qemu-e2k/hw/riscv/spike.c

352 lines
14 KiB
C
Raw Normal View History

/*
* QEMU RISC-V Spike Board
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
* Copyright (c) 2017-2018 SiFive, Inc.
*
* This provides a RISC-V Board with the following devices:
*
* 0) HTIF Console and Poweroff
* 1) CLINT (Timer and IPI)
* 2) PLIC (Platform Level Interrupt Controller)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "target/riscv/cpu.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/spike.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/numa.h"
#include "hw/char/riscv_htif.h"
#include "hw/intc/riscv_aclint.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
static const MemMapEntry spike_memmap[] = {
[SPIKE_MROM] = { 0x1000, 0xf000 },
[SPIKE_HTIF] = { 0x1000000, 0x1000 },
[SPIKE_CLINT] = { 0x2000000, 0x10000 },
[SPIKE_DRAM] = { 0x80000000, 0x0 },
};
static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
uint64_t mem_size, const char *cmdline, bool is_32_bit)
{
void *fdt;
uint64_t addr, size;
unsigned long clint_addr;
int cpu, socket;
MachineState *mc = MACHINE(s);
uint32_t *clint_cells;
uint32_t cpu_phandle, intc_phandle, phandle = 1;
char *name, *mem_name, *clint_name, *clust_name;
char *core_name, *cpu_name, *intc_name;
static const char * const clint_compat[2] = {
"sifive,clint0", "riscv,clint0"
};
fdt = s->fdt = create_device_tree(&s->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_add_subnode(fdt, "/htif");
qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
if (!htif_uses_elf_symbols()) {
qemu_fdt_setprop_cells(fdt, "/htif", "reg",
0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
}
qemu_fdt_add_subnode(fdt, "/soc");
qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
qemu_fdt_add_subnode(fdt, clust_name);
clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
cpu_phandle = phandle++;
cpu_name = g_strdup_printf("/cpus/cpu@%d",
s->soc[socket].hartid_base + cpu);
qemu_fdt_add_subnode(fdt, cpu_name);
if (is_32_bit) {
qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
} else {
qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
}
name = riscv_isa_string(&s->soc[socket].harts[cpu]);
qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
g_free(name);
qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
s->soc[socket].hartid_base + cpu);
qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
qemu_fdt_add_subnode(fdt, intc_name);
intc_phandle = phandle++;
qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
qemu_fdt_setprop_string(fdt, intc_name, "compatible",
"riscv,cpu-intc");
qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
qemu_fdt_add_subnode(fdt, core_name);
qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
g_free(core_name);
g_free(intc_name);
g_free(cpu_name);
}
addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
size = riscv_socket_mem_size(mc, socket);
mem_name = g_strdup_printf("/memory@%lx", (long)addr);
qemu_fdt_add_subnode(fdt, mem_name);
qemu_fdt_setprop_cells(fdt, mem_name, "reg",
addr >> 32, addr, size >> 32, size);
qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
g_free(mem_name);
clint_addr = memmap[SPIKE_CLINT].base +
(memmap[SPIKE_CLINT].size * socket);
clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
qemu_fdt_add_subnode(fdt, clint_name);
qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
(char **)&clint_compat, ARRAY_SIZE(clint_compat));
qemu_fdt_setprop_cells(fdt, clint_name, "reg",
0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
g_free(clint_name);
g_free(clint_cells);
g_free(clust_name);
}
riscv_socket_fdt_write_distance_matrix(mc, fdt);
if (cmdline) {
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
}
}
static void spike_board_init(MachineState *machine)
{
const MemMapEntry *memmap = spike_memmap;
SpikeState *s = SPIKE_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
target_ulong firmware_end_addr, kernel_start_addr;
uint32_t fdt_load_addr;
uint64_t kernel_entry;
char *soc_name;
int i, base_hartid, hart_count;
/* Check socket count limit */
if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
error_report("number of sockets/nodes should be less than %d",
SPIKE_SOCKETS_MAX);
exit(1);
}
/* Initialize sockets */
for (i = 0; i < riscv_socket_count(machine); i++) {
if (!riscv_socket_check_hartids(machine, i)) {
error_report("discontinuous hartids in socket%d", i);
exit(1);
}
base_hartid = riscv_socket_first_hartid(machine, i);
if (base_hartid < 0) {
error_report("can't find hartid base for socket%d", i);
exit(1);
}
hart_count = riscv_socket_hart_count(machine, i);
if (hart_count < 0) {
error_report("can't find hart count for socket%d", i);
exit(1);
}
soc_name = g_strdup_printf("soc%d", i);
object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
TYPE_RISCV_HART_ARRAY);
g_free(soc_name);
object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
machine->cpu_type, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
base_hartid, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
hart_count, &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
/* Core Local Interruptor (timer and IPI) for each socket */
riscv_aclint_swi_create(
memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
base_hartid, hart_count, false);
riscv_aclint_mtimer_create(
memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
RISCV_ACLINT_SWI_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
}
/* register system main memory (actual RAM) */
memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
machine->ram);
/* boot rom */
memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
memmap[SPIKE_MROM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
mask_rom);
/*
* Not like other RISC-V machines that use plain binary bios images,
* keeping ELF files here was intentional because BIN files don't work
* for the Spike machine as HTIF emulation depends on ELF parsing.
*/
if (riscv_is_32bit(&s->soc[0])) {
firmware_end_addr = riscv_find_and_load_firmware(machine,
RISCV32_BIOS_BIN, memmap[SPIKE_DRAM].base,
htif_symbol_callback);
} else {
firmware_end_addr = riscv_find_and_load_firmware(machine,
RISCV64_BIOS_BIN, memmap[SPIKE_DRAM].base,
htif_symbol_callback);
}
/* Load kernel */
if (machine->kernel_filename) {
kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
firmware_end_addr);
kernel_entry = riscv_load_kernel(machine->kernel_filename,
kernel_start_addr,
htif_symbol_callback);
} else {
/*
* If dynamic firmware is used, it doesn't know where is the next mode
* if kernel argument is not set.
*/
kernel_entry = 0;
}
/* Create device tree */
create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
riscv_is_32bit(&s->soc[0]));
/* Load initrd */
if (machine->kernel_filename && machine->initrd_filename) {
hwaddr start;
hwaddr end = riscv_load_initrd(machine->initrd_filename,
machine->ram_size, kernel_entry,
&start);
qemu_fdt_setprop_cell(s->fdt, "/chosen",
"linux,initrd-start", start);
qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
end);
}
/* Compute the fdt load address in dram */
fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
machine->ram_size, s->fdt);
/* load the reset vector */
riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
memmap[SPIKE_MROM].base,
memmap[SPIKE_MROM].size, kernel_entry,
fdt_load_addr, s->fdt);
/* initialize HTIF using symbols found in load_kernel */
htif_mm_init(system_memory, mask_rom,
&s->soc[0].harts[0].env, serial_hd(0),
memmap[SPIKE_HTIF].base);
}
static void spike_machine_instance_init(Object *obj)
{
}
static void spike_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "RISC-V Spike board";
mc->init = spike_board_init;
mc->max_cpus = SPIKE_CPUS_MAX;
mc->is_default = true;
mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
mc->numa_mem_supported = true;
mc->default_ram_id = "riscv.spike.ram";
}
static const TypeInfo spike_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("spike"),
.parent = TYPE_MACHINE,
.class_init = spike_machine_class_init,
.instance_init = spike_machine_instance_init,
.instance_size = sizeof(SpikeState),
};
static void spike_machine_init_register_types(void)
{
type_register_static(&spike_machine_typeinfo);
}
type_init(spike_machine_init_register_types)