I6047967abd2d51c9000dea15184d19f4e952c3ff |
||
Jim Wilson
|
ff371ec999 |
Add initial compile command support to RISC-V port.
This adds initial compile command support to the RISC-V port. This fixes about 228 testsuite failures on a riscv64-linux machine. We need to get the triplet right which is normally riscv64 or riscv32 instead of the default riscv. Also, we need to get the compiler options right, since we don't accept the default -m64 and -mcmodel=large options, so we need to construct -march and -mabi options which are correct for the target. We currently don't have info about all extensions used by the target, so this may need to be adjusted later. For now, I'm assuming that we have all extensions required by the linux platform spec. gdb/ * riscv-tdep.c (riscv_gcc_target_options): New. (riscv_gnu_triplet_regexp): New. (riscv_gdbarch_init): Call set_gdbarch_gcc_triplet_options and set_gdbarch_gnu_triplet_regexp. Change-Id: I315ce8de7789ddf7bdd3b532f917519464941294 |
||
Jim Wilson
|
a83d4ef693 |
RISC-V: Fix two ARI warnings.
> gdb/riscv-tdep.c:1657: code: %ll: Do not use printf(%ll), instead use printf(%s,phex()) to dump a 'long long' value gdb/riscv-tdep.c:1657: "Writing %lld-byte nop instruction to %s: %s\n", > gdb/riscv-tdep.c:1658: code: long long: Do not use 'long long', instead use LONGEST gdb/riscv-tdep.c:1658: ((unsigned long long) sizeof (nop_insn)), fprintf_unfiltered doesn't support z (or j for that matter), and fixing that is a larger patch than I'd like to write, so this does basically what the ARI warnings recommends. We don't need the cast as there is a prototype for plongest. * riscv-tdep.c (riscv_push_dummy_code): Change %lld to %s and use plongest instead of unsigned long long cast. |
||
Andrew Burgess
|
01e175fe1b |
gdb/riscv: Write 4-byte nop to dummy code region before inferior calls
When making inferior function calls GDB sets up a dummy code region on the stack, and places a breakpoint within that region. If the random stack contents appear to be a compressed instruction then GDB will place a compressed breakpoint, which can cause problems if the target doesn't support compressed instructions. This commit prevents this issue by writing a 4-byte nop instruction to the dummy region at the time the region is allocated. With this nop instruction in place, when we come to insert the breakpoint then an uncompressed breakpoint will be used. This is similar to other targets, for example mips. gdb/ChangeLog: * riscv-tdep.c (riscv_push_dummy_code): Write a 4-byte nop instruction to the dummy code region. gdb/testsuite/ChangeLog: * gdb.arch/riscv-bp-infcall.c: New file. * gdb.arch/riscv-bp-infcall.exp: New file. |
||
Tom Tromey
|
268a13a5a3 |
Rename common to gdbsupport
This is the next patch in the ongoing series to move gdbsever to the top level. This patch just renames the "common" directory. The idea is to do this move in two parts: first rename the directory (this patch), then move the directory to the top. This approach makes the patches a bit more tractable. I chose the name "gdbsupport" for the directory. However, as this patch was largely written by sed, we could pick a new name without too much difficulty. Tested by the buildbot. gdb/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * contrib/ari/gdb_ari.sh: Change common to gdbsupport. * configure: Rebuild. * configure.ac: Change common to gdbsupport. * gdbsupport: Rename from common. * acinclude.m4: Change common to gdbsupport. * Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES) (HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to gdbsupport. * aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c, amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c, amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c, amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c, amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c, arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c, arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c, arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c, arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c, auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h, btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c, charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c, cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c, coff-pe-read.c, command.h, compile/compile-c-support.c, compile/compile-c.h, compile/compile-cplus-symbols.c, compile/compile-cplus-types.c, compile/compile-cplus.h, compile/compile-loc2c.c, compile/compile.c, completer.c, completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c, cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c, darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c, disasm.h, dtrace-probe.c, dwarf-index-cache.c, dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c, dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c, event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c, features/aarch64-core.c, features/aarch64-fpu.c, features/aarch64-pauth.c, features/aarch64-sve.c, features/i386/32bit-avx.c, features/i386/32bit-avx512.c, features/i386/32bit-core.c, features/i386/32bit-linux.c, features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c, features/i386/32bit-segments.c, features/i386/32bit-sse.c, features/i386/64bit-avx.c, features/i386/64bit-avx512.c, features/i386/64bit-core.c, features/i386/64bit-linux.c, features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c, features/i386/64bit-segments.c, features/i386/64bit-sse.c, features/i386/x32-core.c, features/riscv/32bit-cpu.c, features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c, features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c, features/riscv/64bit-fpu.c, features/tic6x-c6xp.c, features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h, findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h, gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c, gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c, go32-nat.c, guile/guile.c, guile/scm-ports.c, guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c, i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c, i386-linux-tdep.c, i386-tdep.c, i387-tdep.c, ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c, inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h, inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h, inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c, linux-tdep.c, linux-thread-db.c, location.c, machoread.c, macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h, mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c, mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h, minsyms.c, mips-linux-tdep.c, namespace.h, nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h, nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c, nat/amd64-linux-siginfo.c, nat/fork-inferior.c, nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c, nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c, nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h, nat/linux-waitpid.c, nat/mips-linux-watch.c, nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c, nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c, nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h, obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c, parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c, procfs.c, producer.c, progspace.h, psymtab.h, python/py-framefilter.c, python/py-inferior.c, python/py-ref.h, python/py-type.c, python/python.c, record-btrace.c, record-full.c, record.c, record.h, regcache-dump.c, regcache.c, regcache.h, remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c, riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c, selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c, ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c, source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c, stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h, symtab.c, symtab.h, target-descriptions.c, target-descriptions.h, target-memory.c, target.c, target.h, target/waitstatus.c, target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c, top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c, tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h, unittests/array-view-selftests.c, unittests/child-path-selftests.c, unittests/cli-utils-selftests.c, unittests/common-utils-selftests.c, unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c, unittests/format_pieces-selftests.c, unittests/function-view-selftests.c, unittests/lookup_name_info-selftests.c, unittests/memory-map-selftests.c, unittests/memrange-selftests.c, unittests/mkdir-recursive-selftests.c, unittests/observable-selftests.c, unittests/offset-type-selftests.c, unittests/optional-selftests.c, unittests/parse-connection-spec-selftests.c, unittests/ptid-selftests.c, unittests/rsp-low-selftests.c, unittests/scoped_fd-selftests.c, unittests/scoped_mmap-selftests.c, unittests/scoped_restore-selftests.c, unittests/string_view-selftests.c, unittests/style-selftests.c, unittests/tracepoint-selftests.c, unittests/unpack-selftests.c, unittests/utils-selftests.c, unittests/xml-utils-selftests.c, utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c, value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c, xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c, xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport. gdb/gdbserver/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * configure: Rebuild. * configure.ac: Change common to gdbsupport. * acinclude.m4: Change common to gdbsupport. * Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS) (version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change common to gdbsupport. * ax.c, event-loop.c, fork-child.c, gdb_proc_service.h, gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c, inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c, linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c, linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c, linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h, nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c, server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h, thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change common to gdbsupport. |
||
Andrew Burgess
|
b3a7d1711e |
gdb/riscv: Don't use default bfd to define required features
When we initialise a gdbarch object we perform a check to try and detect if the user is doing something silly; trying to run an RV64 binary on an RV32 target. To perform this check we compare the xlen from the target description with the xlen specified in the headers on the ELF being debugged. If there is no ELF being debugged then we (currently) try to use the bfd_arch_info from the gdbarch_info object, which will have been set to the default architecture if no bfd is currently being debugged. For RISC-V the default architecture is RV64. What this means is that if a user tries to connect to an RV32 target without specifying the BFD to debug then GDB will assume RV64. The sanity check mentioned above will failed (xlen difference) and GDB will throw an error. The error causes GDB to disconnect from the remote target. After this commit GDB no longer relies on the default bfd architecture. If the user tries to connect without specifying the bfd then GDB will simply make use of the xlen extracted from the target description in order to find or create a suitable gdbarch object. gdb/ChangeLog: * riscv-tdep.c (riscv_features_from_gdbarch_info): Don't modify required features based on default bfd type when no specific bfd is present. |
||
Andrew Burgess
|
312617a3d0 |
gdb/riscv: Don't error when decoding a 6 or 8 byte instruction
If the RISC-V prologue scanner finds a 6 or 8 byte instruction we currently throw an internal error, which is not great for the user. A mechanism already exists in the prologue scanner to leave instructions marked as unknown so that we can stop the prologue scan without raising an error, this is used for all 2 and 4 byte instructions that are not part of the small set the prologue scanner actually understands. This commit changes GDB so that all 6 and 8 byte instructions are marked as unknown, rather than causing an error. gdb/ChangeLog: * riscv-tdep.c (riscv_insn::decode): Gracefully ignore instructions of lengths 6 or 8 bytes. gdb/testsuite/ChangeLog: * gdb.arch/riscv-unwind-long-insn-6.s: New file. * gdb.arch/riscv-unwind-long-insn-8.s: New file. * gdb.arch/riscv-unwind-long-insn.c: New file. * gdb.arch/riscv-unwind-long-insn.exp: New file. |
||
Simon Cook
|
0a5954bd5f |
gdb/riscv: Improve flen length determination
This solves an assertion failure when a remote provides a target description which only refers to floating point registers by their hardware name (e.g. f0), rather than their ABI name (e.g. ft0). GDB assumed that should the floating point register feature be presented, it would contain a register called ft0. The floating point length is now instead determined by searching for the same register, but looking for any of its aliases. gdb/ChangeLog: * riscv-tdep.c (riscv_gdbarch_init): Support determining flen from target descriptions using exclusively floating point register name aliases. |
||
Andrew Burgess
|
c01660c625 |
gdb/riscv: Allow breakpoints to be created at invalid addresses
Some testsuite cases (gdb.cp/nsalias.exp for example) construct dwarf2 debug info for fake functions to test that this debug info is handled correctly. We currently get an error trying to read from an invalid address while creating breakpoints for these fake functions. Other targets allow creating breakpoints on invalid addresses, and only error when GDB actually tries to insert the breakpoints. In order to make RISC-V behave in the same way as other targets, this commit makes the failure to read memory during breakpoint creation non-fatal, we then expect to see a failure when GDB tries to insert the breakpoint, just like other targets. Tested with a riscv64-linux native testsuite run. gdb/ChangeLog: * riscv-tdep.c (riscv_breakpoint_kind_from_pc): Hanndle case where code read might fail, assume 4-byte breakpoint in that case. |
||
Andrew Burgess
|
a9158a863c |
gdb/riscv: Remove riscv_type_alignment function
Make use of the type_align function and remove riscv_type_alignment as it is no longer needed. I tested this against a number of RV32 and RV64 targets, and I also ran the tests with an assertion in place checking that the old riscv_type_alignment function gives the same answer as the common type_align function - it does, and all the tests still pass. gdb/ChangeLog: * riscv-tdep.c (riscv_type_align): New function. (riscv_type_alignment): Delete. (riscv_arg_location): Use 'type_align'. (riscv_gdbarch_init): Register riscv_type_align gdbarch function. |
||
Andrew Burgess
|
9f0272f854 |
gdb/riscv: Handle empty C++ structs during argument passing
This commit resolves a large number of failures in the test script gdb.base/infcall-nested-structs.exp which were caused by GDB (for RISC-V) incorrectly handling empty C++ structures when preparing arguments for a dummy call, or collecting a return value. The issue is further complicated in that there was a bug in GCC, such that in some cases GCC would generate incorrect code when passing a small structure that contained empty sub-structures. This was fixed in GCC trunk on 5-March-2019, so in order to see the best results with this patch you'll need a recent version of GCC. Anything that used to work should continue to work after this patch, regardless of GCC version being used. The fix in this commit is that GDB now pays more attention to the offset of fields within a structure when preparing arguments as in C++ an empty structure has a non-zero size, this is an example: struct s1 { struct s2 { } empty; int f; }; We previously assumed that 'f' was at offset 0 inside type 's1', however this is not the case in C++ as 's2' has size 1, and with alignment 'f' is likely at some even bigger offset inside 's1'. gdb/ChangeLog: * riscv-tdep.c (riscv_call_arg_complex_float): Fix offset of first component to 0. (riscv_struct_info::riscv_struct_info): Initialise m_offsets member. (riscv_struct_info::analyse): New implementation using new analyse_inner member function. (riscv_struct_info::field_offset): New member function. (riscv_struct_info::m_offsets): New member variable. (riscv_struct_info::analyse_inner): New private member function, takes the old implementation of riscv_struct_info::analyse but extended to track field offsets. (riscv_call_arg_struct): Update the struct folding special cases to handle cases where empty C++ structs, which are non-zero length, are found. (riscv_arg_location): Initialise the length of each location, a non-zero length now indicates the location is in use. (riscv_push_dummy_call): Allow for the first location having a non-zero offset when setting up arguments. (riscv_return_value): Likewise, but for return values. |
||
Tom Tromey
|
230d2906b9 |
Rename gdb exception types
This renames the gdb exception types. The old types were only needed due to the macros in common-exception.h that are now gone. The intermediate layer of gdb_exception_RETURN_MASK_ALL did not seem needed, so this patch removes it entirely. gdb/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * common/common-exceptions.h (gdb_exception_RETURN_MASK_ALL): Remove. (gdb_exception_error): Rename from gdb_exception_RETURN_MASK_ERROR. (gdb_exception_quit): Rename from gdb_exception_RETURN_MASK_QUIT. (gdb_quit_bad_alloc): Update. * aarch64-tdep.c: Update. * ada-lang.c: Update. * ada-typeprint.c: Update. * ada-valprint.c: Update. * amd64-tdep.c: Update. * arch-utils.c: Update. * break-catch-throw.c: Update. * breakpoint.c: Update. * btrace.c: Update. * c-varobj.c: Update. * cli/cli-cmds.c: Update. * cli/cli-interp.c: Update. * cli/cli-script.c: Update. * common/common-exceptions.c: Update. * common/new-op.c: Update. * common/selftest.c: Update. * compile/compile-c-symbols.c: Update. * compile/compile-cplus-symbols.c: Update. * compile/compile-object-load.c: Update. * compile/compile-object-run.c: Update. * completer.c: Update. * corelow.c: Update. * cp-abi.c: Update. * cp-support.c: Update. * cp-valprint.c: Update. * darwin-nat.c: Update. * disasm-selftests.c: Update. * dtrace-probe.c: Update. * dwarf-index-cache.c: Update. * dwarf-index-write.c: Update. * dwarf2-frame-tailcall.c: Update. * dwarf2-frame.c: Update. * dwarf2loc.c: Update. * dwarf2read.c: Update. * eval.c: Update. * event-loop.c: Update. * event-top.c: Update. * exec.c: Update. * f-valprint.c: Update. * fbsd-tdep.c: Update. * frame-unwind.c: Update. * frame.c: Update. * gdbtypes.c: Update. * gnu-v3-abi.c: Update. * guile/guile-internal.h: Update. * guile/scm-block.c: Update. * guile/scm-breakpoint.c: Update. * guile/scm-cmd.c: Update. * guile/scm-disasm.c: Update. * guile/scm-frame.c: Update. * guile/scm-lazy-string.c: Update. * guile/scm-math.c: Update. * guile/scm-param.c: Update. * guile/scm-ports.c: Update. * guile/scm-pretty-print.c: Update. * guile/scm-symbol.c: Update. * guile/scm-symtab.c: Update. * guile/scm-type.c: Update. * guile/scm-value.c: Update. * i386-linux-tdep.c: Update. * i386-tdep.c: Update. * inf-loop.c: Update. * infcall.c: Update. * infcmd.c: Update. * infrun.c: Update. * jit.c: Update. * language.c: Update. * linespec.c: Update. * linux-fork.c: Update. * linux-nat.c: Update. * linux-tdep.c: Update. * linux-thread-db.c: Update. * main.c: Update. * mi/mi-cmd-break.c: Update. * mi/mi-cmd-stack.c: Update. * mi/mi-interp.c: Update. * mi/mi-main.c: Update. * objc-lang.c: Update. * p-valprint.c: Update. * parse.c: Update. * ppc-linux-tdep.c: Update. * printcmd.c: Update. * python/py-arch.c: Update. * python/py-breakpoint.c: Update. * python/py-cmd.c: Update. * python/py-finishbreakpoint.c: Update. * python/py-frame.c: Update. * python/py-framefilter.c: Update. * python/py-gdb-readline.c: Update. * python/py-inferior.c: Update. * python/py-infthread.c: Update. * python/py-lazy-string.c: Update. * python/py-linetable.c: Update. * python/py-objfile.c: Update. * python/py-param.c: Update. * python/py-prettyprint.c: Update. * python/py-progspace.c: Update. * python/py-record-btrace.c: Update. * python/py-record.c: Update. * python/py-symbol.c: Update. * python/py-type.c: Update. * python/py-unwind.c: Update. * python/py-utils.c: Update. * python/py-value.c: Update. * python/python.c: Update. * record-btrace.c: Update. * record-full.c: Update. * remote-fileio.c: Update. * remote.c: Update. * riscv-tdep.c: Update. * rs6000-aix-tdep.c: Update. * rs6000-tdep.c: Update. * rust-exp.y: Update. * rust-lang.c: Update. * s390-tdep.c: Update. * selftest-arch.c: Update. * solib-dsbt.c: Update. * solib-frv.c: Update. * solib-spu.c: Update. * solib-svr4.c: Update. * solib.c: Update. * sparc64-linux-tdep.c: Update. * stack.c: Update. * symfile-mem.c: Update. * symmisc.c: Update. * target.c: Update. * thread.c: Update. * top.c: Update. * tracefile-tfile.c: Update. * tui/tui.c: Update. * typeprint.c: Update. * unittests/cli-utils-selftests.c: Update. * unittests/parse-connection-spec-selftests.c: Update. * valops.c: Update. * valprint.c: Update. * value.c: Update. * varobj.c: Update. * windows-nat.c: Update. * x86-linux-nat.c: Update. * xml-support.c: Update. gdb/gdbserver/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * gdbreplay.c: Update. * linux-low.c: Update. * server.c: Update. |
||
Tom Tromey
|
a70b814420 |
Rewrite TRY/CATCH
This rewrites gdb's TRY/CATCH to plain C++ try/catch. The patch was largely written by script, though one change (to a comment in common-exceptions.h) was reverted by hand. gdb/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * xml-support.c: Use C++ exception handling. * x86-linux-nat.c: Use C++ exception handling. * windows-nat.c: Use C++ exception handling. * varobj.c: Use C++ exception handling. * value.c: Use C++ exception handling. * valprint.c: Use C++ exception handling. * valops.c: Use C++ exception handling. * unittests/parse-connection-spec-selftests.c: Use C++ exception handling. * unittests/cli-utils-selftests.c: Use C++ exception handling. * typeprint.c: Use C++ exception handling. * tui/tui.c: Use C++ exception handling. * tracefile-tfile.c: Use C++ exception handling. * top.c: Use C++ exception handling. * thread.c: Use C++ exception handling. * target.c: Use C++ exception handling. * symmisc.c: Use C++ exception handling. * symfile-mem.c: Use C++ exception handling. * stack.c: Use C++ exception handling. * sparc64-linux-tdep.c: Use C++ exception handling. * solib.c: Use C++ exception handling. * solib-svr4.c: Use C++ exception handling. * solib-spu.c: Use C++ exception handling. * solib-frv.c: Use C++ exception handling. * solib-dsbt.c: Use C++ exception handling. * selftest-arch.c: Use C++ exception handling. * s390-tdep.c: Use C++ exception handling. * rust-lang.c: Use C++ exception handling. * rust-exp.y: Use C++ exception handling. * rs6000-tdep.c: Use C++ exception handling. * rs6000-aix-tdep.c: Use C++ exception handling. * riscv-tdep.c: Use C++ exception handling. * remote.c: Use C++ exception handling. * remote-fileio.c: Use C++ exception handling. * record-full.c: Use C++ exception handling. * record-btrace.c: Use C++ exception handling. * python/python.c: Use C++ exception handling. * python/py-value.c: Use C++ exception handling. * python/py-utils.c: Use C++ exception handling. * python/py-unwind.c: Use C++ exception handling. * python/py-type.c: Use C++ exception handling. * python/py-symbol.c: Use C++ exception handling. * python/py-record.c: Use C++ exception handling. * python/py-record-btrace.c: Use C++ exception handling. * python/py-progspace.c: Use C++ exception handling. * python/py-prettyprint.c: Use C++ exception handling. * python/py-param.c: Use C++ exception handling. * python/py-objfile.c: Use C++ exception handling. * python/py-linetable.c: Use C++ exception handling. * python/py-lazy-string.c: Use C++ exception handling. * python/py-infthread.c: Use C++ exception handling. * python/py-inferior.c: Use C++ exception handling. * python/py-gdb-readline.c: Use C++ exception handling. * python/py-framefilter.c: Use C++ exception handling. * python/py-frame.c: Use C++ exception handling. * python/py-finishbreakpoint.c: Use C++ exception handling. * python/py-cmd.c: Use C++ exception handling. * python/py-breakpoint.c: Use C++ exception handling. * python/py-arch.c: Use C++ exception handling. * printcmd.c: Use C++ exception handling. * ppc-linux-tdep.c: Use C++ exception handling. * parse.c: Use C++ exception handling. * p-valprint.c: Use C++ exception handling. * objc-lang.c: Use C++ exception handling. * mi/mi-main.c: Use C++ exception handling. * mi/mi-interp.c: Use C++ exception handling. * mi/mi-cmd-stack.c: Use C++ exception handling. * mi/mi-cmd-break.c: Use C++ exception handling. * main.c: Use C++ exception handling. * linux-thread-db.c: Use C++ exception handling. * linux-tdep.c: Use C++ exception handling. * linux-nat.c: Use C++ exception handling. * linux-fork.c: Use C++ exception handling. * linespec.c: Use C++ exception handling. * language.c: Use C++ exception handling. * jit.c: Use C++ exception handling. * infrun.c: Use C++ exception handling. * infcmd.c: Use C++ exception handling. * infcall.c: Use C++ exception handling. * inf-loop.c: Use C++ exception handling. * i386-tdep.c: Use C++ exception handling. * i386-linux-tdep.c: Use C++ exception handling. * guile/scm-value.c: Use C++ exception handling. * guile/scm-type.c: Use C++ exception handling. * guile/scm-symtab.c: Use C++ exception handling. * guile/scm-symbol.c: Use C++ exception handling. * guile/scm-pretty-print.c: Use C++ exception handling. * guile/scm-ports.c: Use C++ exception handling. * guile/scm-param.c: Use C++ exception handling. * guile/scm-math.c: Use C++ exception handling. * guile/scm-lazy-string.c: Use C++ exception handling. * guile/scm-frame.c: Use C++ exception handling. * guile/scm-disasm.c: Use C++ exception handling. * guile/scm-cmd.c: Use C++ exception handling. * guile/scm-breakpoint.c: Use C++ exception handling. * guile/scm-block.c: Use C++ exception handling. * guile/guile-internal.h: Use C++ exception handling. * gnu-v3-abi.c: Use C++ exception handling. * gdbtypes.c: Use C++ exception handling. * frame.c: Use C++ exception handling. * frame-unwind.c: Use C++ exception handling. * fbsd-tdep.c: Use C++ exception handling. * f-valprint.c: Use C++ exception handling. * exec.c: Use C++ exception handling. * event-top.c: Use C++ exception handling. * event-loop.c: Use C++ exception handling. * eval.c: Use C++ exception handling. * dwarf2read.c: Use C++ exception handling. * dwarf2loc.c: Use C++ exception handling. * dwarf2-frame.c: Use C++ exception handling. * dwarf2-frame-tailcall.c: Use C++ exception handling. * dwarf-index-write.c: Use C++ exception handling. * dwarf-index-cache.c: Use C++ exception handling. * dtrace-probe.c: Use C++ exception handling. * disasm-selftests.c: Use C++ exception handling. * darwin-nat.c: Use C++ exception handling. * cp-valprint.c: Use C++ exception handling. * cp-support.c: Use C++ exception handling. * cp-abi.c: Use C++ exception handling. * corelow.c: Use C++ exception handling. * completer.c: Use C++ exception handling. * compile/compile-object-run.c: Use C++ exception handling. * compile/compile-object-load.c: Use C++ exception handling. * compile/compile-cplus-symbols.c: Use C++ exception handling. * compile/compile-c-symbols.c: Use C++ exception handling. * common/selftest.c: Use C++ exception handling. * common/new-op.c: Use C++ exception handling. * cli/cli-script.c: Use C++ exception handling. * cli/cli-interp.c: Use C++ exception handling. * cli/cli-cmds.c: Use C++ exception handling. * c-varobj.c: Use C++ exception handling. * btrace.c: Use C++ exception handling. * breakpoint.c: Use C++ exception handling. * break-catch-throw.c: Use C++ exception handling. * arch-utils.c: Use C++ exception handling. * amd64-tdep.c: Use C++ exception handling. * ada-valprint.c: Use C++ exception handling. * ada-typeprint.c: Use C++ exception handling. * ada-lang.c: Use C++ exception handling. * aarch64-tdep.c: Use C++ exception handling. gdb/gdbserver/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * server.c: Use C++ exception handling. * linux-low.c: Use C++ exception handling. * gdbreplay.c: Use C++ exception handling. |
||
Tom Tromey
|
3d6e9d2336 |
Make exceptions use std::string and be self-managing
This changes the exception's "message" member to be a shared_ptr wrapping a std::string. This allows removing the stack of exception messages, because now exceptions will self-destruct when needed. This also adds a noexcept copy constructor and operator= to gdb_exception, plus a "what" method. gdb/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * xml-support.c (gdb_xml_parser::parse): Update. * x86-linux-nat.c (x86_linux_nat_target::enable_btrace): Update. * value.c (show_convenience): Update. * unittests/cli-utils-selftests.c (test_number_or_range_parser) (test_parse_flags_qcs): Update. * thread.c (thr_try_catch_cmd): Update. * target.c (target_translate_tls_address): Update. * stack.c (print_frame_arg, read_frame_local, read_frame_arg) (info_frame_command_core, frame_apply_command_count): Update. * rust-exp.y (rust_lex_exception_test): Update. * riscv-tdep.c (riscv_print_one_register_info): Update. * remote.c (remote_target::enable_btrace): Update. * record-btrace.c (record_btrace_enable_warn): Update. * python/py-utils.c (gdbpy_convert_exception): Update. * printcmd.c (do_one_display, print_variable_and_value): Update. * mi/mi-main.c (mi_print_exception): Update. * mi/mi-interp.c (mi_cmd_interpreter_exec): Use SCOPE_EXIT. * mi/mi-cmd-stack.c (list_arg_or_local): Update. * linux-nat.c (linux_nat_target::attach): Update. * linux-fork.c (class scoped_switch_fork_info): Update. * infrun.c (displaced_step_prepare): Update. * infcall.c (call_function_by_hand_dummy): Update. * guile/scm-exception.c (gdbscm_scm_from_gdb_exception): Update. * gnu-v3-abi.c (print_one_vtable): Update. * frame.c (get_prev_frame_always): Update. * f-valprint.c (info_common_command_for_block): Update. * exec.c (try_open_exec_file): Update. * exceptions.c (print_exception, exception_print) (exception_fprintf, exception_print_same): Update. * dwarf2-frame.c (dwarf2_build_frame_info): Update. * dwarf-index-cache.c (index_cache::store) (index_cache::lookup_gdb_index): Update. * darwin-nat.c (maybe_cache_shell): Update. * cp-valprint.c (cp_print_value_fields): Update. * compile/compile-cplus-symbols.c (gcc_cplus_convert_symbol) (gcc_cplus_symbol_address): Update. * compile/compile-c-symbols.c (gcc_convert_symbol) (gcc_symbol_address, generate_c_for_for_one_variable): Update. * common/selftest.c: Update. * common/common-exceptions.h (struct gdb_exception) <message>: Now a std::string. (exception_try_scope_entry, exception_try_scope_exit): Don't declare. (struct exception_try_scope): Remove. (TRY): Don't use exception_try_scope. (struct gdb_exception): Add constructor, operator=. <what>: New method. (struct gdb_exception_RETURN_MASK_ALL) (struct gdb_exception_RETURN_MASK_ERROR) (struct gdb_exception_RETURN_MASK_QUIT): Add constructor. (struct gdb_quit_bad_alloc): Update. * common/common-exceptions.c (exception_none): Change initializer. (struct catcher) <state, exception>: Initialize inline. <prev>: Remove member. (current_catcher): Remove. (catchers): New global. (exceptions_state_mc_init): Simplify. (catcher_pop): Remove. (exceptions_state_mc, exceptions_state_mc_catch): Update. (try_scope_depth, exception_try_scope_entry) (exception_try_scope_exit): Remove. (throw_exception_sjlj): Update. (exception_messages, exception_messages_size): Remove. (throw_it): Simplify. (gdb_exception_sliced_copy): Remove. (throw_exception_cxx): Update. * cli/cli-script.c (script_from_file): Update. * breakpoint.c (insert_bp_location, update_breakpoint_locations): Update. * ada-valprint.c (ada_val_print): Update. * ada-lang.c (ada_to_fixed_type_1, ada_exception_name_addr) (create_excep_cond_exprs): Update. gdb/gdbserver/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * server.c (handle_btrace_general_set, handle_qxfer_btrace) (handle_qxfer_btrace_conf, detach_or_kill_for_exit_cleanup) (captured_main, main): Update. * gdbreplay.c (main): Update. |
||
Keith Seitz
|
cc1defb1dc |
Allow really large fortran array bounds: TYPE_LENGTH to ULONGEST
This series is revisit of Siddhesh Poyarekar's patch from back in 2012. The last status on the patch is in the following gdb-patches thread: https://sourceware.org/ml/gdb-patches/2012-08/msg00562.html It appears that Tom approved the patch, but Jan had some issues with a compiler error that made the test fail on -m32 test runs. He wrote up a hand-tweaked .S file to deal with it. Siddesh said he would update tests. Then nothing. Siddesh and Jan have both moved on since. The patch originally required a large precursor patch to work. I have whittled this down to/rewritten the bare minimum, and this first patch is the result, changing the type of TYPE_LENGTH to ULONGEST from unsigned int. The majority of the changes involve changing printf format strings to use %s and pulongest instead of %d. gdb/ChangeLog: * ada-lang.c (ada_template_to_fixed_record_type_1): Use %s/pulongest for TYPE_LENGTH instead of %d in format strings. * ada-typerint.c (ada_print_type): Likewise. * amd64-windows-tdep.c (amd64_windows_store_arg_in_reg): Likewise. * compile/compile-c-support.c (generate_register_struct): Likewise. * gdbtypes.c (recursive_dump_type): Likewise. * gdbtypes.h (struct type) <length>: Change type to ULONGEST. * m2-typeprint.c (m2_array): Use %s/pulongest for TYPE_LENGTH instead of %d in format strings. * riscv-tdep.c (riscv_type_alignment): Cast second argument to std::min to ULONGEST. * symmisc.c (print_symbol): Use %s/pulongest for TYPE_LENGTH instead of %d in format strings. * tracepoint.c (info_scope_command): Likewise. * typeprint.c (print_offset_data::update) (print_offset_data::finish): Likewise. * xtensa-tdep.c (xtensa_store_return_value) (xtensa_push_dummy_call): Likewise. |
||
Andrew Burgess
|
76055cbe88 |
gdb/riscv: Use default gdbarch methods where possible
Make use of the default gdbarch methods for gdbarch_dummy_id, gdbarch_unwind_pc, and gdbarch_unwind_sp where possible. This change has been tested with no regressions. gdb/ChangeLog: * gdb/riscv-tdep.c (riscv_dummy_id): Delete. (riscv_unwind_pc): Delete. (riscv_unwind_sp): Delete. (riscv_gdbarch_init): Don't register deleted functions with gdbarch. |
||
KONRAD Frederic
|
2988d01ea5 |
(riscv/ada) fix error when calling functions with range argument
Using the gdb.ada/call_pn.exp testcase, and running it by hand on riscv64-elf, we get the following error: (gdb) call pn(55) Could not compute alignment of type The problem occurs because the parameter's type is a TYPE_CODE_RANGE, and that type code is not handled by riscv_type_alignment. So this patch fixes the issue by handling TYPE_CODE_RANGE the same way we handle other integral types. gdb/ChangeLog: * riscv-rdep.c (riscv_type_alignment): Handle TYPE_CODE_RANGE. Tested on riscv64-elf using AdaCore's testsuite. |
||
Tom Tromey
|
0747795c08 |
Normalize includes to use common/
This changes all includes to use the form "common/filename.h" rather than just "filename.h". This was written by a script. gdb/ChangeLog 2019-01-25 Tom Tromey <tom@tromey.com> * xtensa-linux-nat.c: Fix common/ includes. * xml-support.h: Fix common/ includes. * xml-support.c: Fix common/ includes. * x86-linux-nat.c: Fix common/ includes. * windows-nat.c: Fix common/ includes. * varobj.h: Fix common/ includes. * varobj.c: Fix common/ includes. * value.c: Fix common/ includes. * valops.c: Fix common/ includes. * utils.c: Fix common/ includes. * unittests/xml-utils-selftests.c: Fix common/ includes. * unittests/utils-selftests.c: Fix common/ includes. * unittests/unpack-selftests.c: Fix common/ includes. * unittests/tracepoint-selftests.c: Fix common/ includes. * unittests/style-selftests.c: Fix common/ includes. * unittests/string_view-selftests.c: Fix common/ includes. * unittests/scoped_restore-selftests.c: Fix common/ includes. * unittests/scoped_mmap-selftests.c: Fix common/ includes. * unittests/scoped_fd-selftests.c: Fix common/ includes. * unittests/rsp-low-selftests.c: Fix common/ includes. * unittests/parse-connection-spec-selftests.c: Fix common/ includes. * unittests/optional-selftests.c: Fix common/ includes. * unittests/offset-type-selftests.c: Fix common/ includes. * unittests/observable-selftests.c: Fix common/ includes. * unittests/mkdir-recursive-selftests.c: Fix common/ includes. * unittests/memrange-selftests.c: Fix common/ includes. * unittests/memory-map-selftests.c: Fix common/ includes. * unittests/lookup_name_info-selftests.c: Fix common/ includes. * unittests/function-view-selftests.c: Fix common/ includes. * unittests/environ-selftests.c: Fix common/ includes. * unittests/copy_bitwise-selftests.c: Fix common/ includes. * unittests/common-utils-selftests.c: Fix common/ includes. * unittests/cli-utils-selftests.c: Fix common/ includes. * unittests/array-view-selftests.c: Fix common/ includes. * ui-file.c: Fix common/ includes. * tui/tui-io.c: Fix common/ includes. * tracepoint.h: Fix common/ includes. * tracepoint.c: Fix common/ includes. * tracefile-tfile.c: Fix common/ includes. * top.h: Fix common/ includes. * top.c: Fix common/ includes. * thread.c: Fix common/ includes. * target/waitstatus.h: Fix common/ includes. * target/waitstatus.c: Fix common/ includes. * target.h: Fix common/ includes. * target.c: Fix common/ includes. * target-memory.c: Fix common/ includes. * target-descriptions.c: Fix common/ includes. * symtab.h: Fix common/ includes. * symfile.c: Fix common/ includes. * stap-probe.c: Fix common/ includes. * spu-linux-nat.c: Fix common/ includes. * sparc-nat.c: Fix common/ includes. * source.c: Fix common/ includes. * solib.c: Fix common/ includes. * solib-target.c: Fix common/ includes. * ser-unix.c: Fix common/ includes. * ser-tcp.c: Fix common/ includes. * ser-pipe.c: Fix common/ includes. * ser-base.c: Fix common/ includes. * selftest-arch.c: Fix common/ includes. * s12z-tdep.c: Fix common/ includes. * rust-exp.y: Fix common/ includes. * rs6000-aix-tdep.c: Fix common/ includes. * riscv-tdep.c: Fix common/ includes. * remote.c: Fix common/ includes. * remote-notif.h: Fix common/ includes. * remote-fileio.h: Fix common/ includes. * remote-fileio.c: Fix common/ includes. * regcache.h: Fix common/ includes. * regcache.c: Fix common/ includes. * record-btrace.c: Fix common/ includes. * python/python.c: Fix common/ includes. * python/py-type.c: Fix common/ includes. * python/py-inferior.c: Fix common/ includes. * progspace.h: Fix common/ includes. * producer.c: Fix common/ includes. * procfs.c: Fix common/ includes. * proc-api.c: Fix common/ includes. * printcmd.c: Fix common/ includes. * ppc-linux-nat.c: Fix common/ includes. * parser-defs.h: Fix common/ includes. * osdata.c: Fix common/ includes. * obsd-nat.c: Fix common/ includes. * nat/x86-linux.c: Fix common/ includes. * nat/x86-linux-dregs.c: Fix common/ includes. * nat/x86-dregs.h: Fix common/ includes. * nat/x86-dregs.c: Fix common/ includes. * nat/ppc-linux.c: Fix common/ includes. * nat/mips-linux-watch.h: Fix common/ includes. * nat/mips-linux-watch.c: Fix common/ includes. * nat/linux-waitpid.c: Fix common/ includes. * nat/linux-ptrace.h: Fix common/ includes. * nat/linux-ptrace.c: Fix common/ includes. * nat/linux-procfs.c: Fix common/ includes. * nat/linux-personality.c: Fix common/ includes. * nat/linux-osdata.c: Fix common/ includes. * nat/linux-namespaces.c: Fix common/ includes. * nat/linux-btrace.h: Fix common/ includes. * nat/linux-btrace.c: Fix common/ includes. * nat/fork-inferior.c: Fix common/ includes. * nat/amd64-linux-siginfo.c: Fix common/ includes. * nat/aarch64-sve-linux-ptrace.c: Fix common/ includes. * nat/aarch64-linux.c: Fix common/ includes. * nat/aarch64-linux-hw-point.h: Fix common/ includes. * nat/aarch64-linux-hw-point.c: Fix common/ includes. * namespace.h: Fix common/ includes. * mips-linux-tdep.c: Fix common/ includes. * minsyms.c: Fix common/ includes. * mi/mi-parse.h: Fix common/ includes. * mi/mi-main.c: Fix common/ includes. * mi/mi-cmd-env.c: Fix common/ includes. * memrange.h: Fix common/ includes. * memattr.c: Fix common/ includes. * maint.h: Fix common/ includes. * maint.c: Fix common/ includes. * main.c: Fix common/ includes. * machoread.c: Fix common/ includes. * location.c: Fix common/ includes. * linux-thread-db.c: Fix common/ includes. * linux-nat.c: Fix common/ includes. * linux-fork.c: Fix common/ includes. * inline-frame.c: Fix common/ includes. * infrun.c: Fix common/ includes. * inflow.c: Fix common/ includes. * inferior.h: Fix common/ includes. * inferior.c: Fix common/ includes. * infcmd.c: Fix common/ includes. * inf-ptrace.c: Fix common/ includes. * inf-child.c: Fix common/ includes. * ia64-linux-nat.c: Fix common/ includes. * i387-tdep.c: Fix common/ includes. * i386-tdep.c: Fix common/ includes. * i386-linux-tdep.c: Fix common/ includes. * i386-linux-nat.c: Fix common/ includes. * i386-go32-tdep.c: Fix common/ includes. * i386-fbsd-tdep.c: Fix common/ includes. * i386-fbsd-nat.c: Fix common/ includes. * guile/scm-type.c: Fix common/ includes. * guile/guile.c: Fix common/ includes. * go32-nat.c: Fix common/ includes. * gnu-nat.c: Fix common/ includes. * gdbthread.h: Fix common/ includes. * gdbarch-selftests.c: Fix common/ includes. * gdb_usleep.c: Fix common/ includes. * gdb_select.h: Fix common/ includes. * gdb_bfd.c: Fix common/ includes. * gcore.c: Fix common/ includes. * fork-child.c: Fix common/ includes. * findvar.c: Fix common/ includes. * fbsd-nat.c: Fix common/ includes. * event-top.c: Fix common/ includes. * event-loop.c: Fix common/ includes. * dwarf2read.c: Fix common/ includes. * dwarf2loc.c: Fix common/ includes. * dwarf2-frame.c: Fix common/ includes. * dwarf-index-cache.c: Fix common/ includes. * dtrace-probe.c: Fix common/ includes. * disasm-selftests.c: Fix common/ includes. * defs.h: Fix common/ includes. * csky-tdep.c: Fix common/ includes. * cp-valprint.c: Fix common/ includes. * cp-support.h: Fix common/ includes. * cp-support.c: Fix common/ includes. * corelow.c: Fix common/ includes. * completer.h: Fix common/ includes. * completer.c: Fix common/ includes. * compile/compile.c: Fix common/ includes. * compile/compile-loc2c.c: Fix common/ includes. * compile/compile-cplus-types.c: Fix common/ includes. * compile/compile-cplus-symbols.c: Fix common/ includes. * command.h: Fix common/ includes. * cli/cli-dump.c: Fix common/ includes. * cli/cli-cmds.c: Fix common/ includes. * charset.c: Fix common/ includes. * build-id.c: Fix common/ includes. * btrace.h: Fix common/ includes. * btrace.c: Fix common/ includes. * breakpoint.h: Fix common/ includes. * breakpoint.c: Fix common/ includes. * ax.h: (enum agent_op): Fix common/ includes. * ax-general.c (struct aop_map): Fix common/ includes. * ax-gdb.c: Fix common/ includes. * auxv.c: Fix common/ includes. * auto-load.c: Fix common/ includes. * arm-tdep.c: Fix common/ includes. * arch/riscv.c: Fix common/ includes. * arch/ppc-linux-common.c: Fix common/ includes. * arch/i386.c: Fix common/ includes. * arch/arm.c: Fix common/ includes. * arch/arm-linux.c: Fix common/ includes. * arch/arm-get-next-pcs.c: Fix common/ includes. * arch/amd64.c: Fix common/ includes. * arch/aarch64.c: Fix common/ includes. * arch/aarch64-insn.c: Fix common/ includes. * arch-utils.c: Fix common/ includes. * amd64-windows-tdep.c: Fix common/ includes. * amd64-tdep.c: Fix common/ includes. * amd64-sol2-tdep.c: Fix common/ includes. * amd64-obsd-tdep.c: Fix common/ includes. * amd64-nbsd-tdep.c: Fix common/ includes. * amd64-linux-tdep.c: Fix common/ includes. * amd64-linux-nat.c: Fix common/ includes. * amd64-fbsd-tdep.c: Fix common/ includes. * amd64-fbsd-nat.c: Fix common/ includes. * amd64-dicos-tdep.c: Fix common/ includes. * amd64-darwin-tdep.c: Fix common/ includes. * agent.c: Fix common/ includes. * ada-lang.h: Fix common/ includes. * ada-lang.c: Fix common/ includes. * aarch64-tdep.c: Fix common/ includes. gdb/gdbserver/ChangeLog 2019-01-25 Tom Tromey <tom@tromey.com> * win32-low.c: Fix common/ includes. * win32-i386-low.c: Fix common/ includes. * tracepoint.c: Fix common/ includes. * thread-db.c: Fix common/ includes. * target.h: Fix common/ includes. * symbol.c: Fix common/ includes. * spu-low.c: Fix common/ includes. * server.h: Fix common/ includes. * server.c: Fix common/ includes. * remote-utils.c: Fix common/ includes. * regcache.h: Fix common/ includes. * regcache.c: Fix common/ includes. * nto-x86-low.c: Fix common/ includes. * notif.h: Fix common/ includes. * mem-break.h: Fix common/ includes. * lynx-low.c: Fix common/ includes. * lynx-i386-low.c: Fix common/ includes. * linux-x86-tdesc-selftest.c: Fix common/ includes. * linux-x86-low.c: Fix common/ includes. * linux-low.c: Fix common/ includes. * inferiors.h: Fix common/ includes. * i387-fp.c: Fix common/ includes. * hostio.c: Fix common/ includes. * hostio-errno.c: Fix common/ includes. * gdbthread.h: Fix common/ includes. * gdbreplay.c: Fix common/ includes. * fork-child.c: Fix common/ includes. * event-loop.c: Fix common/ includes. * ax.c: (enum gdb_agent_op): Fix common/ includes. |
||
Jim Wilson
|
592d8c0a5d |
RISC-V: Fix wrong use of s0 register name.
s0 is listed as both an int register name and an FP register name. The FP reg name is wrong. This looks like a simple editting error, and has an easy fix. Tested with riscv64-linux build and check, with no regressions. gdb/ * riscv-tdep.c (riscv_freg_feature): Drop s0 name from f8. |
||
Andrew Burgess
|
113b7b8142 |
gdb/riscv: Split ISA and ABI features
The goal of this commit is to allow RV64 binaries compiled for the 'F' extension to run on a target that supports both the 'F' and 'D' extensions. The 'D' extension depends on the 'F' extension and chapter 9 of the RISC-V ISA manual implies that running a program compiled for 'F' on a 'D' target should be fine. To support this the gdbarch now holds two feature sets, one represents the features that are present on the target, and one represents the features requested in the ELF flags. The existing error checks are relaxed slightly to allow binaries compiled for 32-bit 'F' extension to run on targets with the 64-bit 'D' extension. A new set of functions called riscv_abi_{xlen,flen} are added to compliment the existing riscv_isa_{xlen,flen}, and some callers to the isa functions now call the abi functions when that is appropriate. In riscv_call_arg_struct two asserts are removed, these asserts no longer make sense. The asserts were both like this: gdb_assert (TYPE_LENGTH (ainfo->type) <= (cinfo->flen + cinfo->xlen)); And were made in two cases, when passing structures like these: struct { integer field1; float field2; }; or, struct { float field1; integer field2; }; When running on an RV64 target which only has 32-bit float then the integer field could be 64-bits, while if the float field is 32-bits the overall size of the structure can be 128-bits (with 32-bits of padding). In this case the assertion would fail, however, the code isn't incorrect, so its safe to just remove the assertion. This was tested by running on an RV64IMFDC target using a compiler configured for RV64IMFC, and comparing the results with those obtained when using a compiler configured for RV64IMFDC. The only regressions I see (now) are in gdb.base/store.exp and are related too different code generation choices GCC makes between the two targets. Finally, this commit does not make any attempt to support running binaries compiled for RV32 on an RV64 target, though nothing in here should prevent that being supported in the future. gdb/ChangeLog: * arch/riscv.h (struct riscv_gdbarch_features) <hw_float_abi>: Delete. <operator==>: Update with for removed field. <hash>: Likewise. * riscv-tdep.h (struct gdbarch_tdep) <features>: Renamed to... <isa_features>: ...this. <abi_features>: New field. (riscv_isa_flen): Update comment. (riscv_abi_xlen): New declaration. (riscv_abi_flen): New declaration. * riscv-tdep.c (riscv_isa_xlen): Update to get answer from isa_features. (riscv_abi_xlen): New function. (riscv_isa_flen): Update to get answer from isa_features. (riscv_abi_flen): New function. (riscv_has_fp_abi): Update to get answer from abi_features. (riscv_call_info::riscv_call_info): Use abi xlen and flen, not isa xlen and flen. (riscv_call_info) <xlen, flen>: Update comment. (riscv_call_arg_struct): Remove invalid assertions (riscv_features_from_gdbarch_info): Update now hw_float_abi field is removed. (riscv_gdbarch_init): Gather isa features and abi features separately, ensure both match on the gdbarch when reusing an old gdbarch. Relax an error check to allow 32-bit abi float to run on a target with 64-bit float hardware. |
||
Joel Brobecker
|
42a4f53d2b |
Update copyright year range in all GDB files.
This commit applies all changes made after running the gdb/copyright.py script. Note that one file was flagged by the script, due to an invalid copyright header (gdb/unittests/basic_string_view/element_access/char/empty.cc). As the file was copied from GCC's libstdc++-v3 testsuite, this commit leaves this file untouched for the time being; a patch to fix the header was sent to gcc-patches first. gdb/ChangeLog: Update copyright year range in all GDB files. |
||
Andrew Burgess
|
74e3300d8a |
gdb/riscv: Prevent buffer overflow in riscv_return_value
The existing code for reading and writing the return value can overflow the passed in buffers in a couple of situations. This commit aims to resolve these issues. The problems were detected using valgrind, here are two examples, first from gdb.base/structs.exp: (gdb) p/x fun9() ==31353== Invalid write of size 8 ==31353== at 0x4C34153: memmove (vg_replace_strmem.c:1270) ==31353== by 0x632EBB: memcpy (string_fortified.h:34) ==31353== by 0x632EBB: readable_regcache::raw_read(int, unsigned char*) (regcache.c:538) ==31353== by 0x659D3F: riscv_return_value(gdbarch*, value*, type*, regcache*, unsigned char*, unsigned char const*) (riscv-tdep.c:2593) ==31353== by 0x583641: get_call_return_value (infcall.c:448) ==31353== by 0x583641: call_thread_fsm_should_stop(thread_fsm*, thread_info*) (infcall.c:546) ==31353== by 0x59BBEC: fetch_inferior_event(void*) (infrun.c:3883) ==31353== by 0x53890B: check_async_event_handlers (event-loop.c:1064) ==31353== by 0x53890B: gdb_do_one_event() [clone .part.4] (event-loop.c:326) ==31353== by 0x6CA34B: wait_sync_command_done() (top.c:503) ==31353== by 0x584653: run_inferior_call (infcall.c:621) ... And from gdb.base/call-sc.exp: (gdb) advance fun fun () at /gdb/gdb/testsuite/gdb.base/call-sc.c:41 41 return foo; (gdb) finish ==1968== Invalid write of size 8 ==1968== at 0x4C34153: memmove (vg_replace_strmem.c:1270) ==1968== by 0x632EBB: memcpy (string_fortified.h:34) ==1968== by 0x632EBB: readable_regcache::raw_read(int, unsigned char*) (regcache.c:538) ==1968== by 0x659D01: riscv_return_value(gdbarch*, value*, type*, regcache*, unsigned char*, unsigned char const*) (riscv-tdep.c:2576) ==1968== by 0x5891E4: get_return_value(value*, type*) (infcmd.c:1640) ==1968== by 0x5892C4: finish_command_fsm_should_stop(thread_fsm*, thread_info*) (infcmd.c:1808) ==1968== by 0x59BBEC: fetch_inferior_event(void*) (infrun.c:3883) ==1968== by 0x53890B: check_async_event_handlers (event-loop.c:1064) ==1968== by 0x53890B: gdb_do_one_event() [clone .part.4] (event-loop.c:326) ==1968== by 0x6CA34B: wait_sync_command_done() (top.c:503) ... There are a couple of problems with the existing code, that are all related. In riscv_call_arg_struct we incorrectly rounded up the size of a structure argument. This is unnecessary, and caused GDB to read too much data into the output buffer when extracting a struct return value. In fixing this it became clear that we were incorrectly assuming that any value being placed in a register (or read from a register) would always access the entire register. This is not true, for example a 9-byte struct on a 64-bit target places 8-bytes in one registers and 1-byte in a second register (assuming available registers). To handle this I switch from using cooked_read to cooked_read_part. Finally, when processing basic integer return value types these are extended to xlen sized types and then passed in registers. We currently don't handle this type expansion in riscv_return_value, but we do in riscv_push_dummy_call. The result is that small integer types (like char) result in a full xlen sized register being written into the output buffer, which results in buffer overflow. To address this issue we now create a value of the expanded type and use this values contents buffer to hold the return value before casting the value down to the smaller expected type. This patch resolves all of the valgrind issues I have found so far, and causes no regressions. Tested against RV32/64 with and without floating point support. gdb/ChangeLog: * riscv-tdep.c (riscv_call_arg_struct): Don't adjust size before assigning locations. (riscv_return_value): Take more care not to read/write outside of argument buffer. Cast return value between the declared type and the abi type. |
||
Andrew Burgess
|
ecc82c0590 |
gdb/riscv: Add float status registers to save and restore reggroups
We should save and restore the floating point status registers. This became an issue when testing 32-bit float on a target with 64-bit with the gdb.base/callfuncs.exp test. gdb/ChangeLog: * riscv-tdep.c (riscv_register_reggroup_p): Save and restore fcsr, fflags, and frm registers. |
||
Andrew Burgess
|
fb44d95af6 |
gdb/riscv: Add gdb to dwarf register number mapping
Provide a mapping between GDB's register numbers and DWARF's register numbers. This resolves some failures that I was seeing on gdb.base/store.exp when running on an rv64imfdc target. gdb/ChangeLog: * riscv-tdep.c (riscv_dwarf_reg_to_regnum): New function. (riscv_gdbarch_init): Register new function with gdbarch. * riscv-tdep.h: New enum to define RISC-V DWARF register numbers. |
||
Andrew Burgess
|
a96bd1ccc0 |
gdb/riscv: Format CORE_ADDR as a string for printing
Avoid compiler errors caused by trying to print CORE_ADDR using '%ld' format, instead convert to a string and print that instead. gdb/ChangeLog: * riscv-tdep.c (riscv_scan_prologue): Use plongest to format a signed offset as a string. |
||
Jim Wilson
|
b7c8601a7f |
RISC-V: Correct printing of MSTATUS and MISA.
* riscv-tdep.c (riscv_print_one_register_info): For MSTATUS, add comment for SD field, and correct xlen calculation. For MISA, add comment for MXL field, add call to register_size, and correct base calculation. |
||
Andrew Burgess
|
4de3d8d066 |
gdb/riscv: Handle passing variadic floating point arguments
This commit fixes some test failures in gdb.base/varargs.exp when running on targets with floating point hardware. Floating point unnamed (variadic) arguments should be passed in integer registers according to the abi. After this commit I see no failures in gdb.base/varargs.exp on 32 or 64 bit targets with floating point hardware. gdb/ChangeLog: * riscv-tdep.c (riscv_call_arg_scalar_float): Unnamed (variadic) arguments are passed in integer registers. (riscv_call_arg_complex_float): Likewise. |
||
Andrew Burgess
|
69cb29528e |
gdb/riscv: Remove whitespace before #include line
This fixes an ARI warning in riscv-tdep.c that whitespace before a gdb/ChangeLog: * riscv-tdep.c (riscv_register_name): Fix ARI warning by removing leading whitespace before #include line. |
||
Andrew Burgess
|
90af06793e |
gdb/riscv: Improve logic for when h/w float abi should be used
Currently, if the target announces that it has floating point registers in its target description then GDB assumes that the hardware float ABI should be used. However, there's nothing stopping a user compiling a program for the soft-float abi, and then trying to run this on a target with hardware floating point registers. This commit adjusts the logic that decides if GDB should use the hardware float abi. The primary decision now is based on what the ELF currently being executed says in its headers. If the file was compiled for h/w float abi, then GDB uses h/w float abi, otherwise s/w float is used. If the current BFD is not an ELF then we don't currently have a mechanism for figuring out if the file was compiled for float or not. In this case we disable the h/w float abi. This shouldn't be a problem as, right now, the RISC-V linker can only produce ELFs. If there is NO current BFD (can this happen?) then we will enable h/w float abi if the target has floating point hardware, otherwise, s/w float abi is used. This commit also adds some sanity checking that the features requested in the BFD (xlen and flen) match the target description. For testing I ran the testsuite on a target that returns a target description containing both integer and floating point registers, but used a compiler that didn't have floating point support. Before this commit I would see failures on may tests that made inferior calls using floating point arguments, after this commit, all of these issues are resolved. One example from the testsuite is gdb.base/infcall-nested-structs.exp. gdb/ChangeLog: * riscv-tdep.c (riscv_features_from_gdbarch_info): New function. (riscv_find_default_target_description): Use new function to extract feature from gdbarch_info. (riscv_gdbarch_init): Add error checks for xlen and flen between target description and bfd headers. Be smarter about when we think the hardware floating point abi should be used. |
||
Andrew Burgess
|
65a4b37326 |
gdb/riscv: Add equality operators to riscv_gdb_features
Add '==' and '!=' operators for the struct riscv_gdb_features, allowing a small simplification. gdb/ChangeLog: * arch/riscv.h (riscv_gdb_features::operator==): New. (riscv_gdb_features::operator!=): New. * riscv-tdep.c (riscv_gdbarch_init): Make use of the inequality operator. |
||
Andrew Burgess
|
0ff80bf7b9 |
gdb/riscv: Make some target description functions constant
Makes more of the interface related to fetching target descriptions constant. gdb/ChangeLog: * arch/riscv.h (riscv_create_target_description): Make return type const. * arch/riscv.c (riscv_create_target_description): Likewise. * riscv-tdep.c (riscv_find_default_target_description): Likewise. |
||
Andrew Burgess
|
b5ffee3181 |
gdb/riscv: Add target description support
This commit adds target description support for riscv. I've used the split feature approach for specifying the architectural features, and the CSR feature is auto-generated from the riscv-opc.h header file. If the target doesn't provide a suitable target description then GDB will build one by looking at the bfd headers. This commit does not implement target description creation for the Linux or FreeBSD native targets, both of these will need to add read_description methods into their respective target classes, which probe the target features, and then call riscv_create_target_description to build a suitable target description. Until this is done Linux and FreeBSD will get the same default target description based on the bfd that bare-metal targets get. I've only added feature descriptions for 32 and 64 bit registers, 128 bit registers (for RISC-V) are not supported in the reset of GDB yet. This commit removes the special reading of the MISA register in order to establish the target features, this was only used for figuring out the f-register size, and even that wasn't done consistently. We now rely on the target to tell us what size of registers it has (or look in the BFD as a last resort). The result of this is that we should now support RV64 targets with 32-bit float, though I have not extensively tested this combination yet. * Makefile.in (ALL_TARGET_OBS): Add arch/riscv.o. (HFILES_NO_SRCDIR): Add arch/riscv.h. * arch/riscv.c: New file. * arch/riscv.h: New file. * configure.tgt: Add cpu_obs list of riscv, move riscv-tdep.o into this list, and add arch/riscv.o. * features/Makefile: Add riscv features. * features/riscv/32bit-cpu.c: New file. * features/riscv/32bit-cpu.xml: New file. * features/riscv/32bit-csr.c: New file. * features/riscv/32bit-csr.xml: New file. * features/riscv/32bit-fpu.c: New file. * features/riscv/32bit-fpu.xml: New file. * features/riscv/64bit-cpu.c: New file. * features/riscv/64bit-cpu.xml: New file. * features/riscv/64bit-csr.c: New file. * features/riscv/64bit-csr.xml: New file. * features/riscv/64bit-fpu.c: New file. * features/riscv/64bit-fpu.xml: New file. * features/riscv/rebuild-csr-xml.sh: New file. * riscv-tdep.c: Add 'arch/riscv.h' include. (riscv_gdb_reg_names): Delete. (csr_reggroup): New global. (struct riscv_register_alias): Delete. (struct riscv_register_feature): New structure. (riscv_register_aliases): Delete. (riscv_xreg_feature): New global. (riscv_freg_feature): New global. (riscv_virtual_feature): New global. (riscv_csr_feature): New global. (riscv_create_csr_aliases): New function. (riscv_read_misa_reg): Delete. (riscv_has_feature): Delete. (riscv_isa_xlen): Simplify, just return cached xlen. (riscv_isa_flen): Simplify, just return cached flen. (riscv_has_fp_abi): Update for changes in struct gdbarch_tdep. (riscv_register_name): Update to make use of tdesc_register_name. Look up xreg and freg names in the new globals riscv_xreg_feature and riscv_freg_feature. Don't supply csr aliases here. (riscv_fpreg_q_type): Delete. (riscv_register_type): Use tdesc_register_type in almost all cases, override the returned type in a few specific cases only. (riscv_print_one_register_info): Handle errors reading registers. (riscv_register_reggroup_p): Use tdesc_register_in_reggroup_p for registers that are otherwise unknown to GDB. Also check the csr_reggroup. (riscv_print_registers_info): Remove assert about upper register number, and use gdbarch_register_reggroup_p instead of short-cutting. (riscv_find_default_target_description): New function. (riscv_check_tdesc_feature): New function. (riscv_add_reggroups): New function. (riscv_setup_register_aliases): New function. (riscv_init_reggroups): New function. (_initialize_riscv_tdep): Add calls to setup CSR aliases, and setup register groups. Register new riscv debug variable. * riscv-tdep.h: Add 'arch/riscv.h' include. (struct gdbarch_tdep): Remove abi union, and add riscv_gdbarch_features field. Remove cached quad floating point type, and provide initialisation for double type field. * target-descriptions.c (maint_print_c_tdesc_cmd): Add riscv to the list of targets using the feature based target descriptions. * NEWS: Mention target description support. gdb/doc/ChangeLog: * gdb.texinfo (Standard Target Features): Add RISC-V Features sub-section. |
||
Alan Hayward
|
cf84fa6bcf |
Pass return_method to _push_dummy_call
gdb/ChangeLog: * aarch64-tdep.c (aarch64_push_dummy_call): Replace arg with return_method. * alpha-tdep.c (alpha_push_dummy_call): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_push_dummy_call): Likewise. * amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise. * arc-tdep.c (arc_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * bfin-tdep.c (bfin_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * csky-tdep.c (csky_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh (gdbarch_push_dummy_call): Replace arg with return_method. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call): Likewise. (hppa64_push_dummy_call): Likewise. * i386-darwin-tdep.c (i386_darwin_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * infcall.c (call_function_by_hand_dummy): Likewise. * iq2000-tdep.c (iq2000_push_dummy_call): Likewise. * lm32-tdep.c (lm32_push_dummy_call): Likewise. * m32c-tdep.c (m32c_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * mep-tdep.c (mep_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call): Likewise. (mips_n32n64_push_dummy_call): Likewise. (mips_o32_push_dummy_call): Likewise. (mips_o64_push_dummy_call): Likewise. * mn10300-tdep.c (mn10300_push_dummy_call): Likewise. * msp430-tdep.c (msp430_push_dummy_call): Likewise. * nds32-tdep.c (nds32_push_dummy_call): Likewise. * nios2-tdep.c (nios2_push_dummy_call): Likewise. * or1k-tdep.c (or1k_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * riscv-tdep.c (riscv_push_dummy_call): Likewise. * rl78-tdep.c (rl78_push_dummy_call): Likewise. * rs6000-aix-tdep.c (rs6000_push_dummy_call): Likewise. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Likewise. * rx-tdep.c (rx_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * score-tdep.c (score_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu): Likewise. (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_store_arguments): Likewise. (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_store_arguments): Likewise. (sparc64_push_dummy_call): Likewise. * spu-tdep.c (spu_push_dummy_call): Likewise. * tic6x-tdep.c (tic6x_push_dummy_call): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * v850-tdep.c (v850_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. * xtensa-tdep.c (xtensa_push_dummy_call): Likewise. |
||
Jim Wilson
|
8b2d40cbba |
RISC-V: Fix unnamed arg alignment in registers.
For riscv64-linux target, second half of fix for FAIL: gdb.base/gnu_vector.exp: call add_various_floatvecs Unnamed arguments with 2*XLEN alignment are passed in aligned register pairs. gdb/ * riscv-tdep.c (struct riscv_arg_info): New field is_unnamed. (riscv_call_arg_scalar_int): If unnamed arg with twice xlen alignment, then increment next_regnum if odd. (riscv_arg_location): New arg is_unnamed. Set ainfo->is_unnamed. (riscv_push_dummy_call): New local ftype. Call check_typedef to set function type. Pass new arg to riscv_arg_location based on function type. (riscv_return_value): Pass new arg to riscv_arg_location. |
||
Jim Wilson
|
ef2de9e7eb |
RISC-V: Handle vector type alignment.
For riscv64-linux target, first half of fix for FAIL: gdb.base/gnu_vector.exp: call add_various_floatvecs GCC gives vectors natural aligment based on total size, not element size, bounded by the maximum supported type alignment. gdb/ * riscv-tdep.c (BIGGEST_ALIGNMENT): New. (riscv_type_alignment) <TYPE_CODE_ARRAY>: If TYPE_VECTOR, return min of TYPE_LENGTH and BIGGEST_ALIGNMENT. |
||
Jim Wilson
|
174f8ac8d4 |
RISC-V: Give stack slots same align as XLEN.
For riscv64-linux target, fixes FAIL: gdb.base/gnu_vector.exp: call add_many_charvecs Ensure that stack slots are always the same alignment as XLEN by rounding up arg align to xlen. gdb/ * riscv-tdep.c (riscv_call_arg_scalar_int): Use std::min when setting len. New local align, set to max of arg align and xlen, and pass to first riscv_assign_stack_location call. |
||
Andrew Burgess
|
17cf289784 |
gdb/riscv: Handle errors while setting the frame id
When we connect to a remote target one of the first things GDB does is establish a frame id. If an error is thrown while building this frame id then GDB will disconnect from the target. This can mean that, if the user is attempting to connect to a target that doesn't yet have a program loaded, or the program the user is going to load onto the target doesn't match what is already loaded, or the target is just in some undefined state, then the very first request for a frame id can fail (for example, by trying to load from an invalid memory address), and GDB will disconnect. It is then impossible for the user to connect to the target and load a new program at all. An example of such a session might look like this: Reading symbols from ./gdb/testsuite/outputs/gdb.arch/riscv-reg-aliases/riscv-reg-aliases... (gdb) target remote :37191 Remote debugging using :37191 0x0000000000000100 in ?? () Cannot access memory at address 0x0 (gdb) load You can't do that when your target is `exec' (gdb) info frame /path/to/gdb/gdb/thread.c:93: internal-error: thread_info* inferior_thread(): Assertion `tp' failed. A problem internal to GDB has been detected, further debugging may prove unreliable. Quit this debugging session? (y or n) The solution is to handle errors in riscv_frame_this_id, and leave the this_id variable with its default value, which is the predefined 'outermost' frame. With this fix in place, connecting to the same target now looks like this: (gdb) target remote :37191 Remote debugging using :37191 0x0000000000000100 in ?? () (gdb) info frame Stack level 0, frame at 0x0: pc = 0x100; saved pc = <not saved> Outermost frame: outermost Arglist at unknown address. Locals at unknown address, Previous frame's sp in sp gdb/ChangeLog: * riscv-tdep.c (riscv_insn::decode): Update header comment. (riscv_frame_this_id): Catch errors thrown while building the frame cache, leave the frame id as the default, which is the outer frame id. |
||
Jim Wilson
|
3ba2ee38a6 |
RISC-V: Don't allow unaligned breakpoints.
Some hardware doesn't support unaligned accesses, and a bare metal target may not have an unaligned access trap handler. So if the PC is 2-byte aligned, then use a 2-byte breakpoint to avoid unaligned accesses. Tested on native RV64GC Linux with gdb testsuite and cross on spike simulator and openocd with riscv-tests/debug. gdb/ * riscv-tdep.c (riscv_breakpoint_kind_from_pc): New local unaligned_p. Set if pcptr if unaligned. Return 2 if unaligned_p true. Update debugging messages. |
||
Jim Wilson
|
8a61382623 |
RISC-V: Linux signal frame support.
Make riscv_isa_flen available to the linux native code, and clean up duplicate comments. gdb/ * riscv-tdep.c (riscv_isa_xlen): Refer to riscv-tdep.h comment. (riscv_isa_flen): Likewise. Drop static. * riscv-tdep.h (riscv_isa_xlen): Move riscv-tdep.c comment to here. (riscv_isa_flen): Likewise. |
||
Andrew Burgess
|
0b0eff8b1d |
gdb/riscv: Remove redundant code, and catch more errors when accessing MISA
When reading the MISA register, the RISC-V specification says that, if MISA can't be found then a default value of 0 should be assumed. As such, this patch ensures that GDB ignores errors when accessing both the new and old locations for the MISA register. Additionally, this patch removes an unneeded flag parameter which didn't provide any additional functionality beyond checking the MISA for the default value of 0. gdb/ChangeLog: * riscv-tdep.c (riscv_read_misa_reg): Update comment, remove READ_P parameter, catch and ignore register access errors from either the old or new MISA location. (riscv_has_feature): Update call to riscv_read_misa_reg. |
||
Andrew Burgess
|
420ecd9ce8 |
gdb/riscv: Give user-friendly names for CSRs
The recent commit:
commit
|
||
Joel Brobecker
|
5a77b1b49f |
gdb/riscv: expect h/w watchpoints to trigger before the memory is written
When using QEMU as a RISCV simulator, hardware watchpoint events are reported to GDB before the target memory gets written. GDB currently expects the event to be reported after it is written. As a result of this mismatch, upon receiving the event, GDB sees that the target memory region has not changed, and therefore decides to ignore the event. It therefore resumes the program's execution with a continue, which is the start of an infinite loop between QEMU repeatedly reporting the same watchpoint event over and over, and GDB repeatedly ignoring it. This patch fixes the issue by telling GDB to expect the watchpoint event to be reported ahead of the memory region being modified. Upon receiving the event, GDB then single-steps the program before checking the watched memory value. gdb/ChangeLog: * riscv-tdep.c (riscv_gdbarch_init): Set the gdbarch's have_nonsteppable_watchpoint attribute to 1. |
||
Andrew Burgess
|
0dbfcfffe9 |
gdb/riscv: Fix register access for register aliases
Some confusion over how the register names and aliases are setup in riscv means that we currently can't access registers through their architectural name. This commit fixes this issue, and moves some of the csr register handling out of the alias handling code and deals with it separately. This has the benefit that we can now directly access some arrays rather than having to iterate over them. A new test is added to ensure that register aliases now work correctly. gdb/ChangeLog: * riscv-tdep.c (riscv_gdb_reg_names): Update comment, and all register names. (struct register_alias): Rename to... (struct riscv_register_alias): ...this, and update comment. (riscv_register_aliases): Update type, and alias names. Remove CSR names from this list. (riscv_register_name): Use riscv_gdb_reg_names for int and float register names. Add an extra assertion. (riscv_is_regnum_a_named_csr): New function. (riscv_register_reggroup_p): Use riscv_is_regnum_a_named_csr. gdb/testsuite/ChangeLog: * gdb.arch/riscv-reg-aliases.c: New file. * gdb.arch/riscv-reg-aliases.exp: New file. |