qemu-e2k/accel/kvm/kvm-all.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

4226 lines
117 KiB
C
Raw Normal View History

/*
* QEMU KVM support
*
* Copyright IBM, Corp. 2008
* Red Hat, Inc. 2008
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
* Glauber Costa <gcosta@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <poll.h>
#include <linux/kvm.h>
#include "qemu/atomic.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/s390x/adapter.h"
#include "exec/gdbstub.h"
#include "sysemu/kvm_int.h"
#include "sysemu/runstate.h"
#include "sysemu/cpus.h"
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
#include "sysemu/accel-blocker.h"
#include "qemu/bswap.h"
#include "exec/memory.h"
#include "exec/ram_addr.h"
#include "qemu/event_notifier.h"
#include "qemu/main-loop.h"
#include "trace.h"
#include "hw/irq.h"
#include "qapi/visitor.h"
#include "qapi/qapi-types-common.h"
#include "qapi/qapi-visit-common.h"
#include "sysemu/reset.h"
#include "qemu/guest-random.h"
#include "sysemu/hw_accel.h"
#include "kvm-cpus.h"
#include "sysemu/dirtylimit.h"
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
#include "qemu/range.h"
#include "hw/boards.h"
#include "sysemu/stats.h"
/* This check must be after config-host.h is included */
#ifdef CONFIG_EVENTFD
#include <sys/eventfd.h>
#endif
/* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
* need to use the real host PAGE_SIZE, as that's what KVM will use.
*/
#ifdef PAGE_SIZE
#undef PAGE_SIZE
#endif
#define PAGE_SIZE qemu_real_host_page_size()
#ifndef KVM_GUESTDBG_BLOCKIRQ
#define KVM_GUESTDBG_BLOCKIRQ 0
#endif
//#define DEBUG_KVM
#ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
struct KVMParkedVcpu {
unsigned long vcpu_id;
int kvm_fd;
QLIST_ENTRY(KVMParkedVcpu) node;
};
KVMState *kvm_state;
bool kvm_kernel_irqchip;
bool kvm_split_irqchip;
bool kvm_async_interrupts_allowed;
bool kvm_halt_in_kernel_allowed;
bool kvm_eventfds_allowed;
bool kvm_irqfds_allowed;
bool kvm_resamplefds_allowed;
bool kvm_msi_via_irqfd_allowed;
bool kvm_gsi_routing_allowed;
bool kvm_gsi_direct_mapping;
bool kvm_allowed;
bool kvm_readonly_mem_allowed;
bool kvm_vm_attributes_allowed;
bool kvm_direct_msi_allowed;
bool kvm_ioeventfd_any_length_allowed;
bool kvm_msi_use_devid;
bool kvm_has_guest_debug;
static int kvm_sstep_flags;
static bool kvm_immediate_exit;
static hwaddr kvm_max_slot_size = ~0;
static const KVMCapabilityInfo kvm_required_capabilites[] = {
KVM_CAP_INFO(USER_MEMORY),
KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
KVM_CAP_LAST_INFO
};
static NotifierList kvm_irqchip_change_notifiers =
NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
KVM: Kick resamplefd for split kernel irqchip This is majorly only for X86 because that's the only one that supports split irqchip for now. When the irqchip is split, we face a dilemma that KVM irqfd will be enabled, however the slow irqchip is still running in the userspace. It means that the resamplefd in the kernel irqfds won't take any effect and it will miss to ack INTx interrupts on EOIs. One example is split irqchip with VFIO INTx, which will break if we use the VFIO INTx fast path. This patch can potentially supports the VFIO fast path again for INTx, that the IRQ delivery will still use the fast path, while we don't need to trap MMIOs in QEMU for the device to emulate the EIOs (see the callers of vfio_eoi() hook). However the EOI of the INTx will still need to be done from the userspace by caching all the resamplefds in QEMU and kick properly for IOAPIC EOI broadcast. This is tricky because in this case the userspace ioapic irr & remote-irr will be bypassed. However such a change will greatly boost performance for assigned devices using INTx irqs (TCP_RR boosts 46% after this patch applied). When the userspace is responsible for the resamplefd kickup, don't register it on the kvm_irqfd anymore, because on newer kernels (after commit 654f1f13ea56, 5.2+) the KVM_IRQFD will fail if with both split irqchip and resamplefd. This will make sure that the fast path will work for all supported kernels. https://patchwork.kernel.org/patch/10738541/#22609933 Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20200318145204.74483-5-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-18 15:52:03 +01:00
struct KVMResampleFd {
int gsi;
EventNotifier *resample_event;
QLIST_ENTRY(KVMResampleFd) node;
};
typedef struct KVMResampleFd KVMResampleFd;
/*
* Only used with split irqchip where we need to do the resample fd
* kick for the kernel from userspace.
*/
static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
static QemuMutex kml_slots_lock;
#define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
#define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
KVM: Kick resamplefd for split kernel irqchip This is majorly only for X86 because that's the only one that supports split irqchip for now. When the irqchip is split, we face a dilemma that KVM irqfd will be enabled, however the slow irqchip is still running in the userspace. It means that the resamplefd in the kernel irqfds won't take any effect and it will miss to ack INTx interrupts on EOIs. One example is split irqchip with VFIO INTx, which will break if we use the VFIO INTx fast path. This patch can potentially supports the VFIO fast path again for INTx, that the IRQ delivery will still use the fast path, while we don't need to trap MMIOs in QEMU for the device to emulate the EIOs (see the callers of vfio_eoi() hook). However the EOI of the INTx will still need to be done from the userspace by caching all the resamplefds in QEMU and kick properly for IOAPIC EOI broadcast. This is tricky because in this case the userspace ioapic irr & remote-irr will be bypassed. However such a change will greatly boost performance for assigned devices using INTx irqs (TCP_RR boosts 46% after this patch applied). When the userspace is responsible for the resamplefd kickup, don't register it on the kvm_irqfd anymore, because on newer kernels (after commit 654f1f13ea56, 5.2+) the KVM_IRQFD will fail if with both split irqchip and resamplefd. This will make sure that the fast path will work for all supported kernels. https://patchwork.kernel.org/patch/10738541/#22609933 Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20200318145204.74483-5-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-18 15:52:03 +01:00
static inline void kvm_resample_fd_remove(int gsi)
{
KVMResampleFd *rfd;
QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
if (rfd->gsi == gsi) {
QLIST_REMOVE(rfd, node);
g_free(rfd);
break;
}
}
}
static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
{
KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
rfd->gsi = gsi;
rfd->resample_event = event;
QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
}
void kvm_resample_fd_notify(int gsi)
{
KVMResampleFd *rfd;
QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
if (rfd->gsi == gsi) {
event_notifier_set(rfd->resample_event);
trace_kvm_resample_fd_notify(gsi);
return;
}
}
}
int kvm_get_max_memslots(void)
{
KVMState *s = KVM_STATE(current_accel());
return s->nr_slots;
}
/* Called with KVMMemoryListener.slots_lock held */
static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
{
KVMState *s = kvm_state;
int i;
for (i = 0; i < s->nr_slots; i++) {
if (kml->slots[i].memory_size == 0) {
return &kml->slots[i];
}
}
return NULL;
}
bool kvm_has_free_slot(MachineState *ms)
{
KVMState *s = KVM_STATE(ms->accelerator);
bool result;
KVMMemoryListener *kml = &s->memory_listener;
kvm_slots_lock();
result = !!kvm_get_free_slot(kml);
kvm_slots_unlock();
return result;
}
/* Called with KVMMemoryListener.slots_lock held */
static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
{
KVMSlot *slot = kvm_get_free_slot(kml);
if (slot) {
return slot;
}
fprintf(stderr, "%s: no free slot available\n", __func__);
abort();
}
static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
hwaddr start_addr,
hwaddr size)
{
KVMState *s = kvm_state;
int i;
for (i = 0; i < s->nr_slots; i++) {
KVMSlot *mem = &kml->slots[i];
if (start_addr == mem->start_addr && size == mem->memory_size) {
return mem;
}
}
return NULL;
}
/*
* Calculate and align the start address and the size of the section.
* Return the size. If the size is 0, the aligned section is empty.
*/
static hwaddr kvm_align_section(MemoryRegionSection *section,
hwaddr *start)
{
hwaddr size = int128_get64(section->size);
hwaddr delta, aligned;
/* kvm works in page size chunks, but the function may be called
with sub-page size and unaligned start address. Pad the start
address to next and truncate size to previous page boundary. */
aligned = ROUND_UP(section->offset_within_address_space,
qemu_real_host_page_size());
delta = aligned - section->offset_within_address_space;
*start = aligned;
if (delta > size) {
return 0;
}
return (size - delta) & qemu_real_host_page_mask();
}
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
hwaddr *phys_addr)
{
KVMMemoryListener *kml = &s->memory_listener;
int i, ret = 0;
kvm_slots_lock();
for (i = 0; i < s->nr_slots; i++) {
KVMSlot *mem = &kml->slots[i];
if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
*phys_addr = mem->start_addr + (ram - mem->ram);
ret = 1;
break;
}
}
kvm_slots_unlock();
return ret;
}
static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
{
KVMState *s = kvm_state;
struct kvm_userspace_memory_region mem;
int ret;
mem.slot = slot->slot | (kml->as_id << 16);
mem.guest_phys_addr = slot->start_addr;
mem.userspace_addr = (unsigned long)slot->ram;
mem.flags = slot->flags;
if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
/* Set the slot size to 0 before setting the slot to the desired
* value. This is needed based on KVM commit 75d61fbc. */
mem.memory_size = 0;
ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
if (ret < 0) {
goto err;
}
}
mem.memory_size = slot->memory_size;
ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
slot->old_flags = mem.flags;
err:
trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
mem.memory_size, mem.userspace_addr, ret);
if (ret < 0) {
error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
" start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
__func__, mem.slot, slot->start_addr,
(uint64_t)mem.memory_size, strerror(errno));
}
return ret;
}
static int do_kvm_destroy_vcpu(CPUState *cpu)
{
KVMState *s = kvm_state;
long mmap_size;
struct KVMParkedVcpu *vcpu = NULL;
int ret = 0;
DPRINTF("kvm_destroy_vcpu\n");
ret = kvm_arch_destroy_vcpu(cpu);
if (ret < 0) {
goto err;
}
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
ret = mmap_size;
DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
goto err;
}
ret = munmap(cpu->kvm_run, mmap_size);
if (ret < 0) {
goto err;
}
if (cpu->kvm_dirty_gfns) {
ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
if (ret < 0) {
goto err;
}
}
vcpu = g_malloc0(sizeof(*vcpu));
vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
vcpu->kvm_fd = cpu->kvm_fd;
QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
err:
return ret;
}
void kvm_destroy_vcpu(CPUState *cpu)
{
if (do_kvm_destroy_vcpu(cpu) < 0) {
error_report("kvm_destroy_vcpu failed");
exit(EXIT_FAILURE);
}
}
static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
{
struct KVMParkedVcpu *cpu;
QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
if (cpu->vcpu_id == vcpu_id) {
int kvm_fd;
QLIST_REMOVE(cpu, node);
kvm_fd = cpu->kvm_fd;
g_free(cpu);
return kvm_fd;
}
}
return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
}
int kvm_init_vcpu(CPUState *cpu, Error **errp)
{
KVMState *s = kvm_state;
long mmap_size;
int ret;
trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
if (ret < 0) {
error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
kvm_arch_vcpu_id(cpu));
goto err;
}
cpu->kvm_fd = ret;
cpu->kvm_state = s;
cpu->vcpu_dirty = true;
cpu->dirty_pages = 0;
cpu->throttle_us_per_full = 0;
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
ret = mmap_size;
error_setg_errno(errp, -mmap_size,
"kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
goto err;
}
cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
cpu->kvm_fd, 0);
if (cpu->kvm_run == MAP_FAILED) {
ret = -errno;
error_setg_errno(errp, ret,
"kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
kvm_arch_vcpu_id(cpu));
goto err;
}
if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
s->coalesced_mmio_ring =
(void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
}
if (s->kvm_dirty_ring_size) {
/* Use MAP_SHARED to share pages with the kernel */
cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
PROT_READ | PROT_WRITE, MAP_SHARED,
cpu->kvm_fd,
PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
if (cpu->kvm_dirty_gfns == MAP_FAILED) {
ret = -errno;
DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
goto err;
}
}
ret = kvm_arch_init_vcpu(cpu);
if (ret < 0) {
error_setg_errno(errp, -ret,
"kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
kvm_arch_vcpu_id(cpu));
}
cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
err:
return ret;
}
/*
* dirty pages logging control
*/
static int kvm_mem_flags(MemoryRegion *mr)
{
bool readonly = mr->readonly || memory_region_is_romd(mr);
int flags = 0;
if (memory_region_get_dirty_log_mask(mr) != 0) {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if (readonly && kvm_readonly_mem_allowed) {
flags |= KVM_MEM_READONLY;
}
return flags;
}
/* Called with KVMMemoryListener.slots_lock held */
static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
MemoryRegion *mr)
{
mem->flags = kvm_mem_flags(mr);
/* If nothing changed effectively, no need to issue ioctl */
if (mem->flags == mem->old_flags) {
return 0;
}
kvm_slot_init_dirty_bitmap(mem);
return kvm_set_user_memory_region(kml, mem, false);
}
static int kvm_section_update_flags(KVMMemoryListener *kml,
MemoryRegionSection *section)
{
hwaddr start_addr, size, slot_size;
KVMSlot *mem;
int ret = 0;
size = kvm_align_section(section, &start_addr);
if (!size) {
return 0;
}
kvm_slots_lock();
while (size && !ret) {
slot_size = MIN(kvm_max_slot_size, size);
mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
if (!mem) {
/* We don't have a slot if we want to trap every access. */
goto out;
}
ret = kvm_slot_update_flags(kml, mem, section->mr);
start_addr += slot_size;
size -= slot_size;
}
out:
kvm_slots_unlock();
return ret;
}
static void kvm_log_start(MemoryListener *listener,
MemoryRegionSection *section,
int old, int new)
{
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
int r;
if (old != 0) {
return;
}
r = kvm_section_update_flags(kml, section);
if (r < 0) {
abort();
}
}
static void kvm_log_stop(MemoryListener *listener,
MemoryRegionSection *section,
int old, int new)
{
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
int r;
if (new != 0) {
return;
}
r = kvm_section_update_flags(kml, section);
if (r < 0) {
abort();
}
}
/* get kvm's dirty pages bitmap and update qemu's */
static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
{
ram_addr_t start = slot->ram_start_offset;
ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
}
static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
{
memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
}
#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
/* Allocate the dirty bitmap for a slot */
static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
{
if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
return;
}
/*
* XXX bad kernel interface alert
* For dirty bitmap, kernel allocates array of size aligned to
* bits-per-long. But for case when the kernel is 64bits and
* the userspace is 32bits, userspace can't align to the same
* bits-per-long, since sizeof(long) is different between kernel
* and user space. This way, userspace will provide buffer which
* may be 4 bytes less than the kernel will use, resulting in
* userspace memory corruption (which is not detectable by valgrind
* too, in most cases).
* So for now, let's align to 64 instead of HOST_LONG_BITS here, in
* a hope that sizeof(long) won't become >8 any time soon.
*
* Note: the granule of kvm dirty log is qemu_real_host_page_size.
* And mem->memory_size is aligned to it (otherwise this mem can't
* be registered to KVM).
*/
hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
/*HOST_LONG_BITS*/ 64) / 8;
mem->dirty_bmap = g_malloc0(bitmap_size);
mem->dirty_bmap_size = bitmap_size;
}
/*
* Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
* succeeded, false otherwise
*/
static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
{
struct kvm_dirty_log d = {};
int ret;
d.dirty_bitmap = slot->dirty_bmap;
d.slot = slot->slot | (slot->as_id << 16);
ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
if (ret == -ENOENT) {
/* kernel does not have dirty bitmap in this slot */
ret = 0;
}
if (ret) {
error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
__func__, ret);
}
return ret == 0;
}
/* Should be with all slots_lock held for the address spaces. */
static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
uint32_t slot_id, uint64_t offset)
{
KVMMemoryListener *kml;
KVMSlot *mem;
if (as_id >= s->nr_as) {
return;
}
kml = s->as[as_id].ml;
mem = &kml->slots[slot_id];
if (!mem->memory_size || offset >=
(mem->memory_size / qemu_real_host_page_size())) {
return;
}
set_bit(offset, mem->dirty_bmap);
}
static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
{
/*
* Read the flags before the value. Pairs with barrier in
* KVM's kvm_dirty_ring_push() function.
*/
return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
}
static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
{
/*
* Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
* sees the full content of the ring:
*
* CPU0 CPU1 CPU2
* ------------------------------------------------------------------------------
* fill gfn0
* store-rel flags for gfn0
* load-acq flags for gfn0
* store-rel RESET for gfn0
* ioctl(RESET_RINGS)
* load-acq flags for gfn0
* check if flags have RESET
*
* The synchronization goes from CPU2 to CPU0 to CPU1.
*/
qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
}
/*
* Should be with all slots_lock held for the address spaces. It returns the
* dirty page we've collected on this dirty ring.
*/
static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
{
struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
uint32_t ring_size = s->kvm_dirty_ring_size;
uint32_t count = 0, fetch = cpu->kvm_fetch_index;
/*
* It's possible that we race with vcpu creation code where the vcpu is
* put onto the vcpus list but not yet initialized the dirty ring
* structures. If so, skip it.
*/
if (!cpu->created) {
return 0;
}
assert(dirty_gfns && ring_size);
trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
while (true) {
cur = &dirty_gfns[fetch % ring_size];
if (!dirty_gfn_is_dirtied(cur)) {
break;
}
kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
cur->offset);
dirty_gfn_set_collected(cur);
trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
fetch++;
count++;
}
cpu->kvm_fetch_index = fetch;
cpu->dirty_pages += count;
return count;
}
/* Must be with slots_lock held */
static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
{
int ret;
uint64_t total = 0;
int64_t stamp;
stamp = get_clock();
if (cpu) {
total = kvm_dirty_ring_reap_one(s, cpu);
} else {
CPU_FOREACH(cpu) {
total += kvm_dirty_ring_reap_one(s, cpu);
}
}
if (total) {
ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
assert(ret == total);
}
stamp = get_clock() - stamp;
if (total) {
trace_kvm_dirty_ring_reap(total, stamp / 1000);
}
return total;
}
/*
* Currently for simplicity, we must hold BQL before calling this. We can
* consider to drop the BQL if we're clear with all the race conditions.
*/
static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
{
uint64_t total;
/*
* We need to lock all kvm slots for all address spaces here,
* because:
*
* (1) We need to mark dirty for dirty bitmaps in multiple slots
* and for tons of pages, so it's better to take the lock here
* once rather than once per page. And more importantly,
*
* (2) We must _NOT_ publish dirty bits to the other threads
* (e.g., the migration thread) via the kvm memory slot dirty
* bitmaps before correctly re-protect those dirtied pages.
* Otherwise we can have potential risk of data corruption if
* the page data is read in the other thread before we do
* reset below.
*/
kvm_slots_lock();
total = kvm_dirty_ring_reap_locked(s, cpu);
kvm_slots_unlock();
return total;
}
static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
{
/* No need to do anything */
}
/*
* Kick all vcpus out in a synchronized way. When returned, we
* guarantee that every vcpu has been kicked and at least returned to
* userspace once.
*/
static void kvm_cpu_synchronize_kick_all(void)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
}
}
/*
* Flush all the existing dirty pages to the KVM slot buffers. When
* this call returns, we guarantee that all the touched dirty pages
* before calling this function have been put into the per-kvmslot
* dirty bitmap.
*
* This function must be called with BQL held.
*/
static void kvm_dirty_ring_flush(void)
{
trace_kvm_dirty_ring_flush(0);
/*
* The function needs to be serialized. Since this function
* should always be with BQL held, serialization is guaranteed.
* However, let's be sure of it.
*/
assert(qemu_mutex_iothread_locked());
/*
* First make sure to flush the hardware buffers by kicking all
* vcpus out in a synchronous way.
*/
kvm_cpu_synchronize_kick_all();
kvm_dirty_ring_reap(kvm_state, NULL);
trace_kvm_dirty_ring_flush(1);
}
/**
* kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
*
* This function will first try to fetch dirty bitmap from the kernel,
* and then updates qemu's dirty bitmap.
*
* NOTE: caller must be with kml->slots_lock held.
*
* @kml: the KVM memory listener object
* @section: the memory section to sync the dirty bitmap with
*/
static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
MemoryRegionSection *section)
{
KVMState *s = kvm_state;
KVMSlot *mem;
hwaddr start_addr, size;
hwaddr slot_size;
size = kvm_align_section(section, &start_addr);
while (size) {
slot_size = MIN(kvm_max_slot_size, size);
mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
if (!mem) {
/* We don't have a slot if we want to trap every access. */
return;
}
if (kvm_slot_get_dirty_log(s, mem)) {
kvm_slot_sync_dirty_pages(mem);
}
start_addr += slot_size;
size -= slot_size;
}
}
/* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
#define KVM_CLEAR_LOG_SHIFT 6
#define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
#define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
uint64_t size)
{
KVMState *s = kvm_state;
uint64_t end, bmap_start, start_delta, bmap_npages;
struct kvm_clear_dirty_log d;
unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
int ret;
/*
* We need to extend either the start or the size or both to
* satisfy the KVM interface requirement. Firstly, do the start
* page alignment on 64 host pages
*/
bmap_start = start & KVM_CLEAR_LOG_MASK;
start_delta = start - bmap_start;
bmap_start /= psize;
/*
* The kernel interface has restriction on the size too, that either:
*
* (1) the size is 64 host pages aligned (just like the start), or
* (2) the size fills up until the end of the KVM memslot.
*/
bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
<< KVM_CLEAR_LOG_SHIFT;
end = mem->memory_size / psize;
if (bmap_npages > end - bmap_start) {
bmap_npages = end - bmap_start;
}
start_delta /= psize;
/*
* Prepare the bitmap to clear dirty bits. Here we must guarantee
* that we won't clear any unknown dirty bits otherwise we might
* accidentally clear some set bits which are not yet synced from
* the kernel into QEMU's bitmap, then we'll lose track of the
* guest modifications upon those pages (which can directly lead
* to guest data loss or panic after migration).
*
* Layout of the KVMSlot.dirty_bmap:
*
* |<-------- bmap_npages -----------..>|
* [1]
* start_delta size
* |----------------|-------------|------------------|------------|
* ^ ^ ^ ^
* | | | |
* start bmap_start (start) end
* of memslot of memslot
*
* [1] bmap_npages can be aligned to either 64 pages or the end of slot
*/
assert(bmap_start % BITS_PER_LONG == 0);
/* We should never do log_clear before log_sync */
assert(mem->dirty_bmap);
if (start_delta || bmap_npages - size / psize) {
/* Slow path - we need to manipulate a temp bitmap */
bmap_clear = bitmap_new(bmap_npages);
bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
bmap_start, start_delta + size / psize);
/*
* We need to fill the holes at start because that was not
* specified by the caller and we extended the bitmap only for
* 64 pages alignment
*/
bitmap_clear(bmap_clear, 0, start_delta);
d.dirty_bitmap = bmap_clear;
} else {
/*
* Fast path - both start and size align well with BITS_PER_LONG
* (or the end of memory slot)
*/
d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
}
d.first_page = bmap_start;
/* It should never overflow. If it happens, say something */
assert(bmap_npages <= UINT32_MAX);
d.num_pages = bmap_npages;
d.slot = mem->slot | (as_id << 16);
ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
if (ret < 0 && ret != -ENOENT) {
error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
"start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
__func__, d.slot, (uint64_t)d.first_page,
(uint32_t)d.num_pages, ret);
} else {
ret = 0;
trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
}
/*
* After we have updated the remote dirty bitmap, we update the
* cached bitmap as well for the memslot, then if another user
* clears the same region we know we shouldn't clear it again on
* the remote otherwise it's data loss as well.
*/
bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
size / psize);
/* This handles the NULL case well */
g_free(bmap_clear);
return ret;
}
/**
* kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
*
* NOTE: this will be a no-op if we haven't enabled manual dirty log
* protection in the host kernel because in that case this operation
* will be done within log_sync().
*
* @kml: the kvm memory listener
* @section: the memory range to clear dirty bitmap
*/
static int kvm_physical_log_clear(KVMMemoryListener *kml,
MemoryRegionSection *section)
{
KVMState *s = kvm_state;
uint64_t start, size, offset, count;
KVMSlot *mem;
int ret = 0, i;
if (!s->manual_dirty_log_protect) {
/* No need to do explicit clear */
return ret;
}
start = section->offset_within_address_space;
size = int128_get64(section->size);
if (!size) {
/* Nothing more we can do... */
return ret;
}
kvm_slots_lock();
for (i = 0; i < s->nr_slots; i++) {
mem = &kml->slots[i];
/* Discard slots that are empty or do not overlap the section */
if (!mem->memory_size ||
mem->start_addr > start + size - 1 ||
start > mem->start_addr + mem->memory_size - 1) {
continue;
}
if (start >= mem->start_addr) {
/* The slot starts before section or is aligned to it. */
offset = start - mem->start_addr;
count = MIN(mem->memory_size - offset, size);
} else {
/* The slot starts after section. */
offset = 0;
count = MIN(mem->memory_size, size - (mem->start_addr - start));
}
ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
if (ret < 0) {
break;
}
}
kvm_slots_unlock();
return ret;
}
static void kvm_coalesce_mmio_region(MemoryListener *listener,
MemoryRegionSection *secion,
hwaddr start, hwaddr size)
{
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pad = 0;
(void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
}
}
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
MemoryRegionSection *secion,
hwaddr start, hwaddr size)
{
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pad = 0;
(void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
}
static void kvm_coalesce_pio_add(MemoryListener *listener,
MemoryRegionSection *section,
hwaddr start, hwaddr size)
{
KVMState *s = kvm_state;
if (s->coalesced_pio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pio = 1;
(void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
}
}
static void kvm_coalesce_pio_del(MemoryListener *listener,
MemoryRegionSection *section,
hwaddr start, hwaddr size)
{
KVMState *s = kvm_state;
if (s->coalesced_pio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pio = 1;
(void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
}
static MemoryListener kvm_coalesced_pio_listener = {
.name = "kvm-coalesced-pio",
.coalesced_io_add = kvm_coalesce_pio_add,
.coalesced_io_del = kvm_coalesce_pio_del,
};
int kvm_check_extension(KVMState *s, unsigned int extension)
{
int ret;
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
if (ret < 0) {
ret = 0;
}
return ret;
}
int kvm_vm_check_extension(KVMState *s, unsigned int extension)
{
int ret;
ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
if (ret < 0) {
/* VM wide version not implemented, use global one instead */
ret = kvm_check_extension(s, extension);
}
return ret;
}
typedef struct HWPoisonPage {
ram_addr_t ram_addr;
QLIST_ENTRY(HWPoisonPage) list;
} HWPoisonPage;
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
QLIST_HEAD_INITIALIZER(hwpoison_page_list);
static void kvm_unpoison_all(void *param)
{
HWPoisonPage *page, *next_page;
QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
QLIST_REMOVE(page, list);
qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
g_free(page);
}
}
void kvm_hwpoison_page_add(ram_addr_t ram_addr)
{
HWPoisonPage *page;
QLIST_FOREACH(page, &hwpoison_page_list, list) {
if (page->ram_addr == ram_addr) {
return;
}
}
page = g_new(HWPoisonPage, 1);
page->ram_addr = ram_addr;
QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
}
static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
{
#if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
/* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
* endianness, but the memory core hands them in target endianness.
* For example, PPC is always treated as big-endian even if running
* on KVM and on PPC64LE. Correct here.
*/
switch (size) {
case 2:
val = bswap16(val);
break;
case 4:
val = bswap32(val);
break;
}
#endif
return val;
}
static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
bool assign, uint32_t size, bool datamatch)
{
int ret;
struct kvm_ioeventfd iofd = {
.datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
.addr = addr,
.len = size,
.flags = 0,
.fd = fd,
};
trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
datamatch);
if (!kvm_enabled()) {
return -ENOSYS;
}
if (datamatch) {
iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
}
if (!assign) {
iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
if (ret < 0) {
return -errno;
}
return 0;
}
static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
bool assign, uint32_t size, bool datamatch)
{
struct kvm_ioeventfd kick = {
.datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
.addr = addr,
.flags = KVM_IOEVENTFD_FLAG_PIO,
.len = size,
.fd = fd,
};
int r;
trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
if (!kvm_enabled()) {
return -ENOSYS;
}
if (datamatch) {
kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
}
if (!assign) {
kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
if (r < 0) {
return r;
}
return 0;
}
static int kvm_check_many_ioeventfds(void)
{
/* Userspace can use ioeventfd for io notification. This requires a host
* that supports eventfd(2) and an I/O thread; since eventfd does not
* support SIGIO it cannot interrupt the vcpu.
*
* Older kernels have a 6 device limit on the KVM io bus. Find out so we
* can avoid creating too many ioeventfds.
*/
#if defined(CONFIG_EVENTFD)
int ioeventfds[7];
int i, ret = 0;
for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
if (ioeventfds[i] < 0) {
break;
}
ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
if (ret < 0) {
close(ioeventfds[i]);
break;
}
}
/* Decide whether many devices are supported or not */
ret = i == ARRAY_SIZE(ioeventfds);
while (i-- > 0) {
kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
close(ioeventfds[i]);
}
return ret;
#else
return 0;
#endif
}
static const KVMCapabilityInfo *
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
{
while (list->name) {
if (!kvm_check_extension(s, list->value)) {
return list;
}
list++;
}
return NULL;
}
void kvm_set_max_memslot_size(hwaddr max_slot_size)
{
g_assert(
ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
);
kvm_max_slot_size = max_slot_size;
}
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
/* Called with KVMMemoryListener.slots_lock held */
static void kvm_set_phys_mem(KVMMemoryListener *kml,
MemoryRegionSection *section, bool add)
{
KVMSlot *mem;
int err;
MemoryRegion *mr = section->mr;
bool writable = !mr->readonly && !mr->rom_device;
hwaddr start_addr, size, slot_size, mr_offset;
ram_addr_t ram_start_offset;
void *ram;
if (!memory_region_is_ram(mr)) {
if (writable || !kvm_readonly_mem_allowed) {
return;
} else if (!mr->romd_mode) {
/* If the memory device is not in romd_mode, then we actually want
* to remove the kvm memory slot so all accesses will trap. */
add = false;
}
}
size = kvm_align_section(section, &start_addr);
if (!size) {
return;
}
/* The offset of the kvmslot within the memory region */
mr_offset = section->offset_within_region + start_addr -
section->offset_within_address_space;
/* use aligned delta to align the ram address and offset */
ram = memory_region_get_ram_ptr(mr) + mr_offset;
ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
if (!add) {
do {
slot_size = MIN(kvm_max_slot_size, size);
mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
if (!mem) {
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
return;
}
if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
/*
* NOTE: We should be aware of the fact that here we're only
* doing a best effort to sync dirty bits. No matter whether
* we're using dirty log or dirty ring, we ignored two facts:
*
* (1) dirty bits can reside in hardware buffers (PML)
*
* (2) after we collected dirty bits here, pages can be dirtied
* again before we do the final KVM_SET_USER_MEMORY_REGION to
* remove the slot.
*
* Not easy. Let's cross the fingers until it's fixed.
*/
if (kvm_state->kvm_dirty_ring_size) {
kvm_dirty_ring_reap_locked(kvm_state, NULL);
if (kvm_state->kvm_dirty_ring_with_bitmap) {
kvm_slot_sync_dirty_pages(mem);
kvm_slot_get_dirty_log(kvm_state, mem);
}
} else {
kvm_slot_get_dirty_log(kvm_state, mem);
}
kvm_slot_sync_dirty_pages(mem);
}
/* unregister the slot */
g_free(mem->dirty_bmap);
mem->dirty_bmap = NULL;
mem->memory_size = 0;
mem->flags = 0;
err = kvm_set_user_memory_region(kml, mem, false);
if (err) {
fprintf(stderr, "%s: error unregistering slot: %s\n",
__func__, strerror(-err));
abort();
}
start_addr += slot_size;
size -= slot_size;
} while (size);
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
return;
}
/* register the new slot */
do {
slot_size = MIN(kvm_max_slot_size, size);
mem = kvm_alloc_slot(kml);
mem->as_id = kml->as_id;
mem->memory_size = slot_size;
mem->start_addr = start_addr;
mem->ram_start_offset = ram_start_offset;
mem->ram = ram;
mem->flags = kvm_mem_flags(mr);
kvm_slot_init_dirty_bitmap(mem);
err = kvm_set_user_memory_region(kml, mem, true);
if (err) {
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
strerror(-err));
abort();
}
start_addr += slot_size;
ram_start_offset += slot_size;
ram += slot_size;
size -= slot_size;
} while (size);
}
static void *kvm_dirty_ring_reaper_thread(void *data)
{
KVMState *s = data;
struct KVMDirtyRingReaper *r = &s->reaper;
rcu_register_thread();
trace_kvm_dirty_ring_reaper("init");
while (true) {
r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
trace_kvm_dirty_ring_reaper("wait");
/*
* TODO: provide a smarter timeout rather than a constant?
*/
sleep(1);
/* keep sleeping so that dirtylimit not be interfered by reaper */
if (dirtylimit_in_service()) {
continue;
}
trace_kvm_dirty_ring_reaper("wakeup");
r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
qemu_mutex_lock_iothread();
kvm_dirty_ring_reap(s, NULL);
qemu_mutex_unlock_iothread();
r->reaper_iteration++;
}
trace_kvm_dirty_ring_reaper("exit");
rcu_unregister_thread();
return NULL;
}
static int kvm_dirty_ring_reaper_init(KVMState *s)
{
struct KVMDirtyRingReaper *r = &s->reaper;
qemu_thread_create(&r->reaper_thr, "kvm-reaper",
kvm_dirty_ring_reaper_thread,
s, QEMU_THREAD_JOINABLE);
return 0;
}
static int kvm_dirty_ring_init(KVMState *s)
{
uint32_t ring_size = s->kvm_dirty_ring_size;
uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
int ret;
s->kvm_dirty_ring_size = 0;
s->kvm_dirty_ring_bytes = 0;
/* Bail if the dirty ring size isn't specified */
if (!ring_size) {
return 0;
}
/*
* Read the max supported pages. Fall back to dirty logging mode
* if the dirty ring isn't supported.
*/
ret = kvm_vm_check_extension(s, capability);
if (ret <= 0) {
capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
ret = kvm_vm_check_extension(s, capability);
}
if (ret <= 0) {
warn_report("KVM dirty ring not available, using bitmap method");
return 0;
}
if (ring_bytes > ret) {
error_report("KVM dirty ring size %" PRIu32 " too big "
"(maximum is %ld). Please use a smaller value.",
ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
return -EINVAL;
}
ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
if (ret) {
error_report("Enabling of KVM dirty ring failed: %s. "
"Suggested minimum value is 1024.", strerror(-ret));
return -EIO;
}
/* Enable the backup bitmap if it is supported */
ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
if (ret > 0) {
ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
if (ret) {
error_report("Enabling of KVM dirty ring's backup bitmap failed: "
"%s. ", strerror(-ret));
return -EIO;
}
s->kvm_dirty_ring_with_bitmap = true;
}
s->kvm_dirty_ring_size = ring_size;
s->kvm_dirty_ring_bytes = ring_bytes;
return 0;
}
static void kvm_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
KVMMemoryUpdate *update;
update = g_new0(KVMMemoryUpdate, 1);
update->section = *section;
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
}
static void kvm_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
KVMMemoryUpdate *update;
update = g_new0(KVMMemoryUpdate, 1);
update->section = *section;
QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
}
static void kvm_region_commit(MemoryListener *listener)
{
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
listener);
KVMMemoryUpdate *u1, *u2;
bool need_inhibit = false;
if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
QSIMPLEQ_EMPTY(&kml->transaction_del)) {
return;
}
/*
* We have to be careful when regions to add overlap with ranges to remove.
* We have to simulate atomic KVM memslot updates by making sure no ioctl()
* is currently active.
*
* The lists are order by addresses, so it's easy to find overlaps.
*/
u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
while (u1 && u2) {
Range r1, r2;
range_init_nofail(&r1, u1->section.offset_within_address_space,
int128_get64(u1->section.size));
range_init_nofail(&r2, u2->section.offset_within_address_space,
int128_get64(u2->section.size));
if (range_overlaps_range(&r1, &r2)) {
need_inhibit = true;
break;
}
if (range_lob(&r1) < range_lob(&r2)) {
u1 = QSIMPLEQ_NEXT(u1, next);
} else {
u2 = QSIMPLEQ_NEXT(u2, next);
}
}
kvm_slots_lock();
if (need_inhibit) {
accel_ioctl_inhibit_begin();
}
/* Remove all memslots before adding the new ones. */
while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
kvm_set_phys_mem(kml, &u1->section, false);
memory_region_unref(u1->section.mr);
g_free(u1);
}
while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
memory_region_ref(u1->section.mr);
kvm_set_phys_mem(kml, &u1->section, true);
g_free(u1);
}
if (need_inhibit) {
accel_ioctl_inhibit_end();
}
kvm_slots_unlock();
}
static void kvm_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
kvm_slots_lock();
kvm_physical_sync_dirty_bitmap(kml, section);
kvm_slots_unlock();
}
static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
{
KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
KVMState *s = kvm_state;
KVMSlot *mem;
int i;
/* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
kvm_dirty_ring_flush();
/*
* TODO: make this faster when nr_slots is big while there are
* only a few used slots (small VMs).
*/
kvm_slots_lock();
for (i = 0; i < s->nr_slots; i++) {
mem = &kml->slots[i];
if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
kvm_slot_sync_dirty_pages(mem);
if (s->kvm_dirty_ring_with_bitmap && last_stage &&
kvm_slot_get_dirty_log(s, mem)) {
kvm_slot_sync_dirty_pages(mem);
}
/*
* This is not needed by KVM_GET_DIRTY_LOG because the
* ioctl will unconditionally overwrite the whole region.
* However kvm dirty ring has no such side effect.
*/
kvm_slot_reset_dirty_pages(mem);
}
}
kvm_slots_unlock();
}
static void kvm_log_clear(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
int r;
r = kvm_physical_log_clear(kml, section);
if (r < 0) {
error_report_once("%s: kvm log clear failed: mr=%s "
"offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
section->mr->name, section->offset_within_region,
int128_get64(section->size));
abort();
}
}
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
data, true, int128_get64(section->size),
match_data);
if (r < 0) {
fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
__func__, strerror(-r), -r);
abort();
}
}
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
data, false, int128_get64(section->size),
match_data);
if (r < 0) {
fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
__func__, strerror(-r), -r);
abort();
}
}
static void kvm_io_ioeventfd_add(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
data, true, int128_get64(section->size),
match_data);
if (r < 0) {
fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
__func__, strerror(-r), -r);
abort();
}
}
static void kvm_io_ioeventfd_del(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
data, false, int128_get64(section->size),
match_data);
if (r < 0) {
fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
__func__, strerror(-r), -r);
abort();
}
}
void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
AddressSpace *as, int as_id, const char *name)
{
int i;
kml->slots = g_new0(KVMSlot, s->nr_slots);
kml->as_id = as_id;
for (i = 0; i < s->nr_slots; i++) {
kml->slots[i].slot = i;
}
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
QSIMPLEQ_INIT(&kml->transaction_add);
QSIMPLEQ_INIT(&kml->transaction_del);
kml->listener.region_add = kvm_region_add;
kml->listener.region_del = kvm_region_del;
kvm: Atomic memslot updates If we update an existing memslot (e.g., resize, split), we temporarily remove the memslot to re-add it immediately afterwards. These updates are not atomic, especially not for KVM VCPU threads, such that we can get spurious faults. Let's inhibit most KVM ioctls while performing relevant updates, such that we can perform the update just as if it would happen atomically without additional kernel support. We capture the add/del changes and apply them in the notifier commit stage instead. There, we can check for overlaps and perform the ioctl inhibiting only if really required (-> overlap). To keep things simple we don't perform additional checks that wouldn't actually result in an overlap -- such as !RAM memory regions in some cases (see kvm_set_phys_mem()). To minimize cache-line bouncing, use a separate indicator (in_ioctl_lock) per CPU. Also, make sure to hold the kvm_slots_lock while performing both actions (removing+re-adding). We have to wait until all IOCTLs were exited and block new ones from getting executed. This approach cannot result in a deadlock as long as the inhibitor does not hold any locks that might hinder an IOCTL from getting finished and exited - something fairly unusual. The inhibitor will always hold the BQL. AFAIKs, one possible candidate would be userfaultfd. If a page cannot be placed (e.g., during postcopy), because we're waiting for a lock, or if the userfaultfd thread cannot process a fault, because it is waiting for a lock, there could be a deadlock. However, the BQL is not applicable here, because any other guest memory access while holding the BQL would already result in a deadlock. Nothing else in the kernel should block forever and wait for userspace intervention. Note: pause_all_vcpus()/resume_all_vcpus() or start_exclusive()/end_exclusive() cannot be used, as they either drop the BQL or require to be called without the BQL - something inhibitors cannot handle. We need a low-level locking mechanism that is deadlock-free even when not releasing the BQL. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Tested-by: Emanuele Giuseppe Esposito <eesposit@redhat.com> Message-Id: <20221111154758.1372674-4-eesposit@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-11 16:47:58 +01:00
kml->listener.commit = kvm_region_commit;
kml->listener.log_start = kvm_log_start;
kml->listener.log_stop = kvm_log_stop;
kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
kml->listener.name = name;
if (s->kvm_dirty_ring_size) {
kml->listener.log_sync_global = kvm_log_sync_global;
} else {
kml->listener.log_sync = kvm_log_sync;
kml->listener.log_clear = kvm_log_clear;
}
memory_listener_register(&kml->listener, as);
for (i = 0; i < s->nr_as; ++i) {
if (!s->as[i].as) {
s->as[i].as = as;
s->as[i].ml = kml;
break;
}
}
}
static MemoryListener kvm_io_listener = {
.name = "kvm-io",
.eventfd_add = kvm_io_ioeventfd_add,
.eventfd_del = kvm_io_ioeventfd_del,
.priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
};
int kvm_set_irq(KVMState *s, int irq, int level)
{
struct kvm_irq_level event;
int ret;
assert(kvm_async_interrupts_enabled());
event.level = level;
event.irq = irq;
ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
if (ret < 0) {
perror("kvm_set_irq");
abort();
}
return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
}
#ifdef KVM_CAP_IRQ_ROUTING
typedef struct KVMMSIRoute {
struct kvm_irq_routing_entry kroute;
QTAILQ_ENTRY(KVMMSIRoute) entry;
} KVMMSIRoute;
static void set_gsi(KVMState *s, unsigned int gsi)
{
set_bit(gsi, s->used_gsi_bitmap);
}
static void clear_gsi(KVMState *s, unsigned int gsi)
{
clear_bit(gsi, s->used_gsi_bitmap);
}
void kvm_init_irq_routing(KVMState *s)
{
int gsi_count, i;
gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
if (gsi_count > 0) {
/* Round up so we can search ints using ffs */
s->used_gsi_bitmap = bitmap_new(gsi_count);
s->gsi_count = gsi_count;
}
s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
s->nr_allocated_irq_routes = 0;
if (!kvm_direct_msi_allowed) {
for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
QTAILQ_INIT(&s->msi_hashtab[i]);
}
}
kvm_arch_init_irq_routing(s);
}
void kvm_irqchip_commit_routes(KVMState *s)
{
int ret;
if (kvm_gsi_direct_mapping()) {
return;
}
if (!kvm_gsi_routing_enabled()) {
return;
}
s->irq_routes->flags = 0;
trace_kvm_irqchip_commit_routes();
ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
assert(ret == 0);
}
static void kvm_add_routing_entry(KVMState *s,
struct kvm_irq_routing_entry *entry)
{
struct kvm_irq_routing_entry *new;
int n, size;
if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
n = s->nr_allocated_irq_routes * 2;
if (n < 64) {
n = 64;
}
size = sizeof(struct kvm_irq_routing);
size += n * sizeof(*new);
s->irq_routes = g_realloc(s->irq_routes, size);
s->nr_allocated_irq_routes = n;
}
n = s->irq_routes->nr++;
new = &s->irq_routes->entries[n];
*new = *entry;
set_gsi(s, entry->gsi);
}
static int kvm_update_routing_entry(KVMState *s,
struct kvm_irq_routing_entry *new_entry)
{
struct kvm_irq_routing_entry *entry;
int n;
for (n = 0; n < s->irq_routes->nr; n++) {
entry = &s->irq_routes->entries[n];
if (entry->gsi != new_entry->gsi) {
continue;
}
if(!memcmp(entry, new_entry, sizeof *entry)) {
return 0;
}
*entry = *new_entry;
return 0;
}
return -ESRCH;
}
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
{
struct kvm_irq_routing_entry e = {};
assert(pin < s->gsi_count);
e.gsi = irq;
e.type = KVM_IRQ_ROUTING_IRQCHIP;
e.flags = 0;
e.u.irqchip.irqchip = irqchip;
e.u.irqchip.pin = pin;
kvm_add_routing_entry(s, &e);
}
void kvm_irqchip_release_virq(KVMState *s, int virq)
{
struct kvm_irq_routing_entry *e;
int i;
if (kvm_gsi_direct_mapping()) {
return;
}
for (i = 0; i < s->irq_routes->nr; i++) {
e = &s->irq_routes->entries[i];
if (e->gsi == virq) {
s->irq_routes->nr--;
*e = s->irq_routes->entries[s->irq_routes->nr];
}
}
clear_gsi(s, virq);
kvm_arch_release_virq_post(virq);
trace_kvm_irqchip_release_virq(virq);
}
void kvm_irqchip_add_change_notifier(Notifier *n)
{
notifier_list_add(&kvm_irqchip_change_notifiers, n);
}
void kvm_irqchip_remove_change_notifier(Notifier *n)
{
notifier_remove(n);
}
void kvm_irqchip_change_notify(void)
{
notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
}
static unsigned int kvm_hash_msi(uint32_t data)
{
/* This is optimized for IA32 MSI layout. However, no other arch shall
* repeat the mistake of not providing a direct MSI injection API. */
return data & 0xff;
}
static void kvm_flush_dynamic_msi_routes(KVMState *s)
{
KVMMSIRoute *route, *next;
unsigned int hash;
for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
kvm_irqchip_release_virq(s, route->kroute.gsi);
QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
g_free(route);
}
}
}
static int kvm_irqchip_get_virq(KVMState *s)
{
int next_virq;
Fix irq route entries exceeding KVM_MAX_IRQ_ROUTES Last month, we experienced several guests crash(6cores-8cores), qemu logs display the following messages: qemu-system-x86_64: /build/qemu-2.1.2/kvm-all.c:976: kvm_irqchip_commit_routes: Assertion `ret == 0' failed. After analysis and verification, we can confirm it's irq-balance daemon(in guest) leads to the assertion failure. Start a 8 core guest with two disks, execute the following scripts will reproduce the BUG quickly: irq_affinity.sh ======================================================================== vda_irq_num=25 vdb_irq_num=27 while [ 1 ] do for irq in {1,2,4,8,10,20,40,80} do echo $irq > /proc/irq/$vda_irq_num/smp_affinity echo $irq > /proc/irq/$vdb_irq_num/smp_affinity dd if=/dev/vda of=/dev/zero bs=4K count=100 iflag=direct dd if=/dev/vdb of=/dev/zero bs=4K count=100 iflag=direct done done ======================================================================== QEMU setup static irq route entries in kvm_pc_setup_irq_routing(), PIC and IOAPIC share the first 15 GSI numbers, take up 23 GSI numbers, but take up 38 irq route entries. When change irq smp_affinity in guest, a dynamic route entry may be setup, the current logic is: if allocate GSI number succeeds, a new route entry can be added. The available dynamic GSI numbers is 1021(KVM_MAX_IRQ_ROUTES-23), but available irq route entries is only 986(KVM_MAX_IRQ_ROUTES-38), GSI numbers greater than route entries. irq-balance's behavior will eventually leads to total irq route entries exceed KVM_MAX_IRQ_ROUTES, ioctl(KVM_SET_GSI_ROUTING) fail and kvm_irqchip_commit_routes() trigger assertion failure. This patch fix the BUG. Signed-off-by: Wenshuang Ma <kevinnma@tencent.com> Cc: qemu-stable@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-07-01 15:41:41 +02:00
/*
* PIC and IOAPIC share the first 16 GSI numbers, thus the available
* GSI numbers are more than the number of IRQ route. Allocating a GSI
* number can succeed even though a new route entry cannot be added.
* When this happens, flush dynamic MSI entries to free IRQ route entries.
*/
if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
Fix irq route entries exceeding KVM_MAX_IRQ_ROUTES Last month, we experienced several guests crash(6cores-8cores), qemu logs display the following messages: qemu-system-x86_64: /build/qemu-2.1.2/kvm-all.c:976: kvm_irqchip_commit_routes: Assertion `ret == 0' failed. After analysis and verification, we can confirm it's irq-balance daemon(in guest) leads to the assertion failure. Start a 8 core guest with two disks, execute the following scripts will reproduce the BUG quickly: irq_affinity.sh ======================================================================== vda_irq_num=25 vdb_irq_num=27 while [ 1 ] do for irq in {1,2,4,8,10,20,40,80} do echo $irq > /proc/irq/$vda_irq_num/smp_affinity echo $irq > /proc/irq/$vdb_irq_num/smp_affinity dd if=/dev/vda of=/dev/zero bs=4K count=100 iflag=direct dd if=/dev/vdb of=/dev/zero bs=4K count=100 iflag=direct done done ======================================================================== QEMU setup static irq route entries in kvm_pc_setup_irq_routing(), PIC and IOAPIC share the first 15 GSI numbers, take up 23 GSI numbers, but take up 38 irq route entries. When change irq smp_affinity in guest, a dynamic route entry may be setup, the current logic is: if allocate GSI number succeeds, a new route entry can be added. The available dynamic GSI numbers is 1021(KVM_MAX_IRQ_ROUTES-23), but available irq route entries is only 986(KVM_MAX_IRQ_ROUTES-38), GSI numbers greater than route entries. irq-balance's behavior will eventually leads to total irq route entries exceed KVM_MAX_IRQ_ROUTES, ioctl(KVM_SET_GSI_ROUTING) fail and kvm_irqchip_commit_routes() trigger assertion failure. This patch fix the BUG. Signed-off-by: Wenshuang Ma <kevinnma@tencent.com> Cc: qemu-stable@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-07-01 15:41:41 +02:00
kvm_flush_dynamic_msi_routes(s);
}
/* Return the lowest unused GSI in the bitmap */
next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
if (next_virq >= s->gsi_count) {
return -ENOSPC;
} else {
return next_virq;
}
}
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
{
unsigned int hash = kvm_hash_msi(msg.data);
KVMMSIRoute *route;
QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
route->kroute.u.msi.address_hi == (msg.address >> 32) &&
route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
return route;
}
}
return NULL;
}
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
{
struct kvm_msi msi;
KVMMSIRoute *route;
if (kvm_direct_msi_allowed) {
msi.address_lo = (uint32_t)msg.address;
msi.address_hi = msg.address >> 32;
msi.data = le32_to_cpu(msg.data);
msi.flags = 0;
memset(msi.pad, 0, sizeof(msi.pad));
return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
}
route = kvm_lookup_msi_route(s, msg);
if (!route) {
int virq;
virq = kvm_irqchip_get_virq(s);
if (virq < 0) {
return virq;
}
route = g_new0(KVMMSIRoute, 1);
route->kroute.gsi = virq;
route->kroute.type = KVM_IRQ_ROUTING_MSI;
route->kroute.flags = 0;
route->kroute.u.msi.address_lo = (uint32_t)msg.address;
route->kroute.u.msi.address_hi = msg.address >> 32;
route->kroute.u.msi.data = le32_to_cpu(msg.data);
kvm_add_routing_entry(s, &route->kroute);
kvm_irqchip_commit_routes(s);
QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
entry);
}
assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
return kvm_set_irq(s, route->kroute.gsi, 1);
}
int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
{
struct kvm_irq_routing_entry kroute = {};
int virq;
KVMState *s = c->s;
MSIMessage msg = {0, 0};
if (pci_available && dev) {
msg = pci_get_msi_message(dev, vector);
}
if (kvm_gsi_direct_mapping()) {
return kvm_arch_msi_data_to_gsi(msg.data);
}
if (!kvm_gsi_routing_enabled()) {
return -ENOSYS;
}
virq = kvm_irqchip_get_virq(s);
if (virq < 0) {
return virq;
}
kroute.gsi = virq;
kroute.type = KVM_IRQ_ROUTING_MSI;
kroute.flags = 0;
kroute.u.msi.address_lo = (uint32_t)msg.address;
kroute.u.msi.address_hi = msg.address >> 32;
kroute.u.msi.data = le32_to_cpu(msg.data);
if (pci_available && kvm_msi_devid_required()) {
kroute.flags = KVM_MSI_VALID_DEVID;
kroute.u.msi.devid = pci_requester_id(dev);
}
if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
kvm_irqchip_release_virq(s, virq);
return -EINVAL;
}
trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
vector, virq);
kvm_add_routing_entry(s, &kroute);
kvm_arch_add_msi_route_post(&kroute, vector, dev);
c->changes++;
return virq;
}
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
PCIDevice *dev)
{
struct kvm_irq_routing_entry kroute = {};
if (kvm_gsi_direct_mapping()) {
return 0;
}
if (!kvm_irqchip_in_kernel()) {
return -ENOSYS;
}
kroute.gsi = virq;
kroute.type = KVM_IRQ_ROUTING_MSI;
kroute.flags = 0;
kroute.u.msi.address_lo = (uint32_t)msg.address;
kroute.u.msi.address_hi = msg.address >> 32;
kroute.u.msi.data = le32_to_cpu(msg.data);
if (pci_available && kvm_msi_devid_required()) {
kroute.flags = KVM_MSI_VALID_DEVID;
kroute.u.msi.devid = pci_requester_id(dev);
}
if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
return -EINVAL;
}
trace_kvm_irqchip_update_msi_route(virq);
return kvm_update_routing_entry(s, &kroute);
}
static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
EventNotifier *resample, int virq,
bool assign)
{
int fd = event_notifier_get_fd(event);
int rfd = resample ? event_notifier_get_fd(resample) : -1;
struct kvm_irqfd irqfd = {
.fd = fd,
.gsi = virq,
.flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
};
if (rfd != -1) {
KVM: Kick resamplefd for split kernel irqchip This is majorly only for X86 because that's the only one that supports split irqchip for now. When the irqchip is split, we face a dilemma that KVM irqfd will be enabled, however the slow irqchip is still running in the userspace. It means that the resamplefd in the kernel irqfds won't take any effect and it will miss to ack INTx interrupts on EOIs. One example is split irqchip with VFIO INTx, which will break if we use the VFIO INTx fast path. This patch can potentially supports the VFIO fast path again for INTx, that the IRQ delivery will still use the fast path, while we don't need to trap MMIOs in QEMU for the device to emulate the EIOs (see the callers of vfio_eoi() hook). However the EOI of the INTx will still need to be done from the userspace by caching all the resamplefds in QEMU and kick properly for IOAPIC EOI broadcast. This is tricky because in this case the userspace ioapic irr & remote-irr will be bypassed. However such a change will greatly boost performance for assigned devices using INTx irqs (TCP_RR boosts 46% after this patch applied). When the userspace is responsible for the resamplefd kickup, don't register it on the kvm_irqfd anymore, because on newer kernels (after commit 654f1f13ea56, 5.2+) the KVM_IRQFD will fail if with both split irqchip and resamplefd. This will make sure that the fast path will work for all supported kernels. https://patchwork.kernel.org/patch/10738541/#22609933 Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20200318145204.74483-5-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-18 15:52:03 +01:00
assert(assign);
if (kvm_irqchip_is_split()) {
/*
* When the slow irqchip (e.g. IOAPIC) is in the
* userspace, KVM kernel resamplefd will not work because
* the EOI of the interrupt will be delivered to userspace
* instead, so the KVM kernel resamplefd kick will be
* skipped. The userspace here mimics what the kernel
* provides with resamplefd, remember the resamplefd and
* kick it when we receive EOI of this IRQ.
*
* This is hackery because IOAPIC is mostly bypassed
* (except EOI broadcasts) when irqfd is used. However
* this can bring much performance back for split irqchip
* with INTx IRQs (for VFIO, this gives 93% perf of the
* full fast path, which is 46% perf boost comparing to
* the INTx slow path).
*/
kvm_resample_fd_insert(virq, resample);
} else {
irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
irqfd.resamplefd = rfd;
}
} else if (!assign) {
if (kvm_irqchip_is_split()) {
kvm_resample_fd_remove(virq);
}
}
if (!kvm_irqfds_enabled()) {
return -ENOSYS;
}
return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
}
int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
{
struct kvm_irq_routing_entry kroute = {};
int virq;
if (!kvm_gsi_routing_enabled()) {
return -ENOSYS;
}
virq = kvm_irqchip_get_virq(s);
if (virq < 0) {
return virq;
}
kroute.gsi = virq;
kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
kroute.flags = 0;
kroute.u.adapter.summary_addr = adapter->summary_addr;
kroute.u.adapter.ind_addr = adapter->ind_addr;
kroute.u.adapter.summary_offset = adapter->summary_offset;
kroute.u.adapter.ind_offset = adapter->ind_offset;
kroute.u.adapter.adapter_id = adapter->adapter_id;
kvm_add_routing_entry(s, &kroute);
return virq;
}
int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
{
struct kvm_irq_routing_entry kroute = {};
int virq;
if (!kvm_gsi_routing_enabled()) {
return -ENOSYS;
}
if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
return -ENOSYS;
}
virq = kvm_irqchip_get_virq(s);
if (virq < 0) {
return virq;
}
kroute.gsi = virq;
kroute.type = KVM_IRQ_ROUTING_HV_SINT;
kroute.flags = 0;
kroute.u.hv_sint.vcpu = vcpu;
kroute.u.hv_sint.sint = sint;
kvm_add_routing_entry(s, &kroute);
kvm_irqchip_commit_routes(s);
return virq;
}
#else /* !KVM_CAP_IRQ_ROUTING */
void kvm_init_irq_routing(KVMState *s)
{
}
void kvm_irqchip_release_virq(KVMState *s, int virq)
{
}
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
{
abort();
}
int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
{
return -ENOSYS;
}
int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
{
return -ENOSYS;
}
int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
{
return -ENOSYS;
}
static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
EventNotifier *resample, int virq,
bool assign)
{
abort();
}
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
{
return -ENOSYS;
}
#endif /* !KVM_CAP_IRQ_ROUTING */
int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
EventNotifier *rn, int virq)
{
return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
}
int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
int virq)
{
return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
}
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
EventNotifier *rn, qemu_irq irq)
{
gpointer key, gsi;
gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
if (!found) {
return -ENXIO;
}
return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
}
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
qemu_irq irq)
{
gpointer key, gsi;
gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
if (!found) {
return -ENXIO;
}
return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
}
void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
{
g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
}
static void kvm_irqchip_create(KVMState *s)
{
int ret;
assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
;
} else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
if (ret < 0) {
fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
exit(1);
}
} else {
return;
}
/* First probe and see if there's a arch-specific hook to create the
* in-kernel irqchip for us */
ret = kvm_arch_irqchip_create(s);
if (ret == 0) {
if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
error_report("Split IRQ chip mode not supported.");
exit(1);
} else {
ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
}
}
if (ret < 0) {
fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
exit(1);
}
kvm_kernel_irqchip = true;
/* If we have an in-kernel IRQ chip then we must have asynchronous
* interrupt delivery (though the reverse is not necessarily true)
*/
kvm_async_interrupts_allowed = true;
kvm_halt_in_kernel_allowed = true;
kvm_init_irq_routing(s);
s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
}
/* Find number of supported CPUs using the recommended
* procedure from the kernel API documentation to cope with
* older kernels that may be missing capabilities.
*/
static int kvm_recommended_vcpus(KVMState *s)
{
kvm: check KVM_CAP_NR_VCPUS with kvm_vm_check_extension() On a modern server-class ppc host with the following CPU topology: Architecture: ppc64le Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0,8,16,24 Off-line CPU(s) list: 1-7,9-15,17-23,25-31 Thread(s) per core: 1 If both KVM PR and KVM HV loaded and we pass: -machine pseries,accel=kvm,kvm-type=PR -smp 8 We expect QEMU to warn that this exceeds the number of online CPUs: Warning: Number of SMP cpus requested (8) exceeds the recommended cpus supported by KVM (4) Warning: Number of hotpluggable cpus requested (8) exceeds the recommended cpus supported by KVM (4) but nothing is printed... This happens because on ppc the KVM_CAP_NR_VCPUS capability is VM specific ndreally depends on the KVM type, but we currently use it as a global capability. And KVM returns a fallback value based on KVM HV being present. Maybe KVM on POWER shouldn't presume anything as long as it doesn't have a VM, but in all cases, we should call KVM_CREATE_VM first and use KVM_CAP_NR_VCPUS as a VM capability. This patch hence changes kvm_recommended_vcpus() accordingly and moves the sanity checking of smp_cpus after the VM creation. It is okay for the other archs that also implement KVM_CAP_NR_VCPUS, ie, mips, s390, x86 and arm, because they don't depend on the VM being created or not. Signed-off-by: Greg Kurz <groug@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Thomas Huth <thuth@redhat.com> Message-Id: <150600966286.30533.10909862523552370889.stgit@bahia.lan> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-09-21 18:01:02 +02:00
int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
return (ret) ? ret : 4;
}
static int kvm_max_vcpus(KVMState *s)
{
int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
return (ret) ? ret : kvm_recommended_vcpus(s);
}
static int kvm_max_vcpu_id(KVMState *s)
{
int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
return (ret) ? ret : kvm_max_vcpus(s);
}
bool kvm_vcpu_id_is_valid(int vcpu_id)
{
KVMState *s = KVM_STATE(current_accel());
return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
}
bool kvm_dirty_ring_enabled(void)
{
return kvm_state->kvm_dirty_ring_size ? true : false;
}
static void query_stats_cb(StatsResultList **result, StatsTarget target,
strList *names, strList *targets, Error **errp);
static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
uint32_t kvm_dirty_ring_size(void)
{
return kvm_state->kvm_dirty_ring_size;
}
static int kvm_init(MachineState *ms)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
static const char upgrade_note[] =
"Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
"(see http://sourceforge.net/projects/kvm).\n";
const struct {
const char *name;
int num;
} num_cpus[] = {
{ "SMP", ms->smp.cpus },
{ "hotpluggable", ms->smp.max_cpus },
{ /* end of list */ }
}, *nc = num_cpus;
int soft_vcpus_limit, hard_vcpus_limit;
KVMState *s;
const KVMCapabilityInfo *missing_cap;
int ret;
int type = 0;
uint64_t dirty_log_manual_caps;
qemu_mutex_init(&kml_slots_lock);
s = KVM_STATE(ms->accelerator);
/*
* On systems where the kernel can support different base page
* sizes, host page size may be different from TARGET_PAGE_SIZE,
* even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
* page size for the system though.
*/
assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
s->sigmask_len = 8;
accel_blocker_init();
#ifdef KVM_CAP_SET_GUEST_DEBUG
QTAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
QLIST_INIT(&s->kvm_parked_vcpus);
s->fd = qemu_open_old("/dev/kvm", O_RDWR);
if (s->fd == -1) {
fprintf(stderr, "Could not access KVM kernel module: %m\n");
ret = -errno;
goto err;
}
ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
if (ret < KVM_API_VERSION) {
if (ret >= 0) {
ret = -EINVAL;
}
fprintf(stderr, "kvm version too old\n");
goto err;
}
if (ret > KVM_API_VERSION) {
ret = -EINVAL;
fprintf(stderr, "kvm version not supported\n");
goto err;
}
kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
/* If unspecified, use the default value */
if (!s->nr_slots) {
s->nr_slots = 32;
}
s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
if (s->nr_as <= 1) {
s->nr_as = 1;
}
s->as = g_new0(struct KVMAs, s->nr_as);
if (object_property_find(OBJECT(current_machine), "kvm-type")) {
g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
"kvm-type",
&error_abort);
type = mc->kvm_type(ms, kvm_type);
} else if (mc->kvm_type) {
type = mc->kvm_type(ms, NULL);
}
do {
ret = kvm_ioctl(s, KVM_CREATE_VM, type);
} while (ret == -EINTR);
if (ret < 0) {
fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
strerror(-ret));
#ifdef TARGET_S390X
if (ret == -EINVAL) {
fprintf(stderr,
"Host kernel setup problem detected. Please verify:\n");
fprintf(stderr, "- for kernels supporting the switch_amode or"
" user_mode parameters, whether\n");
fprintf(stderr,
" user space is running in primary address space\n");
fprintf(stderr,
"- for kernels supporting the vm.allocate_pgste sysctl, "
"whether it is enabled\n");
}
#elif defined(TARGET_PPC)
if (ret == -EINVAL) {
fprintf(stderr,
"PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
(type == 2) ? "pr" : "hv");
}
#endif
goto err;
}
s->vmfd = ret;
kvm: check KVM_CAP_NR_VCPUS with kvm_vm_check_extension() On a modern server-class ppc host with the following CPU topology: Architecture: ppc64le Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0,8,16,24 Off-line CPU(s) list: 1-7,9-15,17-23,25-31 Thread(s) per core: 1 If both KVM PR and KVM HV loaded and we pass: -machine pseries,accel=kvm,kvm-type=PR -smp 8 We expect QEMU to warn that this exceeds the number of online CPUs: Warning: Number of SMP cpus requested (8) exceeds the recommended cpus supported by KVM (4) Warning: Number of hotpluggable cpus requested (8) exceeds the recommended cpus supported by KVM (4) but nothing is printed... This happens because on ppc the KVM_CAP_NR_VCPUS capability is VM specific ndreally depends on the KVM type, but we currently use it as a global capability. And KVM returns a fallback value based on KVM HV being present. Maybe KVM on POWER shouldn't presume anything as long as it doesn't have a VM, but in all cases, we should call KVM_CREATE_VM first and use KVM_CAP_NR_VCPUS as a VM capability. This patch hence changes kvm_recommended_vcpus() accordingly and moves the sanity checking of smp_cpus after the VM creation. It is okay for the other archs that also implement KVM_CAP_NR_VCPUS, ie, mips, s390, x86 and arm, because they don't depend on the VM being created or not. Signed-off-by: Greg Kurz <groug@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Thomas Huth <thuth@redhat.com> Message-Id: <150600966286.30533.10909862523552370889.stgit@bahia.lan> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-09-21 18:01:02 +02:00
/* check the vcpu limits */
soft_vcpus_limit = kvm_recommended_vcpus(s);
hard_vcpus_limit = kvm_max_vcpus(s);
while (nc->name) {
if (nc->num > soft_vcpus_limit) {
warn_report("Number of %s cpus requested (%d) exceeds "
"the recommended cpus supported by KVM (%d)",
nc->name, nc->num, soft_vcpus_limit);
if (nc->num > hard_vcpus_limit) {
fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
"the maximum cpus supported by KVM (%d)\n",
nc->name, nc->num, hard_vcpus_limit);
exit(1);
}
}
nc++;
}
missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
if (!missing_cap) {
missing_cap =
kvm_check_extension_list(s, kvm_arch_required_capabilities);
}
if (missing_cap) {
ret = -EINVAL;
fprintf(stderr, "kvm does not support %s\n%s",
missing_cap->name, upgrade_note);
goto err;
}
s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
s->coalesced_pio = s->coalesced_mmio &&
kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
/*
* Enable KVM dirty ring if supported, otherwise fall back to
* dirty logging mode
*/
ret = kvm_dirty_ring_init(s);
if (ret < 0) {
goto err;
}
/*
* KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
* enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
* page is wr-protected initially, which is against how kvm dirty ring is
* usage - kvm dirty ring requires all pages are wr-protected at the very
* beginning. Enabling this feature for dirty ring causes data corruption.
*
* TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
* we may expect a higher stall time when starting the migration. In the
* future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
* instead of clearing dirty bit, it can be a way to explicitly wr-protect
* guest pages.
*/
if (!s->kvm_dirty_ring_size) {
dirty_log_manual_caps =
kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
KVM_DIRTY_LOG_INITIALLY_SET);
s->manual_dirty_log_protect = dirty_log_manual_caps;
if (dirty_log_manual_caps) {
ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
dirty_log_manual_caps);
if (ret) {
warn_report("Trying to enable capability %"PRIu64" of "
"KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
"Falling back to the legacy mode. ",
dirty_log_manual_caps);
s->manual_dirty_log_protect = 0;
}
}
}
#ifdef KVM_CAP_VCPU_EVENTS
s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
#endif
s->robust_singlestep =
kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
#ifdef KVM_CAP_DEBUGREGS
s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
#endif
s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
#ifdef KVM_CAP_IRQ_ROUTING
kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
#endif
s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
s->irq_set_ioctl = KVM_IRQ_LINE;
if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
}
kvm_readonly_mem_allowed =
(kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
kvm_eventfds_allowed =
(kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
kvm_irqfds_allowed =
(kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
kvm_resamplefds_allowed =
(kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
kvm_vm_attributes_allowed =
(kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
kvm_ioeventfd_any_length_allowed =
(kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
#ifdef KVM_CAP_SET_GUEST_DEBUG
kvm_has_guest_debug =
(kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
#endif
kvm_sstep_flags = 0;
if (kvm_has_guest_debug) {
kvm_sstep_flags = SSTEP_ENABLE;
#if defined KVM_CAP_SET_GUEST_DEBUG2
int guest_debug_flags =
kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
kvm_sstep_flags |= SSTEP_NOIRQ;
}
#endif
}
kvm_state = s;
ret = kvm_arch_init(ms, s);
if (ret < 0) {
goto err;
}
if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
}
qemu_register_reset(kvm_unpoison_all, NULL);
if (s->kernel_irqchip_allowed) {
kvm_irqchip_create(s);
}
if (kvm_eventfds_allowed) {
s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
}
s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
kvm_memory_listener_register(s, &s->memory_listener,
&address_space_memory, 0, "kvm-memory");
if (kvm_eventfds_allowed) {
memory_listener_register(&kvm_io_listener,
&address_space_io);
}
memory_listener_register(&kvm_coalesced_pio_listener,
&address_space_io);
s->many_ioeventfds = kvm_check_many_ioeventfds();
s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
if (!s->sync_mmu) {
ret = ram_block_discard_disable(true);
assert(!ret);
}
if (s->kvm_dirty_ring_size) {
ret = kvm_dirty_ring_reaper_init(s);
if (ret) {
goto err;
}
}
if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
query_stats_schemas_cb);
}
return 0;
err:
assert(ret < 0);
if (s->vmfd >= 0) {
close(s->vmfd);
}
if (s->fd != -1) {
close(s->fd);
}
g_free(s->memory_listener.slots);
return ret;
}
void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
{
s->sigmask_len = sigmask_len;
}
static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
int size, uint32_t count)
{
int i;
uint8_t *ptr = data;
for (i = 0; i < count; i++) {
address_space_rw(&address_space_io, port, attrs,
ptr, size,
direction == KVM_EXIT_IO_OUT);
ptr += size;
}
}
static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
{
fprintf(stderr, "KVM internal error. Suberror: %d\n",
run->internal.suberror);
if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
int i;
for (i = 0; i < run->internal.ndata; ++i) {
fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
i, (uint64_t)run->internal.data[i]);
}
}
if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
fprintf(stderr, "emulation failure\n");
if (!kvm_arch_stop_on_emulation_error(cpu)) {
cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
return EXCP_INTERRUPT;
}
}
/* FIXME: Should trigger a qmp message to let management know
* something went wrong.
*/
return -1;
}
void kvm_flush_coalesced_mmio_buffer(void)
{
KVMState *s = kvm_state;
if (s->coalesced_flush_in_progress) {
return;
}
s->coalesced_flush_in_progress = true;
if (s->coalesced_mmio_ring) {
struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
while (ring->first != ring->last) {
struct kvm_coalesced_mmio *ent;
ent = &ring->coalesced_mmio[ring->first];
if (ent->pio == 1) {
Avoid address_space_rw() with a constant is_write argument The address_space_rw() function allows either reads or writes depending on the is_write argument passed to it; this is useful when the direction of the access is determined programmatically (as for instance when handling the KVM_EXIT_MMIO exit reason). Under the hood it just calls either address_space_write() or address_space_read_full(). We also use it a lot with a constant is_write argument, though, which has two issues: * when reading "address_space_rw(..., 1)" this is less immediately clear to the reader as being a write than "address_space_write(...)" * calling address_space_rw() bypasses the optimization in address_space_read() that fast-paths reads of a fixed length This commit was produced with the included Coccinelle script scripts/coccinelle/exec_rw_const.cocci. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> Message-Id: <20200218112457.22712-1-peter.maydell@linaro.org> [PMD: Update macvm_set_cr0() reported by Laurent Vivier] Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2020-02-18 12:24:57 +01:00
address_space_write(&address_space_io, ent->phys_addr,
MEMTXATTRS_UNSPECIFIED, ent->data,
ent->len);
} else {
cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
}
smp_wmb();
ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
}
}
s->coalesced_flush_in_progress = false;
}
bool kvm_cpu_check_are_resettable(void)
{
return kvm_arch_cpu_check_are_resettable();
}
static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
{
if (!cpu->vcpu_dirty) {
kvm_arch_get_registers(cpu);
cpu->vcpu_dirty = true;
}
}
void kvm_cpu_synchronize_state(CPUState *cpu)
{
if (!cpu->vcpu_dirty) {
run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
}
}
static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
KVM: Rework VCPU state writeback API This grand cleanup drops all reset and vmsave/load related synchronization points in favor of four(!) generic hooks: - cpu_synchronize_all_states in qemu_savevm_state_complete (initial sync from kernel before vmsave) - cpu_synchronize_all_post_init in qemu_loadvm_state (writeback after vmload) - cpu_synchronize_all_post_init in main after machine init - cpu_synchronize_all_post_reset in qemu_system_reset (writeback after system reset) These writeback points + the existing one of VCPU exec after cpu_synchronize_state map on three levels of writeback: - KVM_PUT_RUNTIME_STATE (during runtime, other VCPUs continue to run) - KVM_PUT_RESET_STATE (on synchronous system reset, all VCPUs stopped) - KVM_PUT_FULL_STATE (on init or vmload, all VCPUs stopped as well) This level is passed to the arch-specific VCPU state writing function that will decide which concrete substates need to be written. That way, no writer of load, save or reset functions that interact with in-kernel KVM states will ever have to worry about synchronization again. That also means that a lot of reasons for races, segfaults and deadlocks are eliminated. cpu_synchronize_state remains untouched, just as Anthony suggested. We continue to need it before reading or writing of VCPU states that are also tracked by in-kernel KVM subsystems. Consequently, this patch removes many cpu_synchronize_state calls that are now redundant, just like remaining explicit register syncs. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-03-01 19:10:30 +01:00
{
kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
cpu->vcpu_dirty = false;
KVM: Rework VCPU state writeback API This grand cleanup drops all reset and vmsave/load related synchronization points in favor of four(!) generic hooks: - cpu_synchronize_all_states in qemu_savevm_state_complete (initial sync from kernel before vmsave) - cpu_synchronize_all_post_init in qemu_loadvm_state (writeback after vmload) - cpu_synchronize_all_post_init in main after machine init - cpu_synchronize_all_post_reset in qemu_system_reset (writeback after system reset) These writeback points + the existing one of VCPU exec after cpu_synchronize_state map on three levels of writeback: - KVM_PUT_RUNTIME_STATE (during runtime, other VCPUs continue to run) - KVM_PUT_RESET_STATE (on synchronous system reset, all VCPUs stopped) - KVM_PUT_FULL_STATE (on init or vmload, all VCPUs stopped as well) This level is passed to the arch-specific VCPU state writing function that will decide which concrete substates need to be written. That way, no writer of load, save or reset functions that interact with in-kernel KVM states will ever have to worry about synchronization again. That also means that a lot of reasons for races, segfaults and deadlocks are eliminated. cpu_synchronize_state remains untouched, just as Anthony suggested. We continue to need it before reading or writing of VCPU states that are also tracked by in-kernel KVM subsystems. Consequently, this patch removes many cpu_synchronize_state calls that are now redundant, just like remaining explicit register syncs. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-03-01 19:10:30 +01:00
}
void kvm_cpu_synchronize_post_reset(CPUState *cpu)
{
run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
}
static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
KVM: Rework VCPU state writeback API This grand cleanup drops all reset and vmsave/load related synchronization points in favor of four(!) generic hooks: - cpu_synchronize_all_states in qemu_savevm_state_complete (initial sync from kernel before vmsave) - cpu_synchronize_all_post_init in qemu_loadvm_state (writeback after vmload) - cpu_synchronize_all_post_init in main after machine init - cpu_synchronize_all_post_reset in qemu_system_reset (writeback after system reset) These writeback points + the existing one of VCPU exec after cpu_synchronize_state map on three levels of writeback: - KVM_PUT_RUNTIME_STATE (during runtime, other VCPUs continue to run) - KVM_PUT_RESET_STATE (on synchronous system reset, all VCPUs stopped) - KVM_PUT_FULL_STATE (on init or vmload, all VCPUs stopped as well) This level is passed to the arch-specific VCPU state writing function that will decide which concrete substates need to be written. That way, no writer of load, save or reset functions that interact with in-kernel KVM states will ever have to worry about synchronization again. That also means that a lot of reasons for races, segfaults and deadlocks are eliminated. cpu_synchronize_state remains untouched, just as Anthony suggested. We continue to need it before reading or writing of VCPU states that are also tracked by in-kernel KVM subsystems. Consequently, this patch removes many cpu_synchronize_state calls that are now redundant, just like remaining explicit register syncs. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-03-01 19:10:30 +01:00
{
kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
cpu->vcpu_dirty = false;
KVM: Rework VCPU state writeback API This grand cleanup drops all reset and vmsave/load related synchronization points in favor of four(!) generic hooks: - cpu_synchronize_all_states in qemu_savevm_state_complete (initial sync from kernel before vmsave) - cpu_synchronize_all_post_init in qemu_loadvm_state (writeback after vmload) - cpu_synchronize_all_post_init in main after machine init - cpu_synchronize_all_post_reset in qemu_system_reset (writeback after system reset) These writeback points + the existing one of VCPU exec after cpu_synchronize_state map on three levels of writeback: - KVM_PUT_RUNTIME_STATE (during runtime, other VCPUs continue to run) - KVM_PUT_RESET_STATE (on synchronous system reset, all VCPUs stopped) - KVM_PUT_FULL_STATE (on init or vmload, all VCPUs stopped as well) This level is passed to the arch-specific VCPU state writing function that will decide which concrete substates need to be written. That way, no writer of load, save or reset functions that interact with in-kernel KVM states will ever have to worry about synchronization again. That also means that a lot of reasons for races, segfaults and deadlocks are eliminated. cpu_synchronize_state remains untouched, just as Anthony suggested. We continue to need it before reading or writing of VCPU states that are also tracked by in-kernel KVM subsystems. Consequently, this patch removes many cpu_synchronize_state calls that are now redundant, just like remaining explicit register syncs. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-03-01 19:10:30 +01:00
}
void kvm_cpu_synchronize_post_init(CPUState *cpu)
{
run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
}
2017-05-26 06:46:28 +02:00
static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
{
cpu->vcpu_dirty = true;
2017-05-26 06:46:28 +02:00
}
void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
{
run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
}
#ifdef KVM_HAVE_MCE_INJECTION
static __thread void *pending_sigbus_addr;
static __thread int pending_sigbus_code;
static __thread bool have_sigbus_pending;
#endif
static void kvm_cpu_kick(CPUState *cpu)
{
qatomic_set(&cpu->kvm_run->immediate_exit, 1);
}
static void kvm_cpu_kick_self(void)
{
if (kvm_immediate_exit) {
kvm_cpu_kick(current_cpu);
} else {
qemu_cpu_kick_self();
}
}
static void kvm_eat_signals(CPUState *cpu)
{
struct timespec ts = { 0, 0 };
siginfo_t siginfo;
sigset_t waitset;
sigset_t chkset;
int r;
if (kvm_immediate_exit) {
qatomic_set(&cpu->kvm_run->immediate_exit, 0);
/* Write kvm_run->immediate_exit before the cpu->exit_request
* write in kvm_cpu_exec.
*/
smp_wmb();
return;
}
sigemptyset(&waitset);
sigaddset(&waitset, SIG_IPI);
do {
r = sigtimedwait(&waitset, &siginfo, &ts);
if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
perror("sigtimedwait");
exit(1);
}
r = sigpending(&chkset);
if (r == -1) {
perror("sigpending");
exit(1);
}
} while (sigismember(&chkset, SIG_IPI));
}
int kvm_cpu_exec(CPUState *cpu)
{
struct kvm_run *run = cpu->kvm_run;
int ret, run_ret;
DPRINTF("kvm_cpu_exec()\n");
if (kvm_arch_process_async_events(cpu)) {
qatomic_set(&cpu->exit_request, 0);
return EXCP_HLT;
}
qemu_mutex_unlock_iothread();
cpu_exec_start(cpu);
do {
MemTxAttrs attrs;
if (cpu->vcpu_dirty) {
kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
cpu->vcpu_dirty = false;
}
kvm_arch_pre_run(cpu, run);
if (qatomic_read(&cpu->exit_request)) {
DPRINTF("interrupt exit requested\n");
/*
* KVM requires us to reenter the kernel after IO exits to complete
* instruction emulation. This self-signal will ensure that we
* leave ASAP again.
*/
kvm_cpu_kick_self();
}
/* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
* Matching barrier in kvm_eat_signals.
*/
smp_rmb();
run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
attrs = kvm_arch_post_run(cpu, run);
#ifdef KVM_HAVE_MCE_INJECTION
if (unlikely(have_sigbus_pending)) {
qemu_mutex_lock_iothread();
kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
pending_sigbus_addr);
have_sigbus_pending = false;
qemu_mutex_unlock_iothread();
}
#endif
if (run_ret < 0) {
if (run_ret == -EINTR || run_ret == -EAGAIN) {
DPRINTF("io window exit\n");
kvm_eat_signals(cpu);
ret = EXCP_INTERRUPT;
break;
}
fprintf(stderr, "error: kvm run failed %s\n",
strerror(-run_ret));
#ifdef TARGET_PPC
if (run_ret == -EBUSY) {
fprintf(stderr,
"This is probably because your SMT is enabled.\n"
"VCPU can only run on primary threads with all "
"secondary threads offline.\n");
}
#endif
ret = -1;
break;
}
trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
switch (run->exit_reason) {
case KVM_EXIT_IO:
DPRINTF("handle_io\n");
/* Called outside BQL */
kvm_handle_io(run->io.port, attrs,
(uint8_t *)run + run->io.data_offset,
run->io.direction,
run->io.size,
run->io.count);
ret = 0;
break;
case KVM_EXIT_MMIO:
DPRINTF("handle_mmio\n");
/* Called outside BQL */
address_space_rw(&address_space_memory,
run->mmio.phys_addr, attrs,
run->mmio.data,
run->mmio.len,
run->mmio.is_write);
ret = 0;
break;
case KVM_EXIT_IRQ_WINDOW_OPEN:
DPRINTF("irq_window_open\n");
ret = EXCP_INTERRUPT;
break;
case KVM_EXIT_SHUTDOWN:
DPRINTF("shutdown\n");
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
ret = EXCP_INTERRUPT;
break;
case KVM_EXIT_UNKNOWN:
fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
(uint64_t)run->hw.hardware_exit_reason);
ret = -1;
break;
case KVM_EXIT_INTERNAL_ERROR:
ret = kvm_handle_internal_error(cpu, run);
break;
case KVM_EXIT_DIRTY_RING_FULL:
/*
* We shouldn't continue if the dirty ring of this vcpu is
* still full. Got kicked by KVM_RESET_DIRTY_RINGS.
*/
trace_kvm_dirty_ring_full(cpu->cpu_index);
qemu_mutex_lock_iothread();
/*
* We throttle vCPU by making it sleep once it exit from kernel
* due to dirty ring full. In the dirtylimit scenario, reaping
* all vCPUs after a single vCPU dirty ring get full result in
* the miss of sleep, so just reap the ring-fulled vCPU.
*/
if (dirtylimit_in_service()) {
kvm_dirty_ring_reap(kvm_state, cpu);
} else {
kvm_dirty_ring_reap(kvm_state, NULL);
}
qemu_mutex_unlock_iothread();
dirtylimit_vcpu_execute(cpu);
ret = 0;
break;
case KVM_EXIT_SYSTEM_EVENT:
switch (run->system_event.type) {
case KVM_SYSTEM_EVENT_SHUTDOWN:
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
ret = EXCP_INTERRUPT;
break;
case KVM_SYSTEM_EVENT_RESET:
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
ret = EXCP_INTERRUPT;
break;
case KVM_SYSTEM_EVENT_CRASH:
kvm_cpu_synchronize_state(cpu);
qemu_mutex_lock_iothread();
qemu_system_guest_panicked(cpu_get_crash_info(cpu));
qemu_mutex_unlock_iothread();
ret = 0;
break;
default:
DPRINTF("kvm_arch_handle_exit\n");
ret = kvm_arch_handle_exit(cpu, run);
break;
}
break;
default:
DPRINTF("kvm_arch_handle_exit\n");
ret = kvm_arch_handle_exit(cpu, run);
break;
}
} while (ret == 0);
cpu_exec_end(cpu);
qemu_mutex_lock_iothread();
if (ret < 0) {
cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
vm_stop(RUN_STATE_INTERNAL_ERROR);
}
qatomic_set(&cpu->exit_request, 0);
return ret;
}
int kvm_ioctl(KVMState *s, int type, ...)
{
int ret;
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
trace_kvm_ioctl(type, arg);
ret = ioctl(s->fd, type, arg);
if (ret == -1) {
ret = -errno;
}
return ret;
}
int kvm_vm_ioctl(KVMState *s, int type, ...)
{
int ret;
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
trace_kvm_vm_ioctl(type, arg);
accel_ioctl_begin();
ret = ioctl(s->vmfd, type, arg);
accel_ioctl_end();
if (ret == -1) {
ret = -errno;
}
return ret;
}
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
{
int ret;
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
accel_cpu_ioctl_begin(cpu);
ret = ioctl(cpu->kvm_fd, type, arg);
accel_cpu_ioctl_end(cpu);
if (ret == -1) {
ret = -errno;
}
return ret;
}
int kvm_device_ioctl(int fd, int type, ...)
{
int ret;
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
trace_kvm_device_ioctl(fd, type, arg);
accel_ioctl_begin();
ret = ioctl(fd, type, arg);
accel_ioctl_end();
if (ret == -1) {
ret = -errno;
}
return ret;
}
int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
{
int ret;
struct kvm_device_attr attribute = {
.group = group,
.attr = attr,
};
if (!kvm_vm_attributes_allowed) {
return 0;
}
ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
/* kvm returns 0 on success for HAS_DEVICE_ATTR */
return ret ? 0 : 1;
}
int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
{
struct kvm_device_attr attribute = {
.group = group,
.attr = attr,
.flags = 0,
};
return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
}
int kvm_device_access(int fd, int group, uint64_t attr,
void *val, bool write, Error **errp)
{
struct kvm_device_attr kvmattr;
int err;
kvmattr.flags = 0;
kvmattr.group = group;
kvmattr.attr = attr;
kvmattr.addr = (uintptr_t)val;
err = kvm_device_ioctl(fd,
write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
&kvmattr);
if (err < 0) {
error_setg_errno(errp, -err,
"KVM_%s_DEVICE_ATTR failed: Group %d "
"attr 0x%016" PRIx64,
write ? "SET" : "GET", group, attr);
}
return err;
}
bool kvm_has_sync_mmu(void)
{
return kvm_state->sync_mmu;
}
int kvm_has_vcpu_events(void)
{
return kvm_state->vcpu_events;
}
int kvm_has_robust_singlestep(void)
{
return kvm_state->robust_singlestep;
}
int kvm_has_debugregs(void)
{
return kvm_state->debugregs;
}
int kvm_max_nested_state_length(void)
{
return kvm_state->max_nested_state_len;
}
int kvm_has_many_ioeventfds(void)
{
if (!kvm_enabled()) {
return 0;
}
return kvm_state->many_ioeventfds;
}
int kvm_has_gsi_routing(void)
{
#ifdef KVM_CAP_IRQ_ROUTING
return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
#else
return false;
#endif
}
int kvm_has_intx_set_mask(void)
{
return kvm_state->intx_set_mask;
}
bool kvm_arm_supports_user_irq(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
}
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
target_ulong pc)
{
struct kvm_sw_breakpoint *bp;
QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
if (bp->pc == pc) {
return bp;
}
}
return NULL;
}
int kvm_sw_breakpoints_active(CPUState *cpu)
{
return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
}
struct kvm_set_guest_debug_data {
struct kvm_guest_debug dbg;
int err;
};
static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
{
struct kvm_set_guest_debug_data *dbg_data =
(struct kvm_set_guest_debug_data *) data.host_ptr;
dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
&dbg_data->dbg);
}
int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
{
struct kvm_set_guest_debug_data data;
data.dbg.control = reinject_trap;
if (cpu->singlestep_enabled) {
data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
}
}
kvm_arch_update_guest_debug(cpu, &data.dbg);
run_on_cpu(cpu, kvm_invoke_set_guest_debug,
RUN_ON_CPU_HOST_PTR(&data));
return data.err;
}
bool kvm_supports_guest_debug(void)
{
/* probed during kvm_init() */
return kvm_has_guest_debug;
}
int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
{
struct kvm_sw_breakpoint *bp;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(cpu, addr);
if (bp) {
bp->use_count++;
return 0;
}
bp = g_new(struct kvm_sw_breakpoint, 1);
bp->pc = addr;
bp->use_count = 1;
err = kvm_arch_insert_sw_breakpoint(cpu, bp);
if (err) {
g_free(bp);
return err;
}
QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
} else {
err = kvm_arch_insert_hw_breakpoint(addr, len, type);
if (err) {
return err;
}
}
CPU_FOREACH(cpu) {
err = kvm_update_guest_debug(cpu, 0);
if (err) {
return err;
}
}
return 0;
}
int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
{
struct kvm_sw_breakpoint *bp;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(cpu, addr);
if (!bp) {
return -ENOENT;
}
if (bp->use_count > 1) {
bp->use_count--;
return 0;
}
err = kvm_arch_remove_sw_breakpoint(cpu, bp);
if (err) {
return err;
}
QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
g_free(bp);
} else {
err = kvm_arch_remove_hw_breakpoint(addr, len, type);
if (err) {
return err;
}
}
CPU_FOREACH(cpu) {
err = kvm_update_guest_debug(cpu, 0);
if (err) {
return err;
}
}
return 0;
}
void kvm_remove_all_breakpoints(CPUState *cpu)
{
struct kvm_sw_breakpoint *bp, *next;
KVMState *s = cpu->kvm_state;
CPUState *tmpcpu;
QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
CPU_FOREACH(tmpcpu) {
if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
break;
}
}
}
QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
g_free(bp);
}
kvm_arch_remove_all_hw_breakpoints();
CPU_FOREACH(cpu) {
kvm_update_guest_debug(cpu, 0);
}
}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
{
KVMState *s = kvm_state;
struct kvm_signal_mask *sigmask;
int r;
sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
sigmask->len = s->sigmask_len;
memcpy(sigmask->sigset, sigset, sizeof(*sigset));
r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
g_free(sigmask);
return r;
}
static void kvm_ipi_signal(int sig)
{
if (current_cpu) {
assert(kvm_immediate_exit);
kvm_cpu_kick(current_cpu);
}
}
void kvm_init_cpu_signals(CPUState *cpu)
{
int r;
sigset_t set;
struct sigaction sigact;
memset(&sigact, 0, sizeof(sigact));
sigact.sa_handler = kvm_ipi_signal;
sigaction(SIG_IPI, &sigact, NULL);
pthread_sigmask(SIG_BLOCK, NULL, &set);
#if defined KVM_HAVE_MCE_INJECTION
sigdelset(&set, SIGBUS);
pthread_sigmask(SIG_SETMASK, &set, NULL);
#endif
sigdelset(&set, SIG_IPI);
if (kvm_immediate_exit) {
r = pthread_sigmask(SIG_SETMASK, &set, NULL);
} else {
r = kvm_set_signal_mask(cpu, &set);
}
if (r) {
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
exit(1);
}
}
/* Called asynchronously in VCPU thread. */
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
{
#ifdef KVM_HAVE_MCE_INJECTION
if (have_sigbus_pending) {
return 1;
}
have_sigbus_pending = true;
pending_sigbus_addr = addr;
pending_sigbus_code = code;
qatomic_set(&cpu->exit_request, 1);
return 0;
#else
return 1;
#endif
}
/* Called synchronously (via signalfd) in main thread. */
int kvm_on_sigbus(int code, void *addr)
{
#ifdef KVM_HAVE_MCE_INJECTION
/* Action required MCE kills the process if SIGBUS is blocked. Because
* that's what happens in the I/O thread, where we handle MCE via signalfd,
* we can only get action optional here.
*/
assert(code != BUS_MCEERR_AR);
kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
return 0;
#else
return 1;
#endif
}
int kvm_create_device(KVMState *s, uint64_t type, bool test)
{
int ret;
struct kvm_create_device create_dev;
create_dev.type = type;
create_dev.fd = -1;
create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
return -ENOTSUP;
}
ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
if (ret) {
return ret;
}
return test ? 0 : create_dev.fd;
}
bool kvm_device_supported(int vmfd, uint64_t type)
{
struct kvm_create_device create_dev = {
.type = type,
.fd = -1,
.flags = KVM_CREATE_DEVICE_TEST,
};
if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
return false;
}
return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
}
int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
{
struct kvm_one_reg reg;
int r;
reg.id = id;
reg.addr = (uintptr_t) source;
r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (r) {
trace_kvm_failed_reg_set(id, strerror(-r));
}
return r;
}
int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
{
struct kvm_one_reg reg;
int r;
reg.id = id;
reg.addr = (uintptr_t) target;
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r) {
trace_kvm_failed_reg_get(id, strerror(-r));
}
return r;
}
static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
hwaddr start_addr, hwaddr size)
{
KVMState *kvm = KVM_STATE(ms->accelerator);
int i;
for (i = 0; i < kvm->nr_as; ++i) {
if (kvm->as[i].as == as && kvm->as[i].ml) {
size = MIN(kvm_max_slot_size, size);
return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
start_addr, size);
}
}
return false;
}
static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
KVMState *s = KVM_STATE(obj);
int64_t value = s->kvm_shadow_mem;
visit_type_int(v, name, &value, errp);
}
static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
KVMState *s = KVM_STATE(obj);
int64_t value;
if (s->fd != -1) {
error_setg(errp, "Cannot set properties after the accelerator has been initialized");
return;
}
error: Eliminate error_propagate() with Coccinelle, part 1 When all we do with an Error we receive into a local variable is propagating to somewhere else, we can just as well receive it there right away. Convert if (!foo(..., &err)) { ... error_propagate(errp, err); ... return ... } to if (!foo(..., errp)) { ... ... return ... } where nothing else needs @err. Coccinelle script: @rule1 forall@ identifier fun, err, errp, lbl; expression list args, args2; binary operator op; constant c1, c2; symbol false; @@ if ( ( - fun(args, &err, args2) + fun(args, errp, args2) | - !fun(args, &err, args2) + !fun(args, errp, args2) | - fun(args, &err, args2) op c1 + fun(args, errp, args2) op c1 ) ) { ... when != err when != lbl: when strict - error_propagate(errp, err); ... when != err ( return; | return c2; | return false; ) } @rule2 forall@ identifier fun, err, errp, lbl; expression list args, args2; expression var; binary operator op; constant c1, c2; symbol false; @@ - var = fun(args, &err, args2); + var = fun(args, errp, args2); ... when != err if ( ( var | !var | var op c1 ) ) { ... when != err when != lbl: when strict - error_propagate(errp, err); ... when != err ( return; | return c2; | return false; | return var; ) } @depends on rule1 || rule2@ identifier err; @@ - Error *err = NULL; ... when != err Not exactly elegant, I'm afraid. The "when != lbl:" is necessary to avoid transforming if (fun(args, &err)) { goto out } ... out: error_propagate(errp, err); even though other paths to label out still need the error_propagate(). For an actual example, see sclp_realize(). Without the "when strict", Coccinelle transforms vfio_msix_setup(), incorrectly. I don't know what exactly "when strict" does, only that it helps here. The match of return is narrower than what I want, but I can't figure out how to express "return where the operand doesn't use @err". For an example where it's too narrow, see vfio_intx_enable(). Silently fails to convert hw/arm/armsse.c, because Coccinelle gets confused by ARMSSE being used both as typedef and function-like macro there. Converted manually. Line breaks tidied up manually. One nested declaration of @local_err deleted manually. Preexisting unwanted blank line dropped in hw/riscv/sifive_e.c. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Message-Id: <20200707160613.848843-35-armbru@redhat.com>
2020-07-07 18:06:02 +02:00
if (!visit_type_int(v, name, &value, errp)) {
return;
}
s->kvm_shadow_mem = value;
}
static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
KVMState *s = KVM_STATE(obj);
OnOffSplit mode;
if (s->fd != -1) {
error_setg(errp, "Cannot set properties after the accelerator has been initialized");
return;
}
if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
return;
}
switch (mode) {
case ON_OFF_SPLIT_ON:
s->kernel_irqchip_allowed = true;
s->kernel_irqchip_required = true;
s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
break;
case ON_OFF_SPLIT_OFF:
s->kernel_irqchip_allowed = false;
s->kernel_irqchip_required = false;
s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
break;
case ON_OFF_SPLIT_SPLIT:
s->kernel_irqchip_allowed = true;
s->kernel_irqchip_required = true;
s->kernel_irqchip_split = ON_OFF_AUTO_ON;
break;
default:
/* The value was checked in visit_type_OnOffSplit() above. If
* we get here, then something is wrong in QEMU.
*/
abort();
}
}
bool kvm_kernel_irqchip_allowed(void)
{
return kvm_state->kernel_irqchip_allowed;
}
bool kvm_kernel_irqchip_required(void)
{
return kvm_state->kernel_irqchip_required;
}
bool kvm_kernel_irqchip_split(void)
{
return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
}
static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
KVMState *s = KVM_STATE(obj);
uint32_t value = s->kvm_dirty_ring_size;
visit_type_uint32(v, name, &value, errp);
}
static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
KVMState *s = KVM_STATE(obj);
uint32_t value;
if (s->fd != -1) {
error_setg(errp, "Cannot set properties after the accelerator has been initialized");
return;
}
if (!visit_type_uint32(v, name, &value, errp)) {
return;
}
if (value & (value - 1)) {
error_setg(errp, "dirty-ring-size must be a power of two.");
return;
}
s->kvm_dirty_ring_size = value;
}
static void kvm_accel_instance_init(Object *obj)
{
KVMState *s = KVM_STATE(obj);
s->fd = -1;
s->vmfd = -1;
s->kvm_shadow_mem = -1;
s->kernel_irqchip_allowed = true;
s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
/* KVM dirty ring is by default off */
s->kvm_dirty_ring_size = 0;
s->kvm_dirty_ring_with_bitmap = false;
i386: add notify VM exit support There are cases that malicious virtual machine can cause CPU stuck (due to event windows don't open up), e.g., infinite loop in microcode when nested #AC (CVE-2015-5307). No event window means no event (NMI, SMI and IRQ) can be delivered. It leads the CPU to be unavailable to host or other VMs. Notify VM exit is introduced to mitigate such kind of attacks, which will generate a VM exit if no event window occurs in VM non-root mode for a specified amount of time (notify window). A new KVM capability KVM_CAP_X86_NOTIFY_VMEXIT is exposed to user space so that the user can query the capability and set the expected notify window when creating VMs. The format of the argument when enabling this capability is as follows: Bit 63:32 - notify window specified in qemu command Bit 31:0 - some flags (e.g. KVM_X86_NOTIFY_VMEXIT_ENABLED is set to enable the feature.) Users can configure the feature by a new (x86 only) accel property: qemu -accel kvm,notify-vmexit=run|internal-error|disable,notify-window=n The default option of notify-vmexit is run, which will enable the capability and do nothing if the exit happens. The internal-error option raises a KVM internal error if it happens. The disable option does not enable the capability. The default value of notify-window is 0. It is valid only when notify-vmexit is not disabled. The valid range of notify-window is non-negative. It is even safe to set it to zero since there's an internal hardware threshold to be added to ensure no false positive. Because a notify VM exit may happen with VM_CONTEXT_INVALID set in exit qualification (no cases are anticipated that would set this bit), which means VM context is corrupted. It would be reflected in the flags of KVM_EXIT_NOTIFY exit. If KVM_NOTIFY_CONTEXT_INVALID bit is set, raise a KVM internal error unconditionally. Acked-by: Peter Xu <peterx@redhat.com> Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com> Message-Id: <20220929072014.20705-5-chenyi.qiang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-09-29 09:20:14 +02:00
s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
s->notify_window = 0;
s->xen_version = 0;
s->xen_gnttab_max_frames = 64;
s->xen_evtchn_max_pirq = 256;
}
/**
* kvm_gdbstub_sstep_flags():
*
* Returns: SSTEP_* flags that KVM supports for guest debug. The
* support is probed during kvm_init()
*/
static int kvm_gdbstub_sstep_flags(void)
{
return kvm_sstep_flags;
}
static void kvm_accel_class_init(ObjectClass *oc, void *data)
{
AccelClass *ac = ACCEL_CLASS(oc);
ac->name = "KVM";
ac->init_machine = kvm_init;
ac->has_memory = kvm_accel_has_memory;
ac->allowed = &kvm_allowed;
ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
object_class_property_add(oc, "kernel-irqchip", "on|off|split",
NULL, kvm_set_kernel_irqchip,
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 17:29:22 +02:00
NULL, NULL);
object_class_property_set_description(oc, "kernel-irqchip",
"Configure KVM in-kernel irqchip");
object_class_property_add(oc, "kvm-shadow-mem", "int",
kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 17:29:22 +02:00
NULL, NULL);
object_class_property_set_description(oc, "kvm-shadow-mem",
"KVM shadow MMU size");
object_class_property_add(oc, "dirty-ring-size", "uint32",
kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
NULL, NULL);
object_class_property_set_description(oc, "dirty-ring-size",
"Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
kvm_arch_accel_class_init(oc);
}
static const TypeInfo kvm_accel_type = {
.name = TYPE_KVM_ACCEL,
.parent = TYPE_ACCEL,
.instance_init = kvm_accel_instance_init,
.class_init = kvm_accel_class_init,
.instance_size = sizeof(KVMState),
};
static void kvm_type_init(void)
{
type_register_static(&kvm_accel_type);
}
type_init(kvm_type_init);
typedef struct StatsArgs {
union StatsResultsType {
StatsResultList **stats;
StatsSchemaList **schema;
} result;
strList *names;
Error **errp;
} StatsArgs;
static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
uint64_t *stats_data,
StatsList *stats_list,
Error **errp)
{
Stats *stats;
uint64List *val_list = NULL;
/* Only add stats that we understand. */
switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
case KVM_STATS_TYPE_CUMULATIVE:
case KVM_STATS_TYPE_INSTANT:
case KVM_STATS_TYPE_PEAK:
case KVM_STATS_TYPE_LINEAR_HIST:
case KVM_STATS_TYPE_LOG_HIST:
break;
default:
return stats_list;
}
switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
case KVM_STATS_UNIT_NONE:
case KVM_STATS_UNIT_BYTES:
case KVM_STATS_UNIT_CYCLES:
case KVM_STATS_UNIT_SECONDS:
case KVM_STATS_UNIT_BOOLEAN:
break;
default:
return stats_list;
}
switch (pdesc->flags & KVM_STATS_BASE_MASK) {
case KVM_STATS_BASE_POW10:
case KVM_STATS_BASE_POW2:
break;
default:
return stats_list;
}
/* Alloc and populate data list */
stats = g_new0(Stats, 1);
stats->name = g_strdup(pdesc->name);
stats->value = g_new0(StatsValue, 1);;
if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
stats->value->u.boolean = *stats_data;
stats->value->type = QTYPE_QBOOL;
} else if (pdesc->size == 1) {
stats->value->u.scalar = *stats_data;
stats->value->type = QTYPE_QNUM;
} else {
int i;
for (i = 0; i < pdesc->size; i++) {
QAPI_LIST_PREPEND(val_list, stats_data[i]);
}
stats->value->u.list = val_list;
stats->value->type = QTYPE_QLIST;
}
QAPI_LIST_PREPEND(stats_list, stats);
return stats_list;
}
static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
StatsSchemaValueList *list,
Error **errp)
{
StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
schema_entry->value = g_new0(StatsSchemaValue, 1);
switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
case KVM_STATS_TYPE_CUMULATIVE:
schema_entry->value->type = STATS_TYPE_CUMULATIVE;
break;
case KVM_STATS_TYPE_INSTANT:
schema_entry->value->type = STATS_TYPE_INSTANT;
break;
case KVM_STATS_TYPE_PEAK:
schema_entry->value->type = STATS_TYPE_PEAK;
break;
case KVM_STATS_TYPE_LINEAR_HIST:
schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
schema_entry->value->bucket_size = pdesc->bucket_size;
schema_entry->value->has_bucket_size = true;
break;
case KVM_STATS_TYPE_LOG_HIST:
schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
break;
default:
goto exit;
}
switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
case KVM_STATS_UNIT_NONE:
break;
case KVM_STATS_UNIT_BOOLEAN:
schema_entry->value->has_unit = true;
schema_entry->value->unit = STATS_UNIT_BOOLEAN;
break;
case KVM_STATS_UNIT_BYTES:
schema_entry->value->has_unit = true;
schema_entry->value->unit = STATS_UNIT_BYTES;
break;
case KVM_STATS_UNIT_CYCLES:
schema_entry->value->has_unit = true;
schema_entry->value->unit = STATS_UNIT_CYCLES;
break;
case KVM_STATS_UNIT_SECONDS:
schema_entry->value->has_unit = true;
schema_entry->value->unit = STATS_UNIT_SECONDS;
break;
default:
goto exit;
}
schema_entry->value->exponent = pdesc->exponent;
if (pdesc->exponent) {
switch (pdesc->flags & KVM_STATS_BASE_MASK) {
case KVM_STATS_BASE_POW10:
schema_entry->value->has_base = true;
schema_entry->value->base = 10;
break;
case KVM_STATS_BASE_POW2:
schema_entry->value->has_base = true;
schema_entry->value->base = 2;
break;
default:
goto exit;
}
}
schema_entry->value->name = g_strdup(pdesc->name);
schema_entry->next = list;
return schema_entry;
exit:
g_free(schema_entry->value);
g_free(schema_entry);
return list;
}
/* Cached stats descriptors */
typedef struct StatsDescriptors {
const char *ident; /* cache key, currently the StatsTarget */
struct kvm_stats_desc *kvm_stats_desc;
struct kvm_stats_header kvm_stats_header;
QTAILQ_ENTRY(StatsDescriptors) next;
} StatsDescriptors;
static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
QTAILQ_HEAD_INITIALIZER(stats_descriptors);
/*
* Return the descriptors for 'target', that either have already been read
* or are retrieved from 'stats_fd'.
*/
static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
Error **errp)
{
StatsDescriptors *descriptors;
const char *ident;
struct kvm_stats_desc *kvm_stats_desc;
struct kvm_stats_header *kvm_stats_header;
size_t size_desc;
ssize_t ret;
ident = StatsTarget_str(target);
QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
if (g_str_equal(descriptors->ident, ident)) {
return descriptors;
}
}
descriptors = g_new0(StatsDescriptors, 1);
/* Read stats header */
kvm_stats_header = &descriptors->kvm_stats_header;
ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
if (ret != sizeof(*kvm_stats_header)) {
error_setg(errp, "KVM stats: failed to read stats header: "
"expected %zu actual %zu",
sizeof(*kvm_stats_header), ret);
g_free(descriptors);
return NULL;
}
size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
/* Read stats descriptors */
kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
ret = pread(stats_fd, kvm_stats_desc,
size_desc * kvm_stats_header->num_desc,
kvm_stats_header->desc_offset);
if (ret != size_desc * kvm_stats_header->num_desc) {
error_setg(errp, "KVM stats: failed to read stats descriptors: "
"expected %zu actual %zu",
size_desc * kvm_stats_header->num_desc, ret);
g_free(descriptors);
g_free(kvm_stats_desc);
return NULL;
}
descriptors->kvm_stats_desc = kvm_stats_desc;
descriptors->ident = ident;
QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
return descriptors;
}
static void query_stats(StatsResultList **result, StatsTarget target,
strList *names, int stats_fd, CPUState *cpu,
Error **errp)
{
struct kvm_stats_desc *kvm_stats_desc;
struct kvm_stats_header *kvm_stats_header;
StatsDescriptors *descriptors;
g_autofree uint64_t *stats_data = NULL;
struct kvm_stats_desc *pdesc;
StatsList *stats_list = NULL;
size_t size_desc, size_data = 0;
ssize_t ret;
int i;
descriptors = find_stats_descriptors(target, stats_fd, errp);
if (!descriptors) {
return;
}
kvm_stats_header = &descriptors->kvm_stats_header;
kvm_stats_desc = descriptors->kvm_stats_desc;
size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
/* Tally the total data size; read schema data */
for (i = 0; i < kvm_stats_header->num_desc; ++i) {
pdesc = (void *)kvm_stats_desc + i * size_desc;
size_data += pdesc->size * sizeof(*stats_data);
}
stats_data = g_malloc0(size_data);
ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
if (ret != size_data) {
error_setg(errp, "KVM stats: failed to read data: "
"expected %zu actual %zu", size_data, ret);
return;
}
for (i = 0; i < kvm_stats_header->num_desc; ++i) {
uint64_t *stats;
pdesc = (void *)kvm_stats_desc + i * size_desc;
/* Add entry to the list */
stats = (void *)stats_data + pdesc->offset;
if (!apply_str_list_filter(pdesc->name, names)) {
continue;
}
stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
}
if (!stats_list) {
return;
}
switch (target) {
case STATS_TARGET_VM:
add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
break;
case STATS_TARGET_VCPU:
add_stats_entry(result, STATS_PROVIDER_KVM,
cpu->parent_obj.canonical_path,
stats_list);
break;
default:
g_assert_not_reached();
}
}
static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
int stats_fd, Error **errp)
{
struct kvm_stats_desc *kvm_stats_desc;
struct kvm_stats_header *kvm_stats_header;
StatsDescriptors *descriptors;
struct kvm_stats_desc *pdesc;
StatsSchemaValueList *stats_list = NULL;
size_t size_desc;
int i;
descriptors = find_stats_descriptors(target, stats_fd, errp);
if (!descriptors) {
return;
}
kvm_stats_header = &descriptors->kvm_stats_header;
kvm_stats_desc = descriptors->kvm_stats_desc;
size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
/* Tally the total data size; read schema data */
for (i = 0; i < kvm_stats_header->num_desc; ++i) {
pdesc = (void *)kvm_stats_desc + i * size_desc;
stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
}
add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
}
static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
{
int stats_fd = cpu->kvm_vcpu_stats_fd;
Error *local_err = NULL;
if (stats_fd == -1) {
error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
error_propagate(kvm_stats_args->errp, local_err);
return;
}
query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
kvm_stats_args->names, stats_fd, cpu,
kvm_stats_args->errp);
}
static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
{
int stats_fd = cpu->kvm_vcpu_stats_fd;
Error *local_err = NULL;
if (stats_fd == -1) {
error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
error_propagate(kvm_stats_args->errp, local_err);
return;
}
query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
kvm_stats_args->errp);
}
static void query_stats_cb(StatsResultList **result, StatsTarget target,
strList *names, strList *targets, Error **errp)
{
KVMState *s = kvm_state;
CPUState *cpu;
int stats_fd;
switch (target) {
case STATS_TARGET_VM:
{
stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
if (stats_fd == -1) {
error_setg_errno(errp, errno, "KVM stats: ioctl failed");
return;
}
query_stats(result, target, names, stats_fd, NULL, errp);
close(stats_fd);
break;
}
case STATS_TARGET_VCPU:
{
StatsArgs stats_args;
stats_args.result.stats = result;
stats_args.names = names;
stats_args.errp = errp;
CPU_FOREACH(cpu) {
if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
continue;
}
query_stats_vcpu(cpu, &stats_args);
}
break;
}
default:
break;
}
}
void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
{
StatsArgs stats_args;
KVMState *s = kvm_state;
int stats_fd;
stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
if (stats_fd == -1) {
error_setg_errno(errp, errno, "KVM stats: ioctl failed");
return;
}
query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
close(stats_fd);
if (first_cpu) {
stats_args.result.schema = result;
stats_args.errp = errp;
query_stats_schema_vcpu(first_cpu, &stats_args);
}
}