qemu-e2k/tcg/sparc/tcg-target.c

1702 lines
54 KiB
C
Raw Normal View History

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "tcg-be-null.h"
#ifndef NDEBUG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"%g0",
"%g1",
"%g2",
"%g3",
"%g4",
"%g5",
"%g6",
"%g7",
"%o0",
"%o1",
"%o2",
"%o3",
"%o4",
"%o5",
"%o6",
"%o7",
"%l0",
"%l1",
"%l2",
"%l3",
"%l4",
"%l5",
"%l6",
"%l7",
"%i0",
"%i1",
"%i2",
"%i3",
"%i4",
"%i5",
"%i6",
"%i7",
};
#endif
/* Define some temporary registers. T2 is used for constant generation. */
#define TCG_REG_T1 TCG_REG_G1
#define TCG_REG_T2 TCG_REG_O7
#ifdef CONFIG_USE_GUEST_BASE
# define TCG_GUEST_BASE_REG TCG_REG_I5
#else
# define TCG_GUEST_BASE_REG TCG_REG_G0
#endif
static const int tcg_target_reg_alloc_order[] = {
TCG_REG_L0,
TCG_REG_L1,
TCG_REG_L2,
TCG_REG_L3,
TCG_REG_L4,
TCG_REG_L5,
TCG_REG_L6,
TCG_REG_L7,
TCG_REG_I0,
TCG_REG_I1,
TCG_REG_I2,
TCG_REG_I3,
TCG_REG_I4,
TCG_REG_I5,
TCG_REG_G2,
TCG_REG_G3,
TCG_REG_G4,
TCG_REG_G5,
TCG_REG_O0,
TCG_REG_O1,
TCG_REG_O2,
TCG_REG_O3,
TCG_REG_O4,
TCG_REG_O5,
};
static const int tcg_target_call_iarg_regs[6] = {
TCG_REG_O0,
TCG_REG_O1,
TCG_REG_O2,
TCG_REG_O3,
TCG_REG_O4,
TCG_REG_O5,
};
static const int tcg_target_call_oarg_regs[] = {
TCG_REG_O0,
TCG_REG_O1,
TCG_REG_O2,
TCG_REG_O3,
};
#define INSN_OP(x) ((x) << 30)
#define INSN_OP2(x) ((x) << 22)
#define INSN_OP3(x) ((x) << 19)
#define INSN_OPF(x) ((x) << 5)
#define INSN_RD(x) ((x) << 25)
#define INSN_RS1(x) ((x) << 14)
#define INSN_RS2(x) (x)
#define INSN_ASI(x) ((x) << 5)
#define INSN_IMM10(x) ((1 << 13) | ((x) & 0x3ff))
#define INSN_IMM11(x) ((1 << 13) | ((x) & 0x7ff))
#define INSN_IMM13(x) ((1 << 13) | ((x) & 0x1fff))
#define INSN_OFF16(x) ((((x) >> 2) & 0x3fff) | ((((x) >> 16) & 3) << 20))
#define INSN_OFF19(x) (((x) >> 2) & 0x07ffff)
#define INSN_COND(x) ((x) << 25)
#define COND_N 0x0
#define COND_E 0x1
#define COND_LE 0x2
#define COND_L 0x3
#define COND_LEU 0x4
#define COND_CS 0x5
#define COND_NEG 0x6
#define COND_VS 0x7
#define COND_A 0x8
#define COND_NE 0x9
#define COND_G 0xa
#define COND_GE 0xb
#define COND_GU 0xc
#define COND_CC 0xd
#define COND_POS 0xe
#define COND_VC 0xf
#define BA (INSN_OP(0) | INSN_COND(COND_A) | INSN_OP2(0x2))
#define RCOND_Z 1
#define RCOND_LEZ 2
#define RCOND_LZ 3
#define RCOND_NZ 5
#define RCOND_GZ 6
#define RCOND_GEZ 7
#define MOVCC_ICC (1 << 18)
#define MOVCC_XCC (1 << 18 | 1 << 12)
#define BPCC_ICC 0
#define BPCC_XCC (2 << 20)
#define BPCC_PT (1 << 19)
#define BPCC_PN 0
#define BPCC_A (1 << 29)
#define BPR_PT BPCC_PT
#define ARITH_ADD (INSN_OP(2) | INSN_OP3(0x00))
#define ARITH_ADDCC (INSN_OP(2) | INSN_OP3(0x10))
#define ARITH_AND (INSN_OP(2) | INSN_OP3(0x01))
#define ARITH_ANDN (INSN_OP(2) | INSN_OP3(0x05))
#define ARITH_OR (INSN_OP(2) | INSN_OP3(0x02))
#define ARITH_ORCC (INSN_OP(2) | INSN_OP3(0x12))
#define ARITH_ORN (INSN_OP(2) | INSN_OP3(0x06))
#define ARITH_XOR (INSN_OP(2) | INSN_OP3(0x03))
#define ARITH_SUB (INSN_OP(2) | INSN_OP3(0x04))
#define ARITH_SUBCC (INSN_OP(2) | INSN_OP3(0x14))
#define ARITH_ADDX (INSN_OP(2) | INSN_OP3(0x08))
#define ARITH_SUBX (INSN_OP(2) | INSN_OP3(0x0c))
#define ARITH_UMUL (INSN_OP(2) | INSN_OP3(0x0a))
#define ARITH_UDIV (INSN_OP(2) | INSN_OP3(0x0e))
#define ARITH_SDIV (INSN_OP(2) | INSN_OP3(0x0f))
#define ARITH_MULX (INSN_OP(2) | INSN_OP3(0x09))
#define ARITH_UDIVX (INSN_OP(2) | INSN_OP3(0x0d))
#define ARITH_SDIVX (INSN_OP(2) | INSN_OP3(0x2d))
#define ARITH_MOVCC (INSN_OP(2) | INSN_OP3(0x2c))
#define ARITH_MOVR (INSN_OP(2) | INSN_OP3(0x2f))
#define SHIFT_SLL (INSN_OP(2) | INSN_OP3(0x25))
#define SHIFT_SRL (INSN_OP(2) | INSN_OP3(0x26))
#define SHIFT_SRA (INSN_OP(2) | INSN_OP3(0x27))
#define SHIFT_SLLX (INSN_OP(2) | INSN_OP3(0x25) | (1 << 12))
#define SHIFT_SRLX (INSN_OP(2) | INSN_OP3(0x26) | (1 << 12))
#define SHIFT_SRAX (INSN_OP(2) | INSN_OP3(0x27) | (1 << 12))
#define RDY (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(0))
#define WRY (INSN_OP(2) | INSN_OP3(0x30) | INSN_RD(0))
#define JMPL (INSN_OP(2) | INSN_OP3(0x38))
#define SAVE (INSN_OP(2) | INSN_OP3(0x3c))
#define RESTORE (INSN_OP(2) | INSN_OP3(0x3d))
#define SETHI (INSN_OP(0) | INSN_OP2(0x4))
#define CALL INSN_OP(1)
#define LDUB (INSN_OP(3) | INSN_OP3(0x01))
#define LDSB (INSN_OP(3) | INSN_OP3(0x09))
#define LDUH (INSN_OP(3) | INSN_OP3(0x02))
#define LDSH (INSN_OP(3) | INSN_OP3(0x0a))
#define LDUW (INSN_OP(3) | INSN_OP3(0x00))
#define LDSW (INSN_OP(3) | INSN_OP3(0x08))
#define LDX (INSN_OP(3) | INSN_OP3(0x0b))
#define STB (INSN_OP(3) | INSN_OP3(0x05))
#define STH (INSN_OP(3) | INSN_OP3(0x06))
#define STW (INSN_OP(3) | INSN_OP3(0x04))
#define STX (INSN_OP(3) | INSN_OP3(0x0e))
#define LDUBA (INSN_OP(3) | INSN_OP3(0x11))
#define LDSBA (INSN_OP(3) | INSN_OP3(0x19))
#define LDUHA (INSN_OP(3) | INSN_OP3(0x12))
#define LDSHA (INSN_OP(3) | INSN_OP3(0x1a))
#define LDUWA (INSN_OP(3) | INSN_OP3(0x10))
#define LDSWA (INSN_OP(3) | INSN_OP3(0x18))
#define LDXA (INSN_OP(3) | INSN_OP3(0x1b))
#define STBA (INSN_OP(3) | INSN_OP3(0x15))
#define STHA (INSN_OP(3) | INSN_OP3(0x16))
#define STWA (INSN_OP(3) | INSN_OP3(0x14))
#define STXA (INSN_OP(3) | INSN_OP3(0x1e))
#ifndef ASI_PRIMARY_LITTLE
#define ASI_PRIMARY_LITTLE 0x88
#endif
#define LDUH_LE (LDUHA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDSH_LE (LDSHA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDUW_LE (LDUWA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDSW_LE (LDSWA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDX_LE (LDXA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define STH_LE (STHA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define STW_LE (STWA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define STX_LE (STXA | INSN_ASI(ASI_PRIMARY_LITTLE))
static inline int check_fit_tl(tcg_target_long val, unsigned int bits)
{
return (val << ((sizeof(tcg_target_long) * 8 - bits))
>> (sizeof(tcg_target_long) * 8 - bits)) == val;
}
static inline int check_fit_i32(uint32_t val, unsigned int bits)
{
return ((val << (32 - bits)) >> (32 - bits)) == val;
}
static void patch_reloc(uint8_t *code_ptr, int type,
intptr_t value, intptr_t addend)
{
uint32_t insn;
value += addend;
switch (type) {
case R_SPARC_32:
if (value != (uint32_t)value) {
tcg_abort();
}
*(uint32_t *)code_ptr = value;
break;
case R_SPARC_WDISP16:
value -= (intptr_t)code_ptr;
if (!check_fit_tl(value >> 2, 16)) {
tcg_abort();
}
insn = *(uint32_t *)code_ptr;
insn &= ~INSN_OFF16(-1);
insn |= INSN_OFF16(value);
*(uint32_t *)code_ptr = insn;
break;
case R_SPARC_WDISP19:
value -= (intptr_t)code_ptr;
if (!check_fit_tl(value >> 2, 19)) {
tcg_abort();
}
insn = *(uint32_t *)code_ptr;
insn &= ~INSN_OFF19(-1);
insn |= INSN_OFF19(value);
*(uint32_t *)code_ptr = insn;
break;
default:
tcg_abort();
}
}
/* parse target specific constraints */
static int target_parse_constraint(TCGArgConstraint *ct, const char **pct_str)
{
const char *ct_str;
ct_str = *pct_str;
switch (ct_str[0]) {
case 'r':
ct->ct |= TCG_CT_REG;
tcg_regset_set32(ct->u.regs, 0, 0xffffffff);
break;
case 'L': /* qemu_ld/st constraint */
ct->ct |= TCG_CT_REG;
tcg_regset_set32(ct->u.regs, 0, 0xffffffff);
// Helper args
tcg_regset_reset_reg(ct->u.regs, TCG_REG_O0);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_O1);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_O2);
break;
case 'I':
ct->ct |= TCG_CT_CONST_S11;
break;
case 'J':
ct->ct |= TCG_CT_CONST_S13;
break;
case 'Z':
ct->ct |= TCG_CT_CONST_ZERO;
break;
default:
return -1;
}
ct_str++;
*pct_str = ct_str;
return 0;
}
/* test if a constant matches the constraint */
static inline int tcg_target_const_match(tcg_target_long val,
const TCGArgConstraint *arg_ct)
{
int ct = arg_ct->ct;
if (ct & TCG_CT_CONST) {
return 1;
} else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
return 1;
} else if ((ct & TCG_CT_CONST_S11) && check_fit_tl(val, 11)) {
return 1;
} else if ((ct & TCG_CT_CONST_S13) && check_fit_tl(val, 13)) {
return 1;
} else {
return 0;
}
}
static inline void tcg_out_arith(TCGContext *s, int rd, int rs1, int rs2,
int op)
{
tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) |
INSN_RS2(rs2));
}
static inline void tcg_out_arithi(TCGContext *s, int rd, int rs1,
uint32_t offset, int op)
{
tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) |
INSN_IMM13(offset));
}
static void tcg_out_arithc(TCGContext *s, int rd, int rs1,
int val2, int val2const, int op)
{
tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1)
| (val2const ? INSN_IMM13(val2) : INSN_RS2(val2)));
}
static inline void tcg_out_mov(TCGContext *s, TCGType type,
TCGReg ret, TCGReg arg)
{
if (ret != arg) {
tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR);
}
}
static inline void tcg_out_sethi(TCGContext *s, int ret, uint32_t arg)
{
tcg_out32(s, SETHI | INSN_RD(ret) | ((arg & 0xfffffc00) >> 10));
}
static inline void tcg_out_movi_imm13(TCGContext *s, int ret, uint32_t arg)
{
tcg_out_arithi(s, ret, TCG_REG_G0, arg, ARITH_OR);
}
static inline void tcg_out_movi_imm32(TCGContext *s, int ret, uint32_t arg)
{
if (check_fit_tl(arg, 13))
tcg_out_movi_imm13(s, ret, arg);
else {
tcg_out_sethi(s, ret, arg);
if (arg & 0x3ff)
tcg_out_arithi(s, ret, ret, arg & 0x3ff, ARITH_OR);
}
}
static inline void tcg_out_movi(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long arg)
{
/* All 32-bit constants, as well as 64-bit constants with
no high bits set go through movi_imm32. */
if (TCG_TARGET_REG_BITS == 32
|| type == TCG_TYPE_I32
|| (arg & ~(tcg_target_long)0xffffffff) == 0) {
tcg_out_movi_imm32(s, ret, arg);
} else if (check_fit_tl(arg, 13)) {
/* A 13-bit constant sign-extended to 64-bits. */
tcg_out_movi_imm13(s, ret, arg);
} else if (check_fit_tl(arg, 32)) {
/* A 32-bit constant sign-extended to 64-bits. */
tcg_out_sethi(s, ret, ~arg);
tcg_out_arithi(s, ret, ret, (arg & 0x3ff) | -0x400, ARITH_XOR);
} else {
tcg_out_movi_imm32(s, ret, arg >> (TCG_TARGET_REG_BITS / 2));
tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
tcg_out_movi_imm32(s, TCG_REG_T2, arg);
tcg_out_arith(s, ret, ret, TCG_REG_T2, ARITH_OR);
}
}
static inline void tcg_out_ldst_rr(TCGContext *s, int data, int a1,
int a2, int op)
{
tcg_out32(s, op | INSN_RD(data) | INSN_RS1(a1) | INSN_RS2(a2));
}
static inline void tcg_out_ldst(TCGContext *s, int ret, int addr,
int offset, int op)
{
if (check_fit_tl(offset, 13)) {
tcg_out32(s, op | INSN_RD(ret) | INSN_RS1(addr) |
INSN_IMM13(offset));
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, offset);
tcg_out_ldst_rr(s, ret, addr, TCG_REG_T1, op);
}
}
static inline void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
TCGReg arg1, intptr_t arg2)
{
tcg_out_ldst(s, ret, arg1, arg2, (type == TCG_TYPE_I32 ? LDUW : LDX));
}
static inline void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
tcg_out_ldst(s, arg, arg1, arg2, (type == TCG_TYPE_I32 ? STW : STX));
}
static inline void tcg_out_ld_ptr(TCGContext *s, int ret,
tcg_target_long arg)
{
if (!check_fit_tl(arg, 10)) {
tcg_out_movi(s, TCG_TYPE_PTR, ret, arg & ~0x3ff);
}
tcg_out_ld(s, TCG_TYPE_PTR, ret, ret, arg & 0x3ff);
}
static inline void tcg_out_sety(TCGContext *s, int rs)
{
tcg_out32(s, WRY | INSN_RS1(TCG_REG_G0) | INSN_RS2(rs));
}
static inline void tcg_out_rdy(TCGContext *s, int rd)
{
tcg_out32(s, RDY | INSN_RD(rd));
}
static inline void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
{
if (val != 0) {
if (check_fit_tl(val, 13))
tcg_out_arithi(s, reg, reg, val, ARITH_ADD);
else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, val);
tcg_out_arith(s, reg, reg, TCG_REG_T1, ARITH_ADD);
}
}
}
static inline void tcg_out_andi(TCGContext *s, int rd, int rs,
tcg_target_long val)
{
if (val != 0) {
if (check_fit_tl(val, 13))
tcg_out_arithi(s, rd, rs, val, ARITH_AND);
else {
tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_T1, val);
tcg_out_arith(s, rd, rs, TCG_REG_T1, ARITH_AND);
}
}
}
static void tcg_out_div32(TCGContext *s, int rd, int rs1,
int val2, int val2const, int uns)
{
/* Load Y with the sign/zero extension of RS1 to 64-bits. */
if (uns) {
tcg_out_sety(s, TCG_REG_G0);
} else {
tcg_out_arithi(s, TCG_REG_T1, rs1, 31, SHIFT_SRA);
tcg_out_sety(s, TCG_REG_T1);
}
tcg_out_arithc(s, rd, rs1, val2, val2const,
uns ? ARITH_UDIV : ARITH_SDIV);
}
static inline void tcg_out_nop(TCGContext *s)
{
tcg_out_sethi(s, TCG_REG_G0, 0);
}
static const uint8_t tcg_cond_to_bcond[] = {
[TCG_COND_EQ] = COND_E,
[TCG_COND_NE] = COND_NE,
[TCG_COND_LT] = COND_L,
[TCG_COND_GE] = COND_GE,
[TCG_COND_LE] = COND_LE,
[TCG_COND_GT] = COND_G,
[TCG_COND_LTU] = COND_CS,
[TCG_COND_GEU] = COND_CC,
[TCG_COND_LEU] = COND_LEU,
[TCG_COND_GTU] = COND_GU,
};
static const uint8_t tcg_cond_to_rcond[] = {
[TCG_COND_EQ] = RCOND_Z,
[TCG_COND_NE] = RCOND_NZ,
[TCG_COND_LT] = RCOND_LZ,
[TCG_COND_GT] = RCOND_GZ,
[TCG_COND_LE] = RCOND_LEZ,
[TCG_COND_GE] = RCOND_GEZ
};
static void tcg_out_bpcc0(TCGContext *s, int scond, int flags, int off19)
{
tcg_out32(s, INSN_OP(0) | INSN_OP2(1) | INSN_COND(scond) | flags | off19);
}
static void tcg_out_bpcc(TCGContext *s, int scond, int flags, int label)
{
TCGLabel *l = &s->labels[label];
int off19;
if (l->has_value) {
off19 = INSN_OFF19(l->u.value - (unsigned long)s->code_ptr);
} else {
/* Make sure to preserve destinations during retranslation. */
off19 = *(uint32_t *)s->code_ptr & INSN_OFF19(-1);
tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP19, label, 0);
}
tcg_out_bpcc0(s, scond, flags, off19);
}
static void tcg_out_cmp(TCGContext *s, TCGArg c1, TCGArg c2, int c2const)
{
tcg_out_arithc(s, TCG_REG_G0, c1, c2, c2const, ARITH_SUBCC);
}
static void tcg_out_brcond_i32(TCGContext *s, TCGCond cond, TCGArg arg1,
TCGArg arg2, int const_arg2, int label)
{
tcg_out_cmp(s, arg1, arg2, const_arg2);
tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_ICC | BPCC_PT, label);
tcg_out_nop(s);
}
static void tcg_out_movcc(TCGContext *s, TCGCond cond, int cc, TCGArg ret,
TCGArg v1, int v1const)
{
tcg_out32(s, ARITH_MOVCC | cc | INSN_RD(ret)
| INSN_RS1(tcg_cond_to_bcond[cond])
| (v1const ? INSN_IMM11(v1) : INSN_RS2(v1)));
}
static void tcg_out_movcond_i32(TCGContext *s, TCGCond cond, TCGArg ret,
TCGArg c1, TCGArg c2, int c2const,
TCGArg v1, int v1const)
{
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movcc(s, cond, MOVCC_ICC, ret, v1, v1const);
}
#if TCG_TARGET_REG_BITS == 64
static void tcg_out_brcond_i64(TCGContext *s, TCGCond cond, TCGArg arg1,
TCGArg arg2, int const_arg2, int label)
{
/* For 64-bit signed comparisons vs zero, we can avoid the compare. */
if (arg2 == 0 && !is_unsigned_cond(cond)) {
TCGLabel *l = &s->labels[label];
int off16;
if (l->has_value) {
off16 = INSN_OFF16(l->u.value - (unsigned long)s->code_ptr);
} else {
/* Make sure to preserve destinations during retranslation. */
off16 = *(uint32_t *)s->code_ptr & INSN_OFF16(-1);
tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP16, label, 0);
}
tcg_out32(s, INSN_OP(0) | INSN_OP2(3) | BPR_PT | INSN_RS1(arg1)
| INSN_COND(tcg_cond_to_rcond[cond]) | off16);
} else {
tcg_out_cmp(s, arg1, arg2, const_arg2);
tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_XCC | BPCC_PT, label);
}
tcg_out_nop(s);
}
static void tcg_out_movr(TCGContext *s, TCGCond cond, TCGArg ret, TCGArg c1,
TCGArg v1, int v1const)
{
tcg_out32(s, ARITH_MOVR | INSN_RD(ret) | INSN_RS1(c1)
| (tcg_cond_to_rcond[cond] << 10)
| (v1const ? INSN_IMM10(v1) : INSN_RS2(v1)));
}
static void tcg_out_movcond_i64(TCGContext *s, TCGCond cond, TCGArg ret,
TCGArg c1, TCGArg c2, int c2const,
TCGArg v1, int v1const)
{
/* For 64-bit signed comparisons vs zero, we can avoid the compare.
Note that the immediate range is one bit smaller, so we must check
for that as well. */
if (c2 == 0 && !is_unsigned_cond(cond)
&& (!v1const || check_fit_tl(v1, 10))) {
tcg_out_movr(s, cond, ret, c1, v1, v1const);
} else {
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movcc(s, cond, MOVCC_XCC, ret, v1, v1const);
}
}
#else
static void tcg_out_brcond2_i32(TCGContext *s, TCGCond cond,
TCGArg al, TCGArg ah,
TCGArg bl, int blconst,
TCGArg bh, int bhconst, int label_dest)
{
int scond, label_next = gen_new_label();
tcg_out_cmp(s, ah, bh, bhconst);
/* Note that we fill one of the delay slots with the second compare. */
switch (cond) {
case TCG_COND_EQ:
tcg_out_bpcc(s, COND_NE, BPCC_ICC | BPCC_PT, label_next);
tcg_out_cmp(s, al, bl, blconst);
tcg_out_bpcc(s, COND_E, BPCC_ICC | BPCC_PT, label_dest);
break;
case TCG_COND_NE:
tcg_out_bpcc(s, COND_NE, BPCC_ICC | BPCC_PT, label_dest);
tcg_out_cmp(s, al, bl, blconst);
tcg_out_bpcc(s, COND_NE, BPCC_ICC | BPCC_PT, label_dest);
break;
default:
scond = tcg_cond_to_bcond[tcg_high_cond(cond)];
tcg_out_bpcc(s, scond, BPCC_ICC | BPCC_PT, label_dest);
tcg_out_nop(s);
tcg_out_bpcc(s, COND_NE, BPCC_ICC | BPCC_PT, label_next);
tcg_out_cmp(s, al, bl, blconst);
scond = tcg_cond_to_bcond[tcg_unsigned_cond(cond)];
tcg_out_bpcc(s, scond, BPCC_ICC | BPCC_PT, label_dest);
break;
}
tcg_out_nop(s);
tcg_out_label(s, label_next, s->code_ptr);
}
#endif
static void tcg_out_setcond_i32(TCGContext *s, TCGCond cond, TCGArg ret,
TCGArg c1, TCGArg c2, int c2const)
{
/* For 32-bit comparisons, we can play games with ADDX/SUBX. */
switch (cond) {
case TCG_COND_LTU:
case TCG_COND_GEU:
/* The result of the comparison is in the carry bit. */
break;
case TCG_COND_EQ:
case TCG_COND_NE:
/* For equality, we can transform to inequality vs zero. */
if (c2 != 0) {
tcg_out_arithc(s, ret, c1, c2, c2const, ARITH_XOR);
}
c1 = TCG_REG_G0, c2 = ret, c2const = 0;
cond = (cond == TCG_COND_EQ ? TCG_COND_GEU : TCG_COND_LTU);
break;
case TCG_COND_GTU:
case TCG_COND_LEU:
/* If we don't need to load a constant into a register, we can
swap the operands on GTU/LEU. There's no benefit to loading
the constant into a temporary register. */
if (!c2const || c2 == 0) {
TCGArg t = c1;
c1 = c2;
c2 = t;
c2const = 0;
cond = tcg_swap_cond(cond);
break;
}
/* FALLTHRU */
default:
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movi_imm13(s, ret, 0);
tcg_out_movcc(s, cond, MOVCC_ICC, ret, 1, 1);
return;
}
tcg_out_cmp(s, c1, c2, c2const);
if (cond == TCG_COND_LTU) {
tcg_out_arithi(s, ret, TCG_REG_G0, 0, ARITH_ADDX);
} else {
tcg_out_arithi(s, ret, TCG_REG_G0, -1, ARITH_SUBX);
}
}
#if TCG_TARGET_REG_BITS == 64
static void tcg_out_setcond_i64(TCGContext *s, TCGCond cond, TCGArg ret,
TCGArg c1, TCGArg c2, int c2const)
{
/* For 64-bit signed comparisons vs zero, we can avoid the compare
if the input does not overlap the output. */
if (c2 == 0 && !is_unsigned_cond(cond) && c1 != ret) {
tcg_out_movi_imm13(s, ret, 0);
tcg_out_movr(s, cond, ret, c1, 1, 1);
} else {
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movi_imm13(s, ret, 0);
tcg_out_movcc(s, cond, MOVCC_XCC, ret, 1, 1);
}
}
#else
static void tcg_out_setcond2_i32(TCGContext *s, TCGCond cond, TCGArg ret,
TCGArg al, TCGArg ah,
TCGArg bl, int blconst,
TCGArg bh, int bhconst)
{
int tmp = TCG_REG_T1;
/* Note that the low parts are fully consumed before tmp is set. */
if (ret != ah && (bhconst || ret != bh)) {
tmp = ret;
}
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_NE:
if (bl == 0 && bh == 0) {
if (cond == TCG_COND_EQ) {
tcg_out_arith(s, TCG_REG_G0, al, ah, ARITH_ORCC);
tcg_out_movi(s, TCG_TYPE_I32, ret, 1);
} else {
tcg_out_arith(s, ret, al, ah, ARITH_ORCC);
}
} else {
tcg_out_setcond_i32(s, cond, tmp, al, bl, blconst);
tcg_out_cmp(s, ah, bh, bhconst);
tcg_out_mov(s, TCG_TYPE_I32, ret, tmp);
}
tcg_out_movcc(s, TCG_COND_NE, MOVCC_ICC, ret, cond == TCG_COND_NE, 1);
break;
default:
/* <= : ah < bh | (ah == bh && al <= bl) */
tcg_out_setcond_i32(s, tcg_unsigned_cond(cond), tmp, al, bl, blconst);
tcg_out_cmp(s, ah, bh, bhconst);
tcg_out_mov(s, TCG_TYPE_I32, ret, tmp);
tcg_out_movcc(s, TCG_COND_NE, MOVCC_ICC, ret, 0, 1);
tcg_out_movcc(s, tcg_high_cond(cond), MOVCC_ICC, ret, 1, 1);
break;
}
}
#endif
static void tcg_out_addsub2(TCGContext *s, TCGArg rl, TCGArg rh,
TCGArg al, TCGArg ah, TCGArg bl, int blconst,
TCGArg bh, int bhconst, int opl, int oph)
{
TCGArg tmp = TCG_REG_T1;
/* Note that the low parts are fully consumed before tmp is set. */
if (rl != ah && (bhconst || rl != bh)) {
tmp = rl;
}
tcg_out_arithc(s, tmp, al, bl, blconst, opl);
tcg_out_arithc(s, rh, ah, bh, bhconst, oph);
tcg_out_mov(s, TCG_TYPE_I32, rl, tmp);
}
/* Generate global QEMU prologue and epilogue code */
static void tcg_target_qemu_prologue(TCGContext *s)
{
int tmp_buf_size, frame_size;
/* The TCG temp buffer is at the top of the frame, immediately
below the frame pointer. */
tmp_buf_size = CPU_TEMP_BUF_NLONGS * (int)sizeof(long);
tcg_set_frame(s, TCG_REG_I6, TCG_TARGET_STACK_BIAS - tmp_buf_size,
tmp_buf_size);
/* TCG_TARGET_CALL_STACK_OFFSET includes the stack bias, but is
otherwise the minimal frame usable by callees. */
frame_size = TCG_TARGET_CALL_STACK_OFFSET - TCG_TARGET_STACK_BIAS;
frame_size += TCG_STATIC_CALL_ARGS_SIZE + tmp_buf_size;
frame_size += TCG_TARGET_STACK_ALIGN - 1;
frame_size &= -TCG_TARGET_STACK_ALIGN;
tcg_out32(s, SAVE | INSN_RD(TCG_REG_O6) | INSN_RS1(TCG_REG_O6) |
INSN_IMM13(-frame_size));
#ifdef CONFIG_USE_GUEST_BASE
if (GUEST_BASE != 0) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, GUEST_BASE);
tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
}
#endif
tcg_out32(s, JMPL | INSN_RD(TCG_REG_G0) | INSN_RS1(TCG_REG_I1) |
INSN_RS2(TCG_REG_G0));
/* delay slot */
tcg_out_nop(s);
/* No epilogue required. We issue ret + restore directly in the TB. */
}
#if defined(CONFIG_SOFTMMU)
/* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr,
int mmu_idx) */
static const void * const qemu_ld_helpers[4] = {
helper_ldb_mmu,
helper_ldw_mmu,
helper_ldl_mmu,
helper_ldq_mmu,
};
/* helper signature: helper_st_mmu(CPUState *env, target_ulong addr,
uintxx_t val, int mmu_idx) */
static const void * const qemu_st_helpers[4] = {
helper_stb_mmu,
helper_stw_mmu,
helper_stl_mmu,
helper_stq_mmu,
};
/* Perform the TLB load and compare.
Inputs:
ADDRLO_IDX contains the index into ARGS of the low part of the
address; the high part of the address is at ADDR_LOW_IDX+1.
MEM_INDEX and S_BITS are the memory context and log2 size of the load.
WHICH is the offset into the CPUTLBEntry structure of the slot to read.
This should be offsetof addr_read or addr_write.
The result of the TLB comparison is in %[ix]cc. The sanitized address
is in the returned register, maybe %o0. The TLB addend is in %o1. */
static int tcg_out_tlb_load(TCGContext *s, int addrlo_idx, int mem_index,
int s_bits, const TCGArg *args, int which)
{
const int addrlo = args[addrlo_idx];
const int r0 = TCG_REG_O0;
const int r1 = TCG_REG_O1;
const int r2 = TCG_REG_O2;
int addr = addrlo;
int tlb_ofs;
if (TCG_TARGET_REG_BITS == 32 && TARGET_LONG_BITS == 64) {
/* Assemble the 64-bit address in R0. */
tcg_out_arithi(s, r0, addrlo, 0, SHIFT_SRL);
tcg_out_arithi(s, r1, args[addrlo_idx + 1], 32, SHIFT_SLLX);
tcg_out_arith(s, r0, r0, r1, ARITH_OR);
}
/* Shift the page number down to tlb-entry. */
tcg_out_arithi(s, r1, addrlo,
TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS, SHIFT_SRL);
/* Mask out the page offset, except for the required alignment. */
tcg_out_andi(s, r0, addr, TARGET_PAGE_MASK | ((1 << s_bits) - 1));
/* Compute tlb index, modulo tlb size. */
tcg_out_andi(s, r1, r1, (CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS);
/* Relative to the current ENV. */
tcg_out_arith(s, r1, TCG_AREG0, r1, ARITH_ADD);
/* Find a base address that can load both tlb comparator and addend. */
tlb_ofs = offsetof(CPUArchState, tlb_table[mem_index][0]);
if (!check_fit_tl(tlb_ofs + sizeof(CPUTLBEntry), 13)) {
tcg_out_addi(s, r1, tlb_ofs);
tlb_ofs = 0;
}
/* Load the tlb comparator and the addend. */
tcg_out_ld(s, TCG_TYPE_TL, r2, r1, tlb_ofs + which);
tcg_out_ld(s, TCG_TYPE_PTR, r1, r1, tlb_ofs+offsetof(CPUTLBEntry, addend));
/* subcc arg0, arg2, %g0 */
tcg_out_cmp(s, r0, r2, 0);
/* If the guest address must be zero-extended, do so now. */
if (TCG_TARGET_REG_BITS == 64 && TARGET_LONG_BITS == 32) {
tcg_out_arithi(s, r0, addrlo, 0, SHIFT_SRL);
return r0;
}
return addrlo;
}
#endif /* CONFIG_SOFTMMU */
static const int qemu_ld_opc[8] = {
#ifdef TARGET_WORDS_BIGENDIAN
LDUB, LDUH, LDUW, LDX, LDSB, LDSH, LDSW, LDX
#else
LDUB, LDUH_LE, LDUW_LE, LDX_LE, LDSB, LDSH_LE, LDSW_LE, LDX_LE
#endif
};
static const int qemu_st_opc[4] = {
#ifdef TARGET_WORDS_BIGENDIAN
STB, STH, STW, STX
#else
STB, STH_LE, STW_LE, STX_LE
#endif
};
static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, int sizeop)
{
int addrlo_idx = 1, datalo, datahi, addr_reg;
#if defined(CONFIG_SOFTMMU)
int memi_idx, memi, s_bits, n;
uint32_t *label_ptr[2];
#endif
datahi = datalo = args[0];
if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) {
datahi = args[1];
addrlo_idx = 2;
}
#if defined(CONFIG_SOFTMMU)
memi_idx = addrlo_idx + 1 + (TARGET_LONG_BITS > TCG_TARGET_REG_BITS);
memi = args[memi_idx];
s_bits = sizeop & 3;
addr_reg = tcg_out_tlb_load(s, addrlo_idx, memi, s_bits, args,
offsetof(CPUTLBEntry, addr_read));
if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) {
int reg64;
/* bne,pn %[xi]cc, label0 */
label_ptr[0] = (uint32_t *)s->code_ptr;
tcg_out_bpcc0(s, COND_NE, BPCC_PN
| (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
/* TLB Hit. */
/* Load all 64-bits into an O/G register. */
reg64 = (datalo < 16 ? datalo : TCG_REG_O0);
tcg_out_ldst_rr(s, reg64, addr_reg, TCG_REG_O1, qemu_ld_opc[sizeop]);
/* Move the two 32-bit pieces into the destination registers. */
tcg_out_arithi(s, datahi, reg64, 32, SHIFT_SRLX);
if (reg64 != datalo) {
tcg_out_mov(s, TCG_TYPE_I32, datalo, reg64);
}
/* b,a,pt label1 */
label_ptr[1] = (uint32_t *)s->code_ptr;
tcg_out_bpcc0(s, COND_A, BPCC_A | BPCC_PT, 0);
} else {
/* The fast path is exactly one insn. Thus we can perform the
entire TLB Hit in the (annulled) delay slot of the branch
over the TLB Miss case. */
/* beq,a,pt %[xi]cc, label0 */
label_ptr[0] = NULL;
label_ptr[1] = (uint32_t *)s->code_ptr;
tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
| (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
/* delay slot */
tcg_out_ldst_rr(s, datalo, addr_reg, TCG_REG_O1, qemu_ld_opc[sizeop]);
}
/* TLB Miss. */
if (label_ptr[0]) {
*label_ptr[0] |= INSN_OFF19((unsigned long)s->code_ptr -
(unsigned long)label_ptr[0]);
}
n = 0;
tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[n++], TCG_AREG0);
if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++],
args[addrlo_idx + 1]);
}
tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++],
args[addrlo_idx]);
/* qemu_ld_helper[s_bits](arg0, arg1) */
tcg_out32(s, CALL | ((((tcg_target_ulong)qemu_ld_helpers[s_bits]
- (tcg_target_ulong)s->code_ptr) >> 2)
& 0x3fffffff));
/* delay slot */
tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[n], memi);
n = tcg_target_call_oarg_regs[0];
/* datalo = sign_extend(arg0) */
switch (sizeop) {
case 0 | 4:
/* Recall that SRA sign extends from bit 31 through bit 63. */
tcg_out_arithi(s, datalo, n, 24, SHIFT_SLL);
tcg_out_arithi(s, datalo, datalo, 24, SHIFT_SRA);
break;
case 1 | 4:
tcg_out_arithi(s, datalo, n, 16, SHIFT_SLL);
tcg_out_arithi(s, datalo, datalo, 16, SHIFT_SRA);
break;
case 2 | 4:
tcg_out_arithi(s, datalo, n, 0, SHIFT_SRA);
break;
case 3:
if (TCG_TARGET_REG_BITS == 32) {
tcg_out_mov(s, TCG_TYPE_REG, datahi, n);
tcg_out_mov(s, TCG_TYPE_REG, datalo, n + 1);
break;
}
/* FALLTHRU */
case 0:
case 1:
case 2:
default:
/* mov */
tcg_out_mov(s, TCG_TYPE_REG, datalo, n);
break;
}
*label_ptr[1] |= INSN_OFF19((unsigned long)s->code_ptr -
(unsigned long)label_ptr[1]);
#else
addr_reg = args[addrlo_idx];
if (TCG_TARGET_REG_BITS == 64 && TARGET_LONG_BITS == 32) {
tcg_out_arithi(s, TCG_REG_T1, addr_reg, 0, SHIFT_SRL);
addr_reg = TCG_REG_T1;
}
if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) {
int reg64 = (datalo < 16 ? datalo : TCG_REG_O0);
tcg_out_ldst_rr(s, reg64, addr_reg,
(GUEST_BASE ? TCG_GUEST_BASE_REG : TCG_REG_G0),
qemu_ld_opc[sizeop]);
tcg_out_arithi(s, datahi, reg64, 32, SHIFT_SRLX);
if (reg64 != datalo) {
tcg_out_mov(s, TCG_TYPE_I32, datalo, reg64);
}
} else {
tcg_out_ldst_rr(s, datalo, addr_reg,
(GUEST_BASE ? TCG_GUEST_BASE_REG : TCG_REG_G0),
qemu_ld_opc[sizeop]);
}
#endif /* CONFIG_SOFTMMU */
}
static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, int sizeop)
{
int addrlo_idx = 1, datalo, datahi, addr_reg;
#if defined(CONFIG_SOFTMMU)
int memi_idx, memi, n, datafull;
uint32_t *label_ptr;
#endif
datahi = datalo = args[0];
if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) {
datahi = args[1];
addrlo_idx = 2;
}
#if defined(CONFIG_SOFTMMU)
memi_idx = addrlo_idx + 1 + (TARGET_LONG_BITS > TCG_TARGET_REG_BITS);
memi = args[memi_idx];
addr_reg = tcg_out_tlb_load(s, addrlo_idx, memi, sizeop, args,
offsetof(CPUTLBEntry, addr_write));
datafull = datalo;
if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) {
/* Reconstruct the full 64-bit value. */
tcg_out_arithi(s, TCG_REG_T1, datalo, 0, SHIFT_SRL);
tcg_out_arithi(s, TCG_REG_O2, datahi, 32, SHIFT_SLLX);
tcg_out_arith(s, TCG_REG_O2, TCG_REG_T1, TCG_REG_O2, ARITH_OR);
datafull = TCG_REG_O2;
}
/* The fast path is exactly one insn. Thus we can perform the entire
TLB Hit in the (annulled) delay slot of the branch over TLB Miss. */
/* beq,a,pt %[xi]cc, label0 */
label_ptr = (uint32_t *)s->code_ptr;
tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
| (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
/* delay slot */
tcg_out_ldst_rr(s, datafull, addr_reg, TCG_REG_O1, qemu_st_opc[sizeop]);
/* TLB Miss. */
n = 0;
tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[n++], TCG_AREG0);
if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++],
args[addrlo_idx + 1]);
}
tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++],
args[addrlo_idx]);
if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) {
tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++], datahi);
}
tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n++], datalo);
/* qemu_st_helper[s_bits](arg0, arg1, arg2) */
tcg_out32(s, CALL | ((((tcg_target_ulong)qemu_st_helpers[sizeop]
- (tcg_target_ulong)s->code_ptr) >> 2)
& 0x3fffffff));
/* delay slot */
tcg_out_movi(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[n], memi);
*label_ptr |= INSN_OFF19((unsigned long)s->code_ptr -
(unsigned long)label_ptr);
#else
addr_reg = args[addrlo_idx];
if (TCG_TARGET_REG_BITS == 64 && TARGET_LONG_BITS == 32) {
tcg_out_arithi(s, TCG_REG_T1, addr_reg, 0, SHIFT_SRL);
addr_reg = TCG_REG_T1;
}
if (TCG_TARGET_REG_BITS == 32 && sizeop == 3) {
tcg_out_arithi(s, TCG_REG_T1, datalo, 0, SHIFT_SRL);
tcg_out_arithi(s, TCG_REG_O2, datahi, 32, SHIFT_SLLX);
tcg_out_arith(s, TCG_REG_O2, TCG_REG_T1, TCG_REG_O2, ARITH_OR);
datalo = TCG_REG_O2;
}
tcg_out_ldst_rr(s, datalo, addr_reg,
(GUEST_BASE ? TCG_GUEST_BASE_REG : TCG_REG_G0),
qemu_st_opc[sizeop]);
#endif /* CONFIG_SOFTMMU */
}
static inline void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
const int *const_args)
{
int c;
switch (opc) {
case INDEX_op_exit_tb:
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_I0, args[0]);
tcg_out32(s, JMPL | INSN_RD(TCG_REG_G0) | INSN_RS1(TCG_REG_I7) |
INSN_IMM13(8));
tcg_out32(s, RESTORE | INSN_RD(TCG_REG_G0) | INSN_RS1(TCG_REG_G0) |
INSN_RS2(TCG_REG_G0));
break;
case INDEX_op_goto_tb:
if (s->tb_jmp_offset) {
/* direct jump method */
uint32_t old_insn = *(uint32_t *)s->code_ptr;
s->tb_jmp_offset[args[0]] = s->code_ptr - s->code_buf;
/* Make sure to preserve links during retranslation. */
tcg_out32(s, CALL | (old_insn & ~INSN_OP(-1)));
} else {
/* indirect jump method */
tcg_out_ld_ptr(s, TCG_REG_T1,
(tcg_target_long)(s->tb_next + args[0]));
tcg_out32(s, JMPL | INSN_RD(TCG_REG_G0) | INSN_RS1(TCG_REG_T1) |
INSN_RS2(TCG_REG_G0));
}
tcg_out_nop(s);
s->tb_next_offset[args[0]] = s->code_ptr - s->code_buf;
break;
case INDEX_op_call:
if (const_args[0]) {
tcg_out32(s, CALL | ((((tcg_target_ulong)args[0]
- (tcg_target_ulong)s->code_ptr) >> 2)
& 0x3fffffff));
} else {
tcg_out_ld_ptr(s, TCG_REG_T1,
(tcg_target_long)(s->tb_next + args[0]));
tcg_out32(s, JMPL | INSN_RD(TCG_REG_O7) | INSN_RS1(TCG_REG_T1) |
INSN_RS2(TCG_REG_G0));
}
/* delay slot */
tcg_out_nop(s);
break;
case INDEX_op_br:
tcg_out_bpcc(s, COND_A, BPCC_PT, args[0]);
tcg_out_nop(s);
break;
case INDEX_op_movi_i32:
tcg_out_movi(s, TCG_TYPE_I32, args[0], (uint32_t)args[1]);
break;
#if TCG_TARGET_REG_BITS == 64
#define OP_32_64(x) \
glue(glue(case INDEX_op_, x), _i32): \
glue(glue(case INDEX_op_, x), _i64)
#else
#define OP_32_64(x) \
glue(glue(case INDEX_op_, x), _i32)
#endif
OP_32_64(ld8u):
tcg_out_ldst(s, args[0], args[1], args[2], LDUB);
break;
OP_32_64(ld8s):
tcg_out_ldst(s, args[0], args[1], args[2], LDSB);
break;
OP_32_64(ld16u):
tcg_out_ldst(s, args[0], args[1], args[2], LDUH);
break;
OP_32_64(ld16s):
tcg_out_ldst(s, args[0], args[1], args[2], LDSH);
break;
case INDEX_op_ld_i32:
#if TCG_TARGET_REG_BITS == 64
case INDEX_op_ld32u_i64:
#endif
tcg_out_ldst(s, args[0], args[1], args[2], LDUW);
break;
OP_32_64(st8):
tcg_out_ldst(s, args[0], args[1], args[2], STB);
break;
OP_32_64(st16):
tcg_out_ldst(s, args[0], args[1], args[2], STH);
break;
case INDEX_op_st_i32:
#if TCG_TARGET_REG_BITS == 64
case INDEX_op_st32_i64:
#endif
tcg_out_ldst(s, args[0], args[1], args[2], STW);
break;
OP_32_64(add):
c = ARITH_ADD;
goto gen_arith;
OP_32_64(sub):
c = ARITH_SUB;
goto gen_arith;
OP_32_64(and):
c = ARITH_AND;
goto gen_arith;
OP_32_64(andc):
c = ARITH_ANDN;
goto gen_arith;
OP_32_64(or):
c = ARITH_OR;
goto gen_arith;
OP_32_64(orc):
c = ARITH_ORN;
goto gen_arith;
OP_32_64(xor):
c = ARITH_XOR;
goto gen_arith;
case INDEX_op_shl_i32:
c = SHIFT_SLL;
do_shift32:
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out_arithc(s, args[0], args[1], args[2] & 31, const_args[2], c);
break;
case INDEX_op_shr_i32:
c = SHIFT_SRL;
goto do_shift32;
case INDEX_op_sar_i32:
c = SHIFT_SRA;
goto do_shift32;
case INDEX_op_mul_i32:
c = ARITH_UMUL;
goto gen_arith;
OP_32_64(neg):
c = ARITH_SUB;
goto gen_arith1;
OP_32_64(not):
c = ARITH_ORN;
goto gen_arith1;
case INDEX_op_div_i32:
tcg_out_div32(s, args[0], args[1], args[2], const_args[2], 0);
break;
case INDEX_op_divu_i32:
tcg_out_div32(s, args[0], args[1], args[2], const_args[2], 1);
break;
case INDEX_op_rem_i32:
case INDEX_op_remu_i32:
tcg_out_div32(s, TCG_REG_T1, args[1], args[2], const_args[2],
opc == INDEX_op_remu_i32);
tcg_out_arithc(s, TCG_REG_T1, TCG_REG_T1, args[2], const_args[2],
ARITH_UMUL);
tcg_out_arith(s, args[0], args[1], TCG_REG_T1, ARITH_SUB);
break;
case INDEX_op_brcond_i32:
tcg_out_brcond_i32(s, args[2], args[0], args[1], const_args[1],
args[3]);
break;
case INDEX_op_setcond_i32:
tcg_out_setcond_i32(s, args[3], args[0], args[1],
args[2], const_args[2]);
break;
case INDEX_op_movcond_i32:
tcg_out_movcond_i32(s, args[5], args[0], args[1],
args[2], const_args[2], args[3], const_args[3]);
break;
#if TCG_TARGET_REG_BITS == 32
case INDEX_op_brcond2_i32:
tcg_out_brcond2_i32(s, args[4], args[0], args[1],
args[2], const_args[2],
args[3], const_args[3], args[5]);
break;
case INDEX_op_setcond2_i32:
tcg_out_setcond2_i32(s, args[5], args[0], args[1], args[2],
args[3], const_args[3],
args[4], const_args[4]);
break;
#endif
case INDEX_op_add2_i32:
tcg_out_addsub2(s, args[0], args[1], args[2], args[3],
args[4], const_args[4], args[5], const_args[5],
ARITH_ADDCC, ARITH_ADDX);
break;
case INDEX_op_sub2_i32:
tcg_out_addsub2(s, args[0], args[1], args[2], args[3],
args[4], const_args[4], args[5], const_args[5],
ARITH_SUBCC, ARITH_SUBX);
break;
case INDEX_op_mulu2_i32:
tcg_out_arithc(s, args[0], args[2], args[3], const_args[3],
ARITH_UMUL);
tcg_out_rdy(s, args[1]);
break;
case INDEX_op_qemu_ld8u:
tcg_out_qemu_ld(s, args, 0);
break;
case INDEX_op_qemu_ld8s:
tcg_out_qemu_ld(s, args, 0 | 4);
break;
case INDEX_op_qemu_ld16u:
tcg_out_qemu_ld(s, args, 1);
break;
case INDEX_op_qemu_ld16s:
tcg_out_qemu_ld(s, args, 1 | 4);
break;
case INDEX_op_qemu_ld32:
#if TCG_TARGET_REG_BITS == 64
case INDEX_op_qemu_ld32u:
#endif
tcg_out_qemu_ld(s, args, 2);
break;
#if TCG_TARGET_REG_BITS == 64
case INDEX_op_qemu_ld32s:
tcg_out_qemu_ld(s, args, 2 | 4);
break;
#endif
case INDEX_op_qemu_ld64:
tcg_out_qemu_ld(s, args, 3);
break;
case INDEX_op_qemu_st8:
tcg_out_qemu_st(s, args, 0);
break;
case INDEX_op_qemu_st16:
tcg_out_qemu_st(s, args, 1);
break;
case INDEX_op_qemu_st32:
tcg_out_qemu_st(s, args, 2);
break;
case INDEX_op_qemu_st64:
tcg_out_qemu_st(s, args, 3);
break;
#if TCG_TARGET_REG_BITS == 64
case INDEX_op_movi_i64:
tcg_out_movi(s, TCG_TYPE_I64, args[0], args[1]);
break;
case INDEX_op_ld32s_i64:
tcg_out_ldst(s, args[0], args[1], args[2], LDSW);
break;
case INDEX_op_ld_i64:
tcg_out_ldst(s, args[0], args[1], args[2], LDX);
break;
case INDEX_op_st_i64:
tcg_out_ldst(s, args[0], args[1], args[2], STX);
break;
case INDEX_op_shl_i64:
c = SHIFT_SLLX;
do_shift64:
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out_arithc(s, args[0], args[1], args[2] & 63, const_args[2], c);
break;
case INDEX_op_shr_i64:
c = SHIFT_SRLX;
goto do_shift64;
case INDEX_op_sar_i64:
c = SHIFT_SRAX;
goto do_shift64;
case INDEX_op_mul_i64:
c = ARITH_MULX;
goto gen_arith;
case INDEX_op_div_i64:
c = ARITH_SDIVX;
goto gen_arith;
case INDEX_op_divu_i64:
c = ARITH_UDIVX;
goto gen_arith;
case INDEX_op_rem_i64:
case INDEX_op_remu_i64:
tcg_out_arithc(s, TCG_REG_T1, args[1], args[2], const_args[2],
opc == INDEX_op_rem_i64 ? ARITH_SDIVX : ARITH_UDIVX);
tcg_out_arithc(s, TCG_REG_T1, TCG_REG_T1, args[2], const_args[2],
ARITH_MULX);
tcg_out_arith(s, args[0], args[1], TCG_REG_T1, ARITH_SUB);
break;
case INDEX_op_ext32s_i64:
if (const_args[1]) {
tcg_out_movi(s, TCG_TYPE_I64, args[0], (int32_t)args[1]);
} else {
tcg_out_arithi(s, args[0], args[1], 0, SHIFT_SRA);
}
break;
case INDEX_op_ext32u_i64:
if (const_args[1]) {
tcg_out_movi_imm32(s, args[0], args[1]);
} else {
tcg_out_arithi(s, args[0], args[1], 0, SHIFT_SRL);
}
break;
case INDEX_op_brcond_i64:
tcg_out_brcond_i64(s, args[2], args[0], args[1], const_args[1],
args[3]);
break;
case INDEX_op_setcond_i64:
tcg_out_setcond_i64(s, args[3], args[0], args[1],
args[2], const_args[2]);
break;
case INDEX_op_movcond_i64:
tcg_out_movcond_i64(s, args[5], args[0], args[1],
args[2], const_args[2], args[3], const_args[3]);
break;
#endif
gen_arith:
tcg_out_arithc(s, args[0], args[1], args[2], const_args[2], c);
break;
gen_arith1:
tcg_out_arithc(s, args[0], TCG_REG_G0, args[1], const_args[1], c);
break;
default:
fprintf(stderr, "unknown opcode 0x%x\n", opc);
tcg_abort();
}
}
static const TCGTargetOpDef sparc_op_defs[] = {
{ INDEX_op_exit_tb, { } },
{ INDEX_op_goto_tb, { } },
{ INDEX_op_call, { "ri" } },
{ INDEX_op_br, { } },
{ INDEX_op_mov_i32, { "r", "r" } },
{ INDEX_op_movi_i32, { "r" } },
{ INDEX_op_ld8u_i32, { "r", "r" } },
{ INDEX_op_ld8s_i32, { "r", "r" } },
{ INDEX_op_ld16u_i32, { "r", "r" } },
{ INDEX_op_ld16s_i32, { "r", "r" } },
{ INDEX_op_ld_i32, { "r", "r" } },
{ INDEX_op_st8_i32, { "rZ", "r" } },
{ INDEX_op_st16_i32, { "rZ", "r" } },
{ INDEX_op_st_i32, { "rZ", "r" } },
{ INDEX_op_add_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_mul_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_div_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_divu_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_rem_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_remu_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_sub_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_and_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_andc_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_or_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_orc_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_xor_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_shl_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_shr_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_sar_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_neg_i32, { "r", "rJ" } },
{ INDEX_op_not_i32, { "r", "rJ" } },
{ INDEX_op_brcond_i32, { "rZ", "rJ" } },
{ INDEX_op_setcond_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_movcond_i32, { "r", "rZ", "rJ", "rI", "0" } },
#if TCG_TARGET_REG_BITS == 32
{ INDEX_op_brcond2_i32, { "rZ", "rZ", "rJ", "rJ" } },
{ INDEX_op_setcond2_i32, { "r", "rZ", "rZ", "rJ", "rJ" } },
#endif
{ INDEX_op_add2_i32, { "r", "r", "rZ", "rZ", "rJ", "rJ" } },
{ INDEX_op_sub2_i32, { "r", "r", "rZ", "rZ", "rJ", "rJ" } },
{ INDEX_op_mulu2_i32, { "r", "r", "rZ", "rJ" } },
#if TCG_TARGET_REG_BITS == 64
{ INDEX_op_mov_i64, { "r", "r" } },
{ INDEX_op_movi_i64, { "r" } },
{ INDEX_op_ld8u_i64, { "r", "r" } },
{ INDEX_op_ld8s_i64, { "r", "r" } },
{ INDEX_op_ld16u_i64, { "r", "r" } },
{ INDEX_op_ld16s_i64, { "r", "r" } },
{ INDEX_op_ld32u_i64, { "r", "r" } },
{ INDEX_op_ld32s_i64, { "r", "r" } },
{ INDEX_op_ld_i64, { "r", "r" } },
{ INDEX_op_st8_i64, { "rZ", "r" } },
{ INDEX_op_st16_i64, { "rZ", "r" } },
{ INDEX_op_st32_i64, { "rZ", "r" } },
{ INDEX_op_st_i64, { "rZ", "r" } },
{ INDEX_op_add_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_mul_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_div_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_divu_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_rem_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_remu_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_sub_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_and_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_andc_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_or_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_orc_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_xor_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_shl_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_shr_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_sar_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_neg_i64, { "r", "rJ" } },
{ INDEX_op_not_i64, { "r", "rJ" } },
{ INDEX_op_ext32s_i64, { "r", "ri" } },
{ INDEX_op_ext32u_i64, { "r", "ri" } },
{ INDEX_op_brcond_i64, { "rZ", "rJ" } },
{ INDEX_op_setcond_i64, { "r", "rZ", "rJ" } },
{ INDEX_op_movcond_i64, { "r", "rZ", "rJ", "rI", "0" } },
#endif
#if TCG_TARGET_REG_BITS == 64
{ INDEX_op_qemu_ld8u, { "r", "L" } },
{ INDEX_op_qemu_ld8s, { "r", "L" } },
{ INDEX_op_qemu_ld16u, { "r", "L" } },
{ INDEX_op_qemu_ld16s, { "r", "L" } },
{ INDEX_op_qemu_ld32, { "r", "L" } },
{ INDEX_op_qemu_ld32u, { "r", "L" } },
{ INDEX_op_qemu_ld32s, { "r", "L" } },
{ INDEX_op_qemu_ld64, { "r", "L" } },
{ INDEX_op_qemu_st8, { "L", "L" } },
{ INDEX_op_qemu_st16, { "L", "L" } },
{ INDEX_op_qemu_st32, { "L", "L" } },
{ INDEX_op_qemu_st64, { "L", "L" } },
#elif TARGET_LONG_BITS <= TCG_TARGET_REG_BITS
{ INDEX_op_qemu_ld8u, { "r", "L" } },
{ INDEX_op_qemu_ld8s, { "r", "L" } },
{ INDEX_op_qemu_ld16u, { "r", "L" } },
{ INDEX_op_qemu_ld16s, { "r", "L" } },
{ INDEX_op_qemu_ld32, { "r", "L" } },
{ INDEX_op_qemu_ld64, { "r", "r", "L" } },
{ INDEX_op_qemu_st8, { "L", "L" } },
{ INDEX_op_qemu_st16, { "L", "L" } },
{ INDEX_op_qemu_st32, { "L", "L" } },
{ INDEX_op_qemu_st64, { "L", "L", "L" } },
#else
{ INDEX_op_qemu_ld8u, { "r", "L", "L" } },
{ INDEX_op_qemu_ld8s, { "r", "L", "L" } },
{ INDEX_op_qemu_ld16u, { "r", "L", "L" } },
{ INDEX_op_qemu_ld16s, { "r", "L", "L" } },
{ INDEX_op_qemu_ld32, { "r", "L", "L" } },
{ INDEX_op_qemu_ld64, { "L", "L", "L", "L" } },
{ INDEX_op_qemu_st8, { "L", "L", "L" } },
{ INDEX_op_qemu_st16, { "L", "L", "L" } },
{ INDEX_op_qemu_st32, { "L", "L", "L" } },
{ INDEX_op_qemu_st64, { "L", "L", "L", "L" } },
#endif
{ -1 },
};
static void tcg_target_init(TCGContext *s)
{
tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I32], 0, 0xffffffff);
#if TCG_TARGET_REG_BITS == 64
tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I64], 0, 0xffffffff);
#endif
tcg_regset_set32(tcg_target_call_clobber_regs, 0,
(1 << TCG_REG_G1) |
(1 << TCG_REG_G2) |
(1 << TCG_REG_G3) |
(1 << TCG_REG_G4) |
(1 << TCG_REG_G5) |
(1 << TCG_REG_G6) |
(1 << TCG_REG_G7) |
(1 << TCG_REG_O0) |
(1 << TCG_REG_O1) |
(1 << TCG_REG_O2) |
(1 << TCG_REG_O3) |
(1 << TCG_REG_O4) |
(1 << TCG_REG_O5) |
(1 << TCG_REG_O7));
tcg_regset_clear(s->reserved_regs);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_G0); /* zero */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_G6); /* reserved for os */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_G7); /* thread pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_I6); /* frame pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_I7); /* return address */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_O6); /* stack pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_T1); /* for internal use */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_T2); /* for internal use */
tcg_add_target_add_op_defs(sparc_op_defs);
}
#if TCG_TARGET_REG_BITS == 64
# define ELF_HOST_MACHINE EM_SPARCV9
#else
# define ELF_HOST_MACHINE EM_SPARC32PLUS
# define ELF_HOST_FLAGS EF_SPARC_32PLUS
#endif
typedef struct {
DebugFrameCIE cie;
DebugFrameFDEHeader fde;
uint8_t fde_def_cfa[TCG_TARGET_REG_BITS == 64 ? 4 : 2];
uint8_t fde_win_save;
uint8_t fde_ret_save[3];
} DebugFrame;
static DebugFrame debug_frame = {
.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
.cie.id = -1,
.cie.version = 1,
.cie.code_align = 1,
.cie.data_align = -sizeof(void *) & 0x7f,
.cie.return_column = 15, /* o7 */
/* Total FDE size does not include the "len" member. */
.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, fde.cie_offset),
.fde_def_cfa = {
#if TCG_TARGET_REG_BITS == 64
12, 30, /* DW_CFA_def_cfa i6, 2047 */
(2047 & 0x7f) | 0x80, (2047 >> 7)
#else
13, 30 /* DW_CFA_def_cfa_register i6 */
#endif
},
.fde_win_save = 0x2d, /* DW_CFA_GNU_window_save */
.fde_ret_save = { 9, 15, 31 }, /* DW_CFA_register o7, i7 */
};
void tcg_register_jit(void *buf, size_t buf_size)
{
debug_frame.fde.func_start = (tcg_target_long) buf;
debug_frame.fde.func_len = buf_size;
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
}
void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
{
uint32_t *ptr = (uint32_t *)jmp_addr;
tcg_target_long disp = (tcg_target_long)(addr - jmp_addr) >> 2;
/* We can reach the entire address space for 32-bit. For 64-bit
the code_gen_buffer can't be larger than 2GB. */
if (TCG_TARGET_REG_BITS == 64 && !check_fit_tl(disp, 30)) {
tcg_abort();
}
*ptr = CALL | (disp & 0x3fffffff);
flush_icache_range(jmp_addr, jmp_addr + 4);
}