2003-08-09 01:58:05 +02:00
|
|
|
/*
|
|
|
|
* Software MMU support
|
2007-09-16 23:08:06 +02:00
|
|
|
*
|
2011-09-21 22:00:18 +02:00
|
|
|
* Generate helpers used by TCG for qemu_ld/st ops and code load
|
|
|
|
* functions.
|
|
|
|
*
|
|
|
|
* Included from target op helpers and exec.c.
|
|
|
|
*
|
2003-08-09 01:58:05 +02:00
|
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
2009-07-16 22:47:01 +02:00
|
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
2003-08-09 01:58:05 +02:00
|
|
|
*/
|
2012-12-17 18:20:00 +01:00
|
|
|
#include "qemu/timer.h"
|
2013-11-07 19:55:56 +01:00
|
|
|
#include "exec/address-spaces.h"
|
2012-12-17 18:19:49 +01:00
|
|
|
#include "exec/memory.h"
|
2010-03-29 21:24:00 +02:00
|
|
|
|
2003-08-09 01:58:05 +02:00
|
|
|
#define DATA_SIZE (1 << SHIFT)
|
|
|
|
|
|
|
|
#if DATA_SIZE == 8
|
|
|
|
#define SUFFIX q
|
2013-08-27 20:31:48 +02:00
|
|
|
#define LSUFFIX q
|
2013-08-27 23:09:14 +02:00
|
|
|
#define SDATA_TYPE int64_t
|
2014-01-18 14:47:23 +01:00
|
|
|
#define DATA_TYPE uint64_t
|
2003-08-09 01:58:05 +02:00
|
|
|
#elif DATA_SIZE == 4
|
|
|
|
#define SUFFIX l
|
2013-08-27 20:31:48 +02:00
|
|
|
#define LSUFFIX l
|
2013-08-27 23:09:14 +02:00
|
|
|
#define SDATA_TYPE int32_t
|
2014-01-18 14:47:23 +01:00
|
|
|
#define DATA_TYPE uint32_t
|
2003-08-09 01:58:05 +02:00
|
|
|
#elif DATA_SIZE == 2
|
|
|
|
#define SUFFIX w
|
2013-08-27 20:31:48 +02:00
|
|
|
#define LSUFFIX uw
|
2013-08-27 23:09:14 +02:00
|
|
|
#define SDATA_TYPE int16_t
|
2014-01-18 14:47:23 +01:00
|
|
|
#define DATA_TYPE uint16_t
|
2003-08-09 01:58:05 +02:00
|
|
|
#elif DATA_SIZE == 1
|
|
|
|
#define SUFFIX b
|
2013-08-27 20:31:48 +02:00
|
|
|
#define LSUFFIX ub
|
2013-08-27 23:09:14 +02:00
|
|
|
#define SDATA_TYPE int8_t
|
2014-01-18 14:47:23 +01:00
|
|
|
#define DATA_TYPE uint8_t
|
2003-08-09 01:58:05 +02:00
|
|
|
#else
|
|
|
|
#error unsupported data size
|
|
|
|
#endif
|
|
|
|
|
2013-08-27 23:09:14 +02:00
|
|
|
|
|
|
|
/* For the benefit of TCG generated code, we want to avoid the complication
|
|
|
|
of ABI-specific return type promotion and always return a value extended
|
|
|
|
to the register size of the host. This is tcg_target_long, except in the
|
|
|
|
case of a 32-bit host and 64-bit data, and for that we always have
|
|
|
|
uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
|
|
|
|
#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
|
|
|
|
# define WORD_TYPE DATA_TYPE
|
|
|
|
# define USUFFIX SUFFIX
|
|
|
|
#else
|
|
|
|
# define WORD_TYPE tcg_target_ulong
|
|
|
|
# define USUFFIX glue(u, SUFFIX)
|
|
|
|
# define SSUFFIX glue(s, SUFFIX)
|
|
|
|
#endif
|
|
|
|
|
2004-10-03 17:07:13 +02:00
|
|
|
#ifdef SOFTMMU_CODE_ACCESS
|
|
|
|
#define READ_ACCESS_TYPE 2
|
2005-11-28 22:19:04 +01:00
|
|
|
#define ADDR_READ addr_code
|
2004-10-03 17:07:13 +02:00
|
|
|
#else
|
|
|
|
#define READ_ACCESS_TYPE 0
|
2005-11-28 22:19:04 +01:00
|
|
|
#define ADDR_READ addr_read
|
2004-10-03 17:07:13 +02:00
|
|
|
#endif
|
|
|
|
|
2013-09-04 20:45:20 +02:00
|
|
|
#if DATA_SIZE == 8
|
|
|
|
# define BSWAP(X) bswap64(X)
|
|
|
|
#elif DATA_SIZE == 4
|
|
|
|
# define BSWAP(X) bswap32(X)
|
|
|
|
#elif DATA_SIZE == 2
|
|
|
|
# define BSWAP(X) bswap16(X)
|
|
|
|
#else
|
|
|
|
# define BSWAP(X) (X)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
|
|
# define TGT_BE(X) (X)
|
|
|
|
# define TGT_LE(X) BSWAP(X)
|
|
|
|
#else
|
|
|
|
# define TGT_BE(X) BSWAP(X)
|
|
|
|
# define TGT_LE(X) (X)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if DATA_SIZE == 1
|
|
|
|
# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
|
|
|
|
# define helper_be_ld_name helper_le_ld_name
|
|
|
|
# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
|
|
|
|
# define helper_be_lds_name helper_le_lds_name
|
|
|
|
# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
|
|
|
|
# define helper_be_st_name helper_le_st_name
|
|
|
|
#else
|
|
|
|
# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
|
|
|
|
# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
|
|
|
|
# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
|
|
|
|
# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
|
|
|
|
# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
|
|
|
|
# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
|
|
# define helper_te_ld_name helper_be_ld_name
|
|
|
|
# define helper_te_st_name helper_be_st_name
|
|
|
|
#else
|
|
|
|
# define helper_te_ld_name helper_le_ld_name
|
|
|
|
# define helper_te_st_name helper_le_st_name
|
|
|
|
#endif
|
|
|
|
|
2014-03-28 17:55:24 +01:00
|
|
|
#ifndef SOFTMMU_CODE_ACCESS
|
2012-09-02 17:28:56 +02:00
|
|
|
static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
|
2012-10-23 12:30:10 +02:00
|
|
|
hwaddr physaddr,
|
2008-06-29 03:03:05 +02:00
|
|
|
target_ulong addr,
|
2012-04-09 16:20:20 +02:00
|
|
|
uintptr_t retaddr)
|
2003-08-09 01:58:05 +02:00
|
|
|
{
|
2013-05-24 16:10:39 +02:00
|
|
|
uint64_t val;
|
2013-12-17 04:06:51 +01:00
|
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
|
|
MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
|
2012-03-08 17:08:35 +01:00
|
|
|
|
2008-06-09 02:20:13 +02:00
|
|
|
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
|
2013-08-26 03:41:01 +02:00
|
|
|
cpu->mem_io_pc = retaddr;
|
2013-08-26 05:15:23 +02:00
|
|
|
if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
|
2013-09-01 17:21:47 +02:00
|
|
|
cpu_io_recompile(cpu, retaddr);
|
2008-06-29 03:03:05 +02:00
|
|
|
}
|
2003-08-09 01:58:05 +02:00
|
|
|
|
2013-08-26 03:41:01 +02:00
|
|
|
cpu->mem_io_vaddr = addr;
|
2013-05-24 16:10:39 +02:00
|
|
|
io_mem_read(mr, physaddr, &val, 1 << SHIFT);
|
|
|
|
return val;
|
2003-08-09 01:58:05 +02:00
|
|
|
}
|
2014-03-28 17:55:24 +01:00
|
|
|
#endif
|
2003-08-09 01:58:05 +02:00
|
|
|
|
2013-07-25 02:54:12 +02:00
|
|
|
#ifdef SOFTMMU_CODE_ACCESS
|
2013-09-04 20:45:20 +02:00
|
|
|
static __attribute__((unused))
|
2013-07-25 02:54:12 +02:00
|
|
|
#endif
|
2013-09-04 20:45:20 +02:00
|
|
|
WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
|
|
|
|
uintptr_t retaddr)
|
2003-08-09 01:58:05 +02:00
|
|
|
{
|
2013-07-26 20:29:15 +02:00
|
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
|
|
uintptr_t haddr;
|
2013-09-04 20:45:20 +02:00
|
|
|
DATA_TYPE res;
|
2007-09-17 10:09:54 +02:00
|
|
|
|
2013-08-27 19:22:54 +02:00
|
|
|
/* Adjust the given return address. */
|
|
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
|
2013-07-26 20:29:15 +02:00
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
2005-12-05 20:57:57 +01:00
|
|
|
#ifdef ALIGNED_ONLY
|
2013-07-26 20:29:15 +02:00
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
|
|
mmu_idx, retaddr);
|
2013-07-26 20:29:15 +02:00
|
|
|
}
|
2005-12-05 20:57:57 +01:00
|
|
|
#endif
|
2013-08-27 00:28:06 +02:00
|
|
|
tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
|
2013-07-26 20:29:15 +02:00
|
|
|
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle an IO access. */
|
|
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
|
|
hwaddr ioaddr;
|
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
|
|
goto do_unaligned_access;
|
2003-08-09 01:58:05 +02:00
|
|
|
}
|
2013-07-26 20:29:15 +02:00
|
|
|
ioaddr = env->iotlb[mmu_idx][index];
|
2013-09-04 20:45:20 +02:00
|
|
|
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
|
|
res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
|
|
|
|
res = TGT_LE(res);
|
|
|
|
return res;
|
2013-07-26 20:29:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
|
|
if (DATA_SIZE > 1
|
|
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
|
|
>= TARGET_PAGE_SIZE)) {
|
|
|
|
target_ulong addr1, addr2;
|
2013-09-04 20:45:20 +02:00
|
|
|
DATA_TYPE res1, res2;
|
2013-07-26 20:29:15 +02:00
|
|
|
unsigned shift;
|
|
|
|
do_unaligned_access:
|
2005-12-05 20:57:57 +01:00
|
|
|
#ifdef ALIGNED_ONLY
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
|
|
mmu_idx, retaddr);
|
2005-12-05 20:57:57 +01:00
|
|
|
#endif
|
2013-07-26 20:29:15 +02:00
|
|
|
addr1 = addr & ~(DATA_SIZE - 1);
|
|
|
|
addr2 = addr1 + DATA_SIZE;
|
2013-08-27 19:22:54 +02:00
|
|
|
/* Note the adjustment at the beginning of the function.
|
|
|
|
Undo that for the recursion. */
|
2013-09-04 20:45:20 +02:00
|
|
|
res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
|
|
|
|
res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
|
2013-07-26 20:29:15 +02:00
|
|
|
shift = (addr & (DATA_SIZE - 1)) * 8;
|
2013-09-04 20:45:20 +02:00
|
|
|
|
|
|
|
/* Little-endian combine. */
|
2013-07-26 20:29:15 +02:00
|
|
|
res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
|
2013-09-04 20:45:20 +02:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle aligned access or unaligned access in the same page. */
|
|
|
|
#ifdef ALIGNED_ONLY
|
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
|
|
mmu_idx, retaddr);
|
2013-09-04 20:45:20 +02:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
haddr = addr + env->tlb_table[mmu_idx][index].addend;
|
|
|
|
#if DATA_SIZE == 1
|
|
|
|
res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
|
|
|
|
#else
|
|
|
|
res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
|
|
|
|
#endif
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if DATA_SIZE > 1
|
|
|
|
#ifdef SOFTMMU_CODE_ACCESS
|
|
|
|
static __attribute__((unused))
|
|
|
|
#endif
|
|
|
|
WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
|
|
|
|
uintptr_t retaddr)
|
|
|
|
{
|
|
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
|
|
uintptr_t haddr;
|
|
|
|
DATA_TYPE res;
|
|
|
|
|
|
|
|
/* Adjust the given return address. */
|
|
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
|
|
#ifdef ALIGNED_ONLY
|
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
|
|
mmu_idx, retaddr);
|
2013-09-04 20:45:20 +02:00
|
|
|
}
|
|
|
|
#endif
|
2013-08-27 00:28:06 +02:00
|
|
|
tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
|
2013-09-04 20:45:20 +02:00
|
|
|
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle an IO access. */
|
|
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
|
|
hwaddr ioaddr;
|
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
|
|
goto do_unaligned_access;
|
|
|
|
}
|
|
|
|
ioaddr = env->iotlb[mmu_idx][index];
|
|
|
|
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
|
|
res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
|
|
|
|
res = TGT_BE(res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
|
|
if (DATA_SIZE > 1
|
|
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
|
|
>= TARGET_PAGE_SIZE)) {
|
|
|
|
target_ulong addr1, addr2;
|
|
|
|
DATA_TYPE res1, res2;
|
|
|
|
unsigned shift;
|
|
|
|
do_unaligned_access:
|
|
|
|
#ifdef ALIGNED_ONLY
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
|
|
mmu_idx, retaddr);
|
2013-07-26 20:29:15 +02:00
|
|
|
#endif
|
2013-09-04 20:45:20 +02:00
|
|
|
addr1 = addr & ~(DATA_SIZE - 1);
|
|
|
|
addr2 = addr1 + DATA_SIZE;
|
|
|
|
/* Note the adjustment at the beginning of the function.
|
|
|
|
Undo that for the recursion. */
|
|
|
|
res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
|
|
|
|
res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
|
|
|
|
shift = (addr & (DATA_SIZE - 1)) * 8;
|
|
|
|
|
|
|
|
/* Big-endian combine. */
|
|
|
|
res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
|
2013-07-26 20:29:15 +02:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle aligned access or unaligned access in the same page. */
|
|
|
|
#ifdef ALIGNED_ONLY
|
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
|
|
mmu_idx, retaddr);
|
2003-08-09 01:58:05 +02:00
|
|
|
}
|
2013-07-26 20:29:15 +02:00
|
|
|
#endif
|
|
|
|
|
|
|
|
haddr = addr + env->tlb_table[mmu_idx][index].addend;
|
2013-09-04 20:45:20 +02:00
|
|
|
res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
|
|
|
|
return res;
|
2003-08-09 01:58:05 +02:00
|
|
|
}
|
2013-09-04 20:45:20 +02:00
|
|
|
#endif /* DATA_SIZE > 1 */
|
2003-08-09 01:58:05 +02:00
|
|
|
|
2013-07-25 02:54:12 +02:00
|
|
|
DATA_TYPE
|
|
|
|
glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
|
|
|
|
int mmu_idx)
|
|
|
|
{
|
2013-09-04 20:45:20 +02:00
|
|
|
return helper_te_ld_name (env, addr, mmu_idx, GETRA());
|
2013-07-25 02:54:12 +02:00
|
|
|
}
|
|
|
|
|
2004-10-03 17:07:13 +02:00
|
|
|
#ifndef SOFTMMU_CODE_ACCESS
|
|
|
|
|
2013-08-27 23:09:14 +02:00
|
|
|
/* Provide signed versions of the load routines as well. We can of course
|
|
|
|
avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
|
|
|
|
#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
|
2013-09-04 20:45:20 +02:00
|
|
|
WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
|
|
|
|
int mmu_idx, uintptr_t retaddr)
|
|
|
|
{
|
|
|
|
return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr);
|
|
|
|
}
|
|
|
|
|
|
|
|
# if DATA_SIZE > 1
|
|
|
|
WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
|
|
|
|
int mmu_idx, uintptr_t retaddr)
|
2013-08-27 23:09:14 +02:00
|
|
|
{
|
2013-09-04 20:45:20 +02:00
|
|
|
return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr);
|
2013-08-27 23:09:14 +02:00
|
|
|
}
|
2013-09-04 20:45:20 +02:00
|
|
|
# endif
|
2013-08-27 23:09:14 +02:00
|
|
|
#endif
|
|
|
|
|
2012-09-02 17:28:56 +02:00
|
|
|
static inline void glue(io_write, SUFFIX)(CPUArchState *env,
|
2012-10-23 12:30:10 +02:00
|
|
|
hwaddr physaddr,
|
2004-10-03 17:07:13 +02:00
|
|
|
DATA_TYPE val,
|
2008-06-09 02:20:13 +02:00
|
|
|
target_ulong addr,
|
2012-04-09 16:20:20 +02:00
|
|
|
uintptr_t retaddr)
|
2004-10-03 17:07:13 +02:00
|
|
|
{
|
2013-12-17 04:06:51 +01:00
|
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
|
|
MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
|
2012-03-08 17:08:35 +01:00
|
|
|
|
2008-06-09 02:20:13 +02:00
|
|
|
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
|
2013-08-26 05:15:23 +02:00
|
|
|
if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
|
2013-09-01 17:21:47 +02:00
|
|
|
cpu_io_recompile(cpu, retaddr);
|
2008-06-29 03:03:05 +02:00
|
|
|
}
|
2004-10-03 17:07:13 +02:00
|
|
|
|
2013-08-26 03:41:01 +02:00
|
|
|
cpu->mem_io_vaddr = addr;
|
|
|
|
cpu->mem_io_pc = retaddr;
|
2012-03-08 17:08:35 +01:00
|
|
|
io_mem_write(mr, physaddr, val, 1 << SHIFT);
|
2004-10-03 17:07:13 +02:00
|
|
|
}
|
2003-08-09 01:58:05 +02:00
|
|
|
|
2013-09-04 20:45:20 +02:00
|
|
|
void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
|
|
|
|
int mmu_idx, uintptr_t retaddr)
|
2003-08-09 01:58:05 +02:00
|
|
|
{
|
2013-07-26 20:29:15 +02:00
|
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
|
|
uintptr_t haddr;
|
2007-09-17 10:09:54 +02:00
|
|
|
|
2013-08-27 19:22:54 +02:00
|
|
|
/* Adjust the given return address. */
|
|
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
|
2013-07-26 20:29:15 +02:00
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
2005-12-05 20:57:57 +01:00
|
|
|
#ifdef ALIGNED_ONLY
|
2013-07-26 20:29:15 +02:00
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
|
2013-07-26 20:29:15 +02:00
|
|
|
}
|
2005-12-05 20:57:57 +01:00
|
|
|
#endif
|
2013-08-27 00:28:06 +02:00
|
|
|
tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
|
2013-07-26 20:29:15 +02:00
|
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle an IO access. */
|
|
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
|
|
hwaddr ioaddr;
|
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
|
|
goto do_unaligned_access;
|
|
|
|
}
|
|
|
|
ioaddr = env->iotlb[mmu_idx][index];
|
2013-09-04 20:45:20 +02:00
|
|
|
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
|
|
val = TGT_LE(val);
|
2013-07-26 20:29:15 +02:00
|
|
|
glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
|
|
if (DATA_SIZE > 1
|
|
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
|
|
>= TARGET_PAGE_SIZE)) {
|
|
|
|
int i;
|
|
|
|
do_unaligned_access:
|
2005-12-05 20:57:57 +01:00
|
|
|
#ifdef ALIGNED_ONLY
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
|
2013-07-26 20:29:15 +02:00
|
|
|
#endif
|
|
|
|
/* XXX: not efficient, but simple */
|
|
|
|
/* Note: relies on the fact that tlb_fill() does not remove the
|
|
|
|
* previous page from the TLB cache. */
|
|
|
|
for (i = DATA_SIZE - 1; i >= 0; i--) {
|
2013-09-04 20:45:20 +02:00
|
|
|
/* Little-endian extract. */
|
2013-07-26 20:29:15 +02:00
|
|
|
uint8_t val8 = val >> (i * 8);
|
2013-09-04 20:45:20 +02:00
|
|
|
/* Note the adjustment at the beginning of the function.
|
|
|
|
Undo that for the recursion. */
|
|
|
|
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
|
|
|
|
mmu_idx, retaddr + GETPC_ADJ);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle aligned access or unaligned access in the same page. */
|
|
|
|
#ifdef ALIGNED_ONLY
|
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
|
2013-09-04 20:45:20 +02:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
haddr = addr + env->tlb_table[mmu_idx][index].addend;
|
|
|
|
#if DATA_SIZE == 1
|
|
|
|
glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
|
|
|
|
#else
|
|
|
|
glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
|
2005-12-05 20:57:57 +01:00
|
|
|
#endif
|
2013-09-04 20:45:20 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
#if DATA_SIZE > 1
|
|
|
|
void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
|
|
|
|
int mmu_idx, uintptr_t retaddr)
|
|
|
|
{
|
|
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
|
|
uintptr_t haddr;
|
|
|
|
|
|
|
|
/* Adjust the given return address. */
|
|
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
|
|
#ifdef ALIGNED_ONLY
|
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
|
2013-09-04 20:45:20 +02:00
|
|
|
}
|
|
|
|
#endif
|
2013-08-27 00:28:06 +02:00
|
|
|
tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
|
2013-09-04 20:45:20 +02:00
|
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle an IO access. */
|
|
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
|
|
hwaddr ioaddr;
|
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
|
|
goto do_unaligned_access;
|
|
|
|
}
|
|
|
|
ioaddr = env->iotlb[mmu_idx][index];
|
|
|
|
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
|
|
val = TGT_BE(val);
|
|
|
|
glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
|
|
if (DATA_SIZE > 1
|
|
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
|
|
>= TARGET_PAGE_SIZE)) {
|
|
|
|
int i;
|
|
|
|
do_unaligned_access:
|
|
|
|
#ifdef ALIGNED_ONLY
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
|
2013-09-04 20:45:20 +02:00
|
|
|
#endif
|
|
|
|
/* XXX: not efficient, but simple */
|
|
|
|
/* Note: relies on the fact that tlb_fill() does not remove the
|
|
|
|
* previous page from the TLB cache. */
|
|
|
|
for (i = DATA_SIZE - 1; i >= 0; i--) {
|
|
|
|
/* Big-endian extract. */
|
|
|
|
uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
|
2013-08-27 19:22:54 +02:00
|
|
|
/* Note the adjustment at the beginning of the function.
|
|
|
|
Undo that for the recursion. */
|
2013-07-26 20:29:15 +02:00
|
|
|
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
|
2013-08-27 19:22:54 +02:00
|
|
|
mmu_idx, retaddr + GETPC_ADJ);
|
2003-08-09 01:58:05 +02:00
|
|
|
}
|
2013-07-26 20:29:15 +02:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle aligned access or unaligned access in the same page. */
|
2005-12-05 20:57:57 +01:00
|
|
|
#ifdef ALIGNED_ONLY
|
2013-07-26 20:29:15 +02:00
|
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
2014-03-28 18:14:58 +01:00
|
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
|
2003-08-09 01:58:05 +02:00
|
|
|
}
|
2013-07-26 20:29:15 +02:00
|
|
|
#endif
|
|
|
|
|
|
|
|
haddr = addr + env->tlb_table[mmu_idx][index].addend;
|
2013-09-04 20:45:20 +02:00
|
|
|
glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
|
2003-08-09 01:58:05 +02:00
|
|
|
}
|
2013-09-04 20:45:20 +02:00
|
|
|
#endif /* DATA_SIZE > 1 */
|
2003-08-09 01:58:05 +02:00
|
|
|
|
2013-07-25 02:54:12 +02:00
|
|
|
void
|
|
|
|
glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
|
|
|
|
DATA_TYPE val, int mmu_idx)
|
|
|
|
{
|
2013-09-04 20:45:20 +02:00
|
|
|
helper_te_st_name(env, addr, val, mmu_idx, GETRA());
|
2013-07-25 02:54:12 +02:00
|
|
|
}
|
|
|
|
|
2004-10-03 17:07:13 +02:00
|
|
|
#endif /* !defined(SOFTMMU_CODE_ACCESS) */
|
|
|
|
|
|
|
|
#undef READ_ACCESS_TYPE
|
2003-08-09 01:58:05 +02:00
|
|
|
#undef SHIFT
|
|
|
|
#undef DATA_TYPE
|
|
|
|
#undef SUFFIX
|
2013-08-27 20:31:48 +02:00
|
|
|
#undef LSUFFIX
|
2003-08-09 01:58:05 +02:00
|
|
|
#undef DATA_SIZE
|
2005-11-28 22:19:04 +01:00
|
|
|
#undef ADDR_READ
|
2013-08-27 23:09:14 +02:00
|
|
|
#undef WORD_TYPE
|
|
|
|
#undef SDATA_TYPE
|
|
|
|
#undef USUFFIX
|
|
|
|
#undef SSUFFIX
|
2013-09-04 20:45:20 +02:00
|
|
|
#undef BSWAP
|
|
|
|
#undef TGT_BE
|
|
|
|
#undef TGT_LE
|
|
|
|
#undef CPU_BE
|
|
|
|
#undef CPU_LE
|
|
|
|
#undef helper_le_ld_name
|
|
|
|
#undef helper_be_ld_name
|
|
|
|
#undef helper_le_lds_name
|
|
|
|
#undef helper_be_lds_name
|
|
|
|
#undef helper_le_st_name
|
|
|
|
#undef helper_be_st_name
|
|
|
|
#undef helper_te_ld_name
|
|
|
|
#undef helper_te_st_name
|