qemu-e2k/target/arm/t32.decode

753 lines
31 KiB
Plaintext
Raw Normal View History

# Thumb2 instructions
#
# Copyright (c) 2019 Linaro, Ltd
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, see <http://www.gnu.org/licenses/>.
#
# This file is processed by scripts/decodetree.py
#
&empty !extern
&s_rrr_shi !extern s rd rn rm shim shty
&s_rrr_shr !extern s rn rd rm rs shty
&s_rri_rot !extern s rn rd imm rot
&s_rrrr !extern s rd rn rm ra
&rrrr !extern rd rn rm ra
&rrr_rot !extern rd rn rm rot
&rrr !extern rd rn rm
&rr !extern rd rm
&ri !extern rd imm
&r !extern rm
&i !extern imm
&msr_reg !extern rn r mask
&mrs_reg !extern rd r
&msr_bank !extern rn r sysm
&mrs_bank !extern rd r sysm
&ldst_rr !extern p w u rn rt rm shimm shtype
&ldst_ri !extern p w u rn rt imm
&ldst_block !extern rn i b u w list
&strex !extern rn rd rt rt2 imm
&ldrex !extern rn rt rt2 imm
&bfx !extern rd rn lsb widthm1
&bfi !extern rd rn lsb msb
&sat !extern rd rn satimm imm sh
&pkh !extern rd rn rm imm tb
&cps !extern mode imod M A I F
&mcr !extern cp opc1 crn crm opc2 rt
&mcrr !extern cp opc1 crm rt rt2
&mve_shl_ri rdalo rdahi shim
&mve_shl_rr rdalo rdahi rm
&mve_sh_ri rda shim
&mve_sh_rr rda rm
# rdahi: bits [3:1] from insn, bit 0 is 1
# rdalo: bits [3:1] from insn, bit 0 is 0
%rdahi_9 9:3 !function=times_2_plus_1
%rdalo_17 17:3 !function=times_2
# Data-processing (register)
%imm5_12_6 12:3 6:2
@s_rrr_shi ....... .... s:1 rn:4 .... rd:4 .. shty:2 rm:4 \
&s_rrr_shi shim=%imm5_12_6
@s_rxr_shi ....... .... s:1 .... .... rd:4 .. shty:2 rm:4 \
&s_rrr_shi shim=%imm5_12_6 rn=0
@S_xrr_shi ....... .... . rn:4 .... .... .. shty:2 rm:4 \
&s_rrr_shi shim=%imm5_12_6 s=1 rd=0
@mve_shl_ri ....... .... . ... . . ... ... . .. .. .... \
&mve_shl_ri shim=%imm5_12_6 rdalo=%rdalo_17 rdahi=%rdahi_9
@mve_shl_rr ....... .... . ... . rm:4 ... . .. .. .... \
&mve_shl_rr rdalo=%rdalo_17 rdahi=%rdahi_9
@mve_sh_ri ....... .... . rda:4 . ... ... . .. .. .... \
&mve_sh_ri shim=%imm5_12_6
@mve_sh_rr ....... .... . rda:4 rm:4 .... .... .... &mve_sh_rr
{
TST_xrri 1110101 0000 1 .... 0 ... 1111 .... .... @S_xrr_shi
AND_rrri 1110101 0000 . .... 0 ... .... .... .... @s_rrr_shi
}
BIC_rrri 1110101 0001 . .... 0 ... .... .... .... @s_rrr_shi
{
# The v8.1M MVE shift insns overlap in encoding with MOVS/ORRS
# and are distinguished by having Rm==13 or 15. Those are UNPREDICTABLE
# cases for MOVS/ORRS. We decode the MVE cases first, ensuring that
# they explicitly call unallocated_encoding() for cases that must UNDEF
# (eg "using a new shift insn on a v8.1M CPU without MVE"), and letting
# the rest fall through (where ORR_rrri and MOV_rxri will end up
# handling them as r13 and r15 accesses with the same semantics as A32).
[
{
UQSHL_ri 1110101 0010 1 .... 0 ... 1111 .. 00 1111 @mve_sh_ri
LSLL_ri 1110101 0010 1 ... 0 0 ... ... 1 .. 00 1111 @mve_shl_ri
UQSHLL_ri 1110101 0010 1 ... 1 0 ... ... 1 .. 00 1111 @mve_shl_ri
}
{
URSHR_ri 1110101 0010 1 .... 0 ... 1111 .. 01 1111 @mve_sh_ri
LSRL_ri 1110101 0010 1 ... 0 0 ... ... 1 .. 01 1111 @mve_shl_ri
URSHRL_ri 1110101 0010 1 ... 1 0 ... ... 1 .. 01 1111 @mve_shl_ri
}
{
SRSHR_ri 1110101 0010 1 .... 0 ... 1111 .. 10 1111 @mve_sh_ri
ASRL_ri 1110101 0010 1 ... 0 0 ... ... 1 .. 10 1111 @mve_shl_ri
SRSHRL_ri 1110101 0010 1 ... 1 0 ... ... 1 .. 10 1111 @mve_shl_ri
}
{
SQSHL_ri 1110101 0010 1 .... 0 ... 1111 .. 11 1111 @mve_sh_ri
SQSHLL_ri 1110101 0010 1 ... 1 0 ... ... 1 .. 11 1111 @mve_shl_ri
}
{
UQRSHL_rr 1110101 0010 1 .... .... 1111 0000 1101 @mve_sh_rr
LSLL_rr 1110101 0010 1 ... 0 .... ... 1 0000 1101 @mve_shl_rr
UQRSHLL64_rr 1110101 0010 1 ... 1 .... ... 1 0000 1101 @mve_shl_rr
}
{
SQRSHR_rr 1110101 0010 1 .... .... 1111 0010 1101 @mve_sh_rr
ASRL_rr 1110101 0010 1 ... 0 .... ... 1 0010 1101 @mve_shl_rr
SQRSHRL64_rr 1110101 0010 1 ... 1 .... ... 1 0010 1101 @mve_shl_rr
}
UQRSHLL48_rr 1110101 0010 1 ... 1 .... ... 1 1000 1101 @mve_shl_rr
SQRSHRL48_rr 1110101 0010 1 ... 1 .... ... 1 1010 1101 @mve_shl_rr
]
MOV_rxri 1110101 0010 . 1111 0 ... .... .... .... @s_rxr_shi
ORR_rrri 1110101 0010 . .... 0 ... .... .... .... @s_rrr_shi
# v8.1M CSEL and friends
CSEL 1110101 0010 1 rn:4 10 op:2 rd:4 fcond:4 rm:4
}
{
MVN_rxri 1110101 0011 . 1111 0 ... .... .... .... @s_rxr_shi
ORN_rrri 1110101 0011 . .... 0 ... .... .... .... @s_rrr_shi
}
{
TEQ_xrri 1110101 0100 1 .... 0 ... 1111 .... .... @S_xrr_shi
EOR_rrri 1110101 0100 . .... 0 ... .... .... .... @s_rrr_shi
}
PKH 1110101 0110 0 rn:4 0 ... rd:4 .. tb:1 0 rm:4 \
&pkh imm=%imm5_12_6
{
CMN_xrri 1110101 1000 1 .... 0 ... 1111 .... .... @S_xrr_shi
ADD_rrri 1110101 1000 . .... 0 ... .... .... .... @s_rrr_shi
}
ADC_rrri 1110101 1010 . .... 0 ... .... .... .... @s_rrr_shi
SBC_rrri 1110101 1011 . .... 0 ... .... .... .... @s_rrr_shi
{
CMP_xrri 1110101 1101 1 .... 0 ... 1111 .... .... @S_xrr_shi
SUB_rrri 1110101 1101 . .... 0 ... .... .... .... @s_rrr_shi
}
RSB_rrri 1110101 1110 . .... 0 ... .... .... .... @s_rrr_shi
# Data-processing (register-shifted register)
MOV_rxrr 1111 1010 0 shty:2 s:1 rm:4 1111 rd:4 0000 rs:4 \
&s_rrr_shr rn=0
# Data-processing (immediate)
%t32extrot 26:1 12:3 0:8 !function=t32_expandimm_rot
%t32extimm 26:1 12:3 0:8 !function=t32_expandimm_imm
@s_rri_rot ....... .... s:1 rn:4 . ... rd:4 ........ \
&s_rri_rot imm=%t32extimm rot=%t32extrot
@s_rxi_rot ....... .... s:1 .... . ... rd:4 ........ \
&s_rri_rot imm=%t32extimm rot=%t32extrot rn=0
@S_xri_rot ....... .... . rn:4 . ... .... ........ \
&s_rri_rot imm=%t32extimm rot=%t32extrot s=1 rd=0
{
TST_xri 1111 0.0 0000 1 .... 0 ... 1111 ........ @S_xri_rot
AND_rri 1111 0.0 0000 . .... 0 ... .... ........ @s_rri_rot
}
BIC_rri 1111 0.0 0001 . .... 0 ... .... ........ @s_rri_rot
{
MOV_rxi 1111 0.0 0010 . 1111 0 ... .... ........ @s_rxi_rot
ORR_rri 1111 0.0 0010 . .... 0 ... .... ........ @s_rri_rot
}
{
MVN_rxi 1111 0.0 0011 . 1111 0 ... .... ........ @s_rxi_rot
ORN_rri 1111 0.0 0011 . .... 0 ... .... ........ @s_rri_rot
}
{
TEQ_xri 1111 0.0 0100 1 .... 0 ... 1111 ........ @S_xri_rot
EOR_rri 1111 0.0 0100 . .... 0 ... .... ........ @s_rri_rot
}
{
CMN_xri 1111 0.0 1000 1 .... 0 ... 1111 ........ @S_xri_rot
ADD_rri 1111 0.0 1000 . .... 0 ... .... ........ @s_rri_rot
}
ADC_rri 1111 0.0 1010 . .... 0 ... .... ........ @s_rri_rot
SBC_rri 1111 0.0 1011 . .... 0 ... .... ........ @s_rri_rot
{
CMP_xri 1111 0.0 1101 1 .... 0 ... 1111 ........ @S_xri_rot
SUB_rri 1111 0.0 1101 . .... 0 ... .... ........ @s_rri_rot
}
RSB_rri 1111 0.0 1110 . .... 0 ... .... ........ @s_rri_rot
# Data processing (plain binary immediate)
%imm12_26_12_0 26:1 12:3 0:8
%neg12_26_12_0 26:1 12:3 0:8 !function=negate
@s0_rri_12 .... ... .... . rn:4 . ... rd:4 ........ \
&s_rri_rot imm=%imm12_26_12_0 rot=0 s=0
{
ADR 1111 0.1 0000 0 1111 0 ... rd:4 ........ \
&ri imm=%imm12_26_12_0
ADD_rri 1111 0.1 0000 0 .... 0 ... .... ........ @s0_rri_12
}
{
ADR 1111 0.1 0101 0 1111 0 ... rd:4 ........ \
&ri imm=%neg12_26_12_0
SUB_rri 1111 0.1 0101 0 .... 0 ... .... ........ @s0_rri_12
}
# Move Wide
%imm16_26_16_12_0 16:4 26:1 12:3 0:8
@mov16 .... .... .... .... .... rd:4 .... .... \
&ri imm=%imm16_26_16_12_0
MOVW 1111 0.10 0100 .... 0 ... .... ........ @mov16
MOVT 1111 0.10 1100 .... 0 ... .... ........ @mov16
# Saturate, bitfield
@sat .... .... .. sh:1 . rn:4 . ... rd:4 .. . satimm:5 \
&sat imm=%imm5_12_6
@sat16 .... .... .. . . rn:4 . ... rd:4 .. . satimm:5 \
&sat sh=0 imm=0
{
SSAT16 1111 0011 001 0 .... 0 000 .... 00 0 ..... @sat16
SSAT 1111 0011 00. 0 .... 0 ... .... .. 0 ..... @sat
}
{
USAT16 1111 0011 101 0 .... 0 000 .... 00 0 ..... @sat16
USAT 1111 0011 10. 0 .... 0 ... .... .. 0 ..... @sat
}
@bfx .... .... ... . rn:4 . ... rd:4 .. . widthm1:5 \
&bfx lsb=%imm5_12_6
@bfi .... .... ... . rn:4 . ... rd:4 .. . msb:5 \
&bfi lsb=%imm5_12_6
SBFX 1111 0011 010 0 .... 0 ... .... ..0..... @bfx
UBFX 1111 0011 110 0 .... 0 ... .... ..0..... @bfx
# bfc is bfi w/ rn=15
BFCI 1111 0011 011 0 .... 0 ... .... ..0..... @bfi
# Multiply and multiply accumulate
@s0_rnadm .... .... .... rn:4 ra:4 rd:4 .... rm:4 &s_rrrr s=0
@s0_rn0dm .... .... .... rn:4 .... rd:4 .... rm:4 &s_rrrr ra=0 s=0
@rnadm .... .... .... rn:4 ra:4 rd:4 .... rm:4 &rrrr
@rn0dm .... .... .... rn:4 .... rd:4 .... rm:4 &rrrr ra=0
@rndm .... .... .... rn:4 .... rd:4 .... rm:4 &rrr
@rdm .... .... .... .... .... rd:4 .... rm:4 &rr
{
MUL 1111 1011 0000 .... 1111 .... 0000 .... @s0_rn0dm
MLA 1111 1011 0000 .... .... .... 0000 .... @s0_rnadm
}
MLS 1111 1011 0000 .... .... .... 0001 .... @rnadm
SMULL 1111 1011 1000 .... .... .... 0000 .... @s0_rnadm
UMULL 1111 1011 1010 .... .... .... 0000 .... @s0_rnadm
SMLAL 1111 1011 1100 .... .... .... 0000 .... @s0_rnadm
UMLAL 1111 1011 1110 .... .... .... 0000 .... @s0_rnadm
UMAAL 1111 1011 1110 .... .... .... 0110 .... @rnadm
{
SMULWB 1111 1011 0011 .... 1111 .... 0000 .... @rn0dm
SMLAWB 1111 1011 0011 .... .... .... 0000 .... @rnadm
}
{
SMULWT 1111 1011 0011 .... 1111 .... 0001 .... @rn0dm
SMLAWT 1111 1011 0011 .... .... .... 0001 .... @rnadm
}
{
SMULBB 1111 1011 0001 .... 1111 .... 0000 .... @rn0dm
SMLABB 1111 1011 0001 .... .... .... 0000 .... @rnadm
}
{
SMULBT 1111 1011 0001 .... 1111 .... 0001 .... @rn0dm
SMLABT 1111 1011 0001 .... .... .... 0001 .... @rnadm
}
{
SMULTB 1111 1011 0001 .... 1111 .... 0010 .... @rn0dm
SMLATB 1111 1011 0001 .... .... .... 0010 .... @rnadm
}
{
SMULTT 1111 1011 0001 .... 1111 .... 0011 .... @rn0dm
SMLATT 1111 1011 0001 .... .... .... 0011 .... @rnadm
}
SMLALBB 1111 1011 1100 .... .... .... 1000 .... @rnadm
SMLALBT 1111 1011 1100 .... .... .... 1001 .... @rnadm
SMLALTB 1111 1011 1100 .... .... .... 1010 .... @rnadm
SMLALTT 1111 1011 1100 .... .... .... 1011 .... @rnadm
# usad8 is usada8 w/ ra=15
USADA8 1111 1011 0111 .... .... .... 0000 .... @rnadm
SMLAD 1111 1011 0010 .... .... .... 0000 .... @rnadm
SMLADX 1111 1011 0010 .... .... .... 0001 .... @rnadm
SMLSD 1111 1011 0100 .... .... .... 0000 .... @rnadm
SMLSDX 1111 1011 0100 .... .... .... 0001 .... @rnadm
SMLALD 1111 1011 1100 .... .... .... 1100 .... @rnadm
SMLALDX 1111 1011 1100 .... .... .... 1101 .... @rnadm
SMLSLD 1111 1011 1101 .... .... .... 1100 .... @rnadm
SMLSLDX 1111 1011 1101 .... .... .... 1101 .... @rnadm
SMMLA 1111 1011 0101 .... .... .... 0000 .... @rnadm
SMMLAR 1111 1011 0101 .... .... .... 0001 .... @rnadm
SMMLS 1111 1011 0110 .... .... .... 0000 .... @rnadm
SMMLSR 1111 1011 0110 .... .... .... 0001 .... @rnadm
SDIV 1111 1011 1001 .... 1111 .... 1111 .... @rndm
UDIV 1111 1011 1011 .... 1111 .... 1111 .... @rndm
# Data-processing (two source registers)
QADD 1111 1010 1000 .... 1111 .... 1000 .... @rndm
QSUB 1111 1010 1000 .... 1111 .... 1010 .... @rndm
QDADD 1111 1010 1000 .... 1111 .... 1001 .... @rndm
QDSUB 1111 1010 1000 .... 1111 .... 1011 .... @rndm
CRC32B 1111 1010 1100 .... 1111 .... 1000 .... @rndm
CRC32H 1111 1010 1100 .... 1111 .... 1001 .... @rndm
CRC32W 1111 1010 1100 .... 1111 .... 1010 .... @rndm
CRC32CB 1111 1010 1101 .... 1111 .... 1000 .... @rndm
CRC32CH 1111 1010 1101 .... 1111 .... 1001 .... @rndm
CRC32CW 1111 1010 1101 .... 1111 .... 1010 .... @rndm
SEL 1111 1010 1010 .... 1111 .... 1000 .... @rndm
# Note rn != rm is CONSTRAINED UNPREDICTABLE; we choose to ignore rn.
REV 1111 1010 1001 ---- 1111 .... 1000 .... @rdm
REV16 1111 1010 1001 ---- 1111 .... 1001 .... @rdm
RBIT 1111 1010 1001 ---- 1111 .... 1010 .... @rdm
REVSH 1111 1010 1001 ---- 1111 .... 1011 .... @rdm
CLZ 1111 1010 1011 ---- 1111 .... 1000 .... @rdm
# Branches and miscellaneous control
%msr_sysm 4:1 8:4
%mrs_sysm 4:1 16:4
%imm16_16_0 16:4 0:12
%imm21 26:s1 11:1 13:1 16:6 0:11 !function=times_2
&ci cond imm
{
# Group insn[25:23] = 111, which is cond=111x for the branch below,
# or unconditional, which would be illegal for the branch.
[
# Hints, and CPS
{
YIELD 1111 0011 1010 1111 1000 0000 0000 0001
WFE 1111 0011 1010 1111 1000 0000 0000 0010
WFI 1111 0011 1010 1111 1000 0000 0000 0011
# TODO: Implement SEV, SEVL; may help SMP performance.
# SEV 1111 0011 1010 1111 1000 0000 0000 0100
# SEVL 1111 0011 1010 1111 1000 0000 0000 0101
# For M-profile minimal-RAS ESB can be a NOP, which is the
# default behaviour since it is in the hint space.
# ESB 1111 0011 1010 1111 1000 0000 0001 0000
# The canonical nop ends in 0000 0000, but the whole rest
# of the space is "reserved hint, behaves as nop".
NOP 1111 0011 1010 1111 1000 0000 ---- ----
# If imod == '00' && M == '0' then SEE "Hint instructions", above.
CPS 1111 0011 1010 1111 1000 0 imod:2 M:1 A:1 I:1 F:1 mode:5 \
&cps
}
# Miscellaneous control
CLREX 1111 0011 1011 1111 1000 1111 0010 1111
DSB 1111 0011 1011 1111 1000 1111 0100 ----
DMB 1111 0011 1011 1111 1000 1111 0101 ----
ISB 1111 0011 1011 1111 1000 1111 0110 ----
SB 1111 0011 1011 1111 1000 1111 0111 0000
# Note that the v7m insn overlaps both the normal and banked insn.
{
MRS_bank 1111 0011 111 r:1 .... 1000 rd:4 001. 0000 \
&mrs_bank sysm=%mrs_sysm
MRS_reg 1111 0011 111 r:1 1111 1000 rd:4 0000 0000 &mrs_reg
MRS_v7m 1111 0011 111 0 1111 1000 rd:4 sysm:8
}
{
MSR_bank 1111 0011 100 r:1 rn:4 1000 .... 001. 0000 \
&msr_bank sysm=%msr_sysm
MSR_reg 1111 0011 100 r:1 rn:4 1000 mask:4 0000 0000 &msr_reg
MSR_v7m 1111 0011 100 0 rn:4 1000 mask:2 00 sysm:8
}
BXJ 1111 0011 1100 rm:4 1000 1111 0000 0000 &r
{
# At v6T2, this is the T5 encoding of SUBS PC, LR, #IMM, and works as for
# every other encoding of SUBS. With v7VE, IMM=0 is redefined as ERET.
# The distinction between the two only matters for Hyp mode.
ERET 1111 0011 1101 1110 1000 1111 0000 0000
SUB_rri 1111 0011 1101 1110 1000 1111 imm:8 \
&s_rri_rot rot=0 s=1 rd=15 rn=14
}
SMC 1111 0111 1111 imm:4 1000 0000 0000 0000 &i
HVC 1111 0111 1110 .... 1000 .... .... .... \
&i imm=%imm16_16_0
UDF 1111 0111 1111 ---- 1010 ---- ---- ----
]
B_cond_thumb 1111 0. cond:4 ...... 10.0 ............ &ci imm=%imm21
}
# Load/store (register, immediate, literal)
@ldst_rr .... .... .... rn:4 rt:4 ...... shimm:2 rm:4 \
&ldst_rr p=1 w=0 u=1 shtype=0
@ldst_ri_idx .... .... .... rn:4 rt:4 . p:1 u:1 . imm:8 \
&ldst_ri w=1
@ldst_ri_neg .... .... .... rn:4 rt:4 .... imm:8 \
&ldst_ri p=1 w=0 u=0
@ldst_ri_unp .... .... .... rn:4 rt:4 .... imm:8 \
&ldst_ri p=1 w=0 u=1
@ldst_ri_pos .... .... .... rn:4 rt:4 imm:12 \
&ldst_ri p=1 w=0 u=1
@ldst_ri_lit .... .... u:1 ... .... rt:4 imm:12 \
&ldst_ri p=1 w=0 rn=15
STRB_rr 1111 1000 0000 .... .... 000000 .. .... @ldst_rr
STRB_ri 1111 1000 0000 .... .... 1..1 ........ @ldst_ri_idx
STRB_ri 1111 1000 0000 .... .... 1100 ........ @ldst_ri_neg
STRBT_ri 1111 1000 0000 .... .... 1110 ........ @ldst_ri_unp
STRB_ri 1111 1000 1000 .... .... ............ @ldst_ri_pos
STRH_rr 1111 1000 0010 .... .... 000000 .. .... @ldst_rr
STRH_ri 1111 1000 0010 .... .... 1..1 ........ @ldst_ri_idx
STRH_ri 1111 1000 0010 .... .... 1100 ........ @ldst_ri_neg
STRHT_ri 1111 1000 0010 .... .... 1110 ........ @ldst_ri_unp
STRH_ri 1111 1000 1010 .... .... ............ @ldst_ri_pos
STR_rr 1111 1000 0100 .... .... 000000 .. .... @ldst_rr
STR_ri 1111 1000 0100 .... .... 1..1 ........ @ldst_ri_idx
STR_ri 1111 1000 0100 .... .... 1100 ........ @ldst_ri_neg
STRT_ri 1111 1000 0100 .... .... 1110 ........ @ldst_ri_unp
STR_ri 1111 1000 1100 .... .... ............ @ldst_ri_pos
# Note that Load, unsigned (literal) overlaps all other load encodings.
{
{
NOP 1111 1000 -001 1111 1111 ------------ # PLD
LDRB_ri 1111 1000 .001 1111 .... ............ @ldst_ri_lit
}
{
NOP 1111 1000 1001 ---- 1111 ------------ # PLD
LDRB_ri 1111 1000 1001 .... .... ............ @ldst_ri_pos
}
LDRB_ri 1111 1000 0001 .... .... 1..1 ........ @ldst_ri_idx
{
NOP 1111 1000 0001 ---- 1111 1100 -------- # PLD
LDRB_ri 1111 1000 0001 .... .... 1100 ........ @ldst_ri_neg
}
LDRBT_ri 1111 1000 0001 .... .... 1110 ........ @ldst_ri_unp
{
NOP 1111 1000 0001 ---- 1111 000000 -- ---- # PLD
LDRB_rr 1111 1000 0001 .... .... 000000 .. .... @ldst_rr
}
}
{
{
NOP 1111 1000 -011 1111 1111 ------------ # PLD
LDRH_ri 1111 1000 .011 1111 .... ............ @ldst_ri_lit
}
{
NOP 1111 1000 1011 ---- 1111 ------------ # PLDW
LDRH_ri 1111 1000 1011 .... .... ............ @ldst_ri_pos
}
LDRH_ri 1111 1000 0011 .... .... 1..1 ........ @ldst_ri_idx
{
NOP 1111 1000 0011 ---- 1111 1100 -------- # PLDW
LDRH_ri 1111 1000 0011 .... .... 1100 ........ @ldst_ri_neg
}
LDRHT_ri 1111 1000 0011 .... .... 1110 ........ @ldst_ri_unp
{
NOP 1111 1000 0011 ---- 1111 000000 -- ---- # PLDW
LDRH_rr 1111 1000 0011 .... .... 000000 .. .... @ldst_rr
}
}
{
LDR_ri 1111 1000 .101 1111 .... ............ @ldst_ri_lit
LDR_ri 1111 1000 1101 .... .... ............ @ldst_ri_pos
LDR_ri 1111 1000 0101 .... .... 1..1 ........ @ldst_ri_idx
LDR_ri 1111 1000 0101 .... .... 1100 ........ @ldst_ri_neg
LDRT_ri 1111 1000 0101 .... .... 1110 ........ @ldst_ri_unp
LDR_rr 1111 1000 0101 .... .... 000000 .. .... @ldst_rr
}
# NOPs here are PLI.
{
{
NOP 1111 1001 -001 1111 1111 ------------
LDRSB_ri 1111 1001 .001 1111 .... ............ @ldst_ri_lit
}
{
NOP 1111 1001 1001 ---- 1111 ------------
LDRSB_ri 1111 1001 1001 .... .... ............ @ldst_ri_pos
}
LDRSB_ri 1111 1001 0001 .... .... 1..1 ........ @ldst_ri_idx
{
NOP 1111 1001 0001 ---- 1111 1100 --------
LDRSB_ri 1111 1001 0001 .... .... 1100 ........ @ldst_ri_neg
}
LDRSBT_ri 1111 1001 0001 .... .... 1110 ........ @ldst_ri_unp
{
NOP 1111 1001 0001 ---- 1111 000000 -- ----
LDRSB_rr 1111 1001 0001 .... .... 000000 .. .... @ldst_rr
}
}
# NOPs here are unallocated memory hints, treated as NOP.
{
{
NOP 1111 1001 -011 1111 1111 ------------
LDRSH_ri 1111 1001 .011 1111 .... ............ @ldst_ri_lit
}
{
NOP 1111 1001 1011 ---- 1111 ------------
LDRSH_ri 1111 1001 1011 .... .... ............ @ldst_ri_pos
}
LDRSH_ri 1111 1001 0011 .... .... 1..1 ........ @ldst_ri_idx
{
NOP 1111 1001 0011 ---- 1111 1100 --------
LDRSH_ri 1111 1001 0011 .... .... 1100 ........ @ldst_ri_neg
}
LDRSHT_ri 1111 1001 0011 .... .... 1110 ........ @ldst_ri_unp
{
NOP 1111 1001 0011 ---- 1111 000000 -- ----
LDRSH_rr 1111 1001 0011 .... .... 000000 .. .... @ldst_rr
}
}
%imm8x4 0:8 !function=times_4
&ldst_ri2 p w u rn rt rt2 imm
@ldstd_ri8 .... .... u:1 ... rn:4 rt:4 rt2:4 ........ \
&ldst_ri2 imm=%imm8x4
STRD_ri_t32 1110 1000 .110 .... .... .... ........ @ldstd_ri8 w=1 p=0
LDRD_ri_t32 1110 1000 .111 .... .... .... ........ @ldstd_ri8 w=1 p=0
STRD_ri_t32 1110 1001 .100 .... .... .... ........ @ldstd_ri8 w=0 p=1
LDRD_ri_t32 1110 1001 .101 .... .... .... ........ @ldstd_ri8 w=0 p=1
STRD_ri_t32 1110 1001 .110 .... .... .... ........ @ldstd_ri8 w=1 p=1
{
SG 1110 1001 0111 1111 1110 1001 01111111
LDRD_ri_t32 1110 1001 .111 .... .... .... ........ @ldstd_ri8 w=1 p=1
}
# Load/Store Exclusive, Load-Acquire/Store-Release, and Table Branch
@strex_i .... .... .... rn:4 rt:4 rd:4 .... .... \
&strex rt2=15 imm=%imm8x4
@strex_0 .... .... .... rn:4 rt:4 .... .... rd:4 \
&strex rt2=15 imm=0
@strex_d .... .... .... rn:4 rt:4 rt2:4 .... rd:4 \
&strex imm=0
@ldrex_i .... .... .... rn:4 rt:4 .... .... .... \
&ldrex rt2=15 imm=%imm8x4
@ldrex_0 .... .... .... rn:4 rt:4 .... .... .... \
&ldrex rt2=15 imm=0
@ldrex_d .... .... .... rn:4 rt:4 rt2:4 .... .... \
&ldrex imm=0
{
TT 1110 1000 0100 rn:4 1111 rd:4 A:1 T:1 000000
STREX 1110 1000 0100 .... .... .... .... .... @strex_i
}
STREXB 1110 1000 1100 .... .... 1111 0100 .... @strex_0
STREXH 1110 1000 1100 .... .... 1111 0101 .... @strex_0
STREXD_t32 1110 1000 1100 .... .... .... 0111 .... @strex_d
STLEX 1110 1000 1100 .... .... 1111 1110 .... @strex_0
STLEXB 1110 1000 1100 .... .... 1111 1100 .... @strex_0
STLEXH 1110 1000 1100 .... .... 1111 1101 .... @strex_0
STLEXD_t32 1110 1000 1100 .... .... .... 1111 .... @strex_d
STL 1110 1000 1100 .... .... 1111 1010 1111 @ldrex_0
STLB 1110 1000 1100 .... .... 1111 1000 1111 @ldrex_0
STLH 1110 1000 1100 .... .... 1111 1001 1111 @ldrex_0
LDREX 1110 1000 0101 .... .... 1111 .... .... @ldrex_i
LDREXB 1110 1000 1101 .... .... 1111 0100 1111 @ldrex_0
LDREXH 1110 1000 1101 .... .... 1111 0101 1111 @ldrex_0
LDREXD_t32 1110 1000 1101 .... .... .... 0111 1111 @ldrex_d
LDAEX 1110 1000 1101 .... .... 1111 1110 1111 @ldrex_0
LDAEXB 1110 1000 1101 .... .... 1111 1100 1111 @ldrex_0
LDAEXH 1110 1000 1101 .... .... 1111 1101 1111 @ldrex_0
LDAEXD_t32 1110 1000 1101 .... .... .... 1111 1111 @ldrex_d
LDA 1110 1000 1101 .... .... 1111 1010 1111 @ldrex_0
LDAB 1110 1000 1101 .... .... 1111 1000 1111 @ldrex_0
LDAH 1110 1000 1101 .... .... 1111 1001 1111 @ldrex_0
&tbranch rn rm
@tbranch .... .... .... rn:4 .... .... .... rm:4 &tbranch
TBB 1110 1000 1101 .... 1111 0000 0000 .... @tbranch
TBH 1110 1000 1101 .... 1111 0000 0001 .... @tbranch
# Parallel addition and subtraction
SADD8 1111 1010 1000 .... 1111 .... 0000 .... @rndm
QADD8 1111 1010 1000 .... 1111 .... 0001 .... @rndm
SHADD8 1111 1010 1000 .... 1111 .... 0010 .... @rndm
UADD8 1111 1010 1000 .... 1111 .... 0100 .... @rndm
UQADD8 1111 1010 1000 .... 1111 .... 0101 .... @rndm
UHADD8 1111 1010 1000 .... 1111 .... 0110 .... @rndm
SADD16 1111 1010 1001 .... 1111 .... 0000 .... @rndm
QADD16 1111 1010 1001 .... 1111 .... 0001 .... @rndm
SHADD16 1111 1010 1001 .... 1111 .... 0010 .... @rndm
UADD16 1111 1010 1001 .... 1111 .... 0100 .... @rndm
UQADD16 1111 1010 1001 .... 1111 .... 0101 .... @rndm
UHADD16 1111 1010 1001 .... 1111 .... 0110 .... @rndm
SASX 1111 1010 1010 .... 1111 .... 0000 .... @rndm
QASX 1111 1010 1010 .... 1111 .... 0001 .... @rndm
SHASX 1111 1010 1010 .... 1111 .... 0010 .... @rndm
UASX 1111 1010 1010 .... 1111 .... 0100 .... @rndm
UQASX 1111 1010 1010 .... 1111 .... 0101 .... @rndm
UHASX 1111 1010 1010 .... 1111 .... 0110 .... @rndm
SSUB8 1111 1010 1100 .... 1111 .... 0000 .... @rndm
QSUB8 1111 1010 1100 .... 1111 .... 0001 .... @rndm
SHSUB8 1111 1010 1100 .... 1111 .... 0010 .... @rndm
USUB8 1111 1010 1100 .... 1111 .... 0100 .... @rndm
UQSUB8 1111 1010 1100 .... 1111 .... 0101 .... @rndm
UHSUB8 1111 1010 1100 .... 1111 .... 0110 .... @rndm
SSUB16 1111 1010 1101 .... 1111 .... 0000 .... @rndm
QSUB16 1111 1010 1101 .... 1111 .... 0001 .... @rndm
SHSUB16 1111 1010 1101 .... 1111 .... 0010 .... @rndm
USUB16 1111 1010 1101 .... 1111 .... 0100 .... @rndm
UQSUB16 1111 1010 1101 .... 1111 .... 0101 .... @rndm
UHSUB16 1111 1010 1101 .... 1111 .... 0110 .... @rndm
SSAX 1111 1010 1110 .... 1111 .... 0000 .... @rndm
QSAX 1111 1010 1110 .... 1111 .... 0001 .... @rndm
SHSAX 1111 1010 1110 .... 1111 .... 0010 .... @rndm
USAX 1111 1010 1110 .... 1111 .... 0100 .... @rndm
UQSAX 1111 1010 1110 .... 1111 .... 0101 .... @rndm
UHSAX 1111 1010 1110 .... 1111 .... 0110 .... @rndm
# Register extends
@rrr_rot .... .... .... rn:4 .... rd:4 .. rot:2 rm:4 &rrr_rot
SXTAH 1111 1010 0000 .... 1111 .... 10.. .... @rrr_rot
UXTAH 1111 1010 0001 .... 1111 .... 10.. .... @rrr_rot
SXTAB16 1111 1010 0010 .... 1111 .... 10.. .... @rrr_rot
UXTAB16 1111 1010 0011 .... 1111 .... 10.. .... @rrr_rot
SXTAB 1111 1010 0100 .... 1111 .... 10.. .... @rrr_rot
UXTAB 1111 1010 0101 .... 1111 .... 10.. .... @rrr_rot
# Load/store multiple
@ldstm .... .... .. w:1 . rn:4 list:16 &ldst_block u=0
STM_t32 1110 1000 10.0 .... ................ @ldstm i=1 b=0
STM_t32 1110 1001 00.0 .... ................ @ldstm i=0 b=1
{
# Rn=15 UNDEFs for LDM; M-profile CLRM uses that encoding
CLRM 1110 1000 1001 1111 list:16
LDM_t32 1110 1000 10.1 .... ................ @ldstm i=1 b=0
}
LDM_t32 1110 1001 00.1 .... ................ @ldstm i=0 b=1
&rfe !extern rn w pu
@rfe .... .... .. w:1 . rn:4 ................ &rfe
RFE 1110 1000 00.1 .... 1100000000000000 @rfe pu=2
RFE 1110 1001 10.1 .... 1100000000000000 @rfe pu=1
&srs !extern mode w pu
@srs .... .... .. w:1 . .... ........... mode:5 &srs
SRS 1110 1000 00.0 1101 1100 0000 000. .... @srs pu=2
SRS 1110 1001 10.0 1101 1100 0000 000. .... @srs pu=1
# Coprocessor instructions
# We decode MCR, MCR, MRRC and MCRR only, because for QEMU the
# other coprocessor instructions always UNDEF.
# The trans_ functions for these will ignore cp values 8..13 for v7 or
# earlier, and 0..13 for v8 and later, because those areas of the
# encoding space may be used for other things, such as VFP or Neon.
@mcr .... .... opc1:3 . crn:4 rt:4 cp:4 opc2:3 . crm:4
@mcrr .... .... .... rt2:4 rt:4 cp:4 opc1:4 crm:4
MCRR 1110 1100 0100 .... .... .... .... .... @mcrr
MRRC 1110 1100 0101 .... .... .... .... .... @mcrr
MCR 1110 1110 ... 0 .... .... .... ... 1 .... @mcr
MRC 1110 1110 ... 1 .... .... .... ... 1 .... @mcr
# Branches
%imm24 26:s1 13:1 11:1 16:10 0:11 !function=t32_branch24
@branch24 ................................ &i imm=%imm24
B 1111 0. .......... 10.1 ............ @branch24
BL 1111 0. .......... 11.1 ............ @branch24
{
# BLX_i is non-M-profile only
BLX_i 1111 0. .......... 11.0 ............ @branch24
# M-profile only: loop and branch insns
[
# All these BF insns have boff != 0b0000; we NOP them all
BF 1111 0 boff:4 ------- 1100 - ---------- 1 # BFL
BF 1111 0 boff:4 0 ------ 1110 - ---------- 1 # BFCSEL
BF 1111 0 boff:4 10 ----- 1110 - ---------- 1 # BF
BF 1111 0 boff:4 11 ----- 1110 0 0000000000 1 # BFX, BFLX
]
[
# LE and WLS immediate
%lob_imm 1:10 11:1 !function=times_2
DLS 1111 0 0000 100 rn:4 1110 0000 0000 0001 size=4
WLS 1111 0 0000 100 rn:4 1100 . .......... 1 imm=%lob_imm size=4
{
LE 1111 0 0000 0 f:1 tp:1 1111 1100 . .......... 1 imm=%lob_imm
# This is WLSTP
WLS 1111 0 0000 0 size:2 rn:4 1100 . .......... 1 imm=%lob_imm
}
{
LCTP 1111 0 0000 000 1111 1110 0000 0000 0001
# This is DLSTP
DLS 1111 0 0000 0 size:2 rn:4 1110 0000 0000 0001
}
]
}