Use the VFP_BINOP macro to provide helpers for min, max, minnum
and maxnum, rather than hand-rolling them. (The float64 max
version is not used by A32 but will be needed for A64.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
The A64 128 bit vector registers are stored as a pair of
uint64_t values in the register array. This means that if
we're directly loading or storing a value of size less than
64 bits we must adjust the offset appropriately to account
for whether the host is bigendian or not. Provide utility
functions to abstract away the offsetof() calculations for
the FP registers.
For do_fp_st() we can sidestep most of the issues for 64 bit
and smaller reg-to-mem transfers by always doing a 64 bit
load from the register and writing just the piece we need
to memory.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
When dumping the current CPU state, we can also get a request
to dump the FPU state along with the CPU's integer state.
Add support to dump the VFP state when that flag is set, so that
we can properly debug code that modifies floating point registers.
Signed-off-by: Alexander Graf <agraf@suse.de>
[WN: Commit message tweak, rebased. Output all registers, two per-line.]
Signed-off-by: Will Newton <will.newton@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This implement exclusive loads/stores for aarch64 along the lines of
arm32 and ppc implementations. The exclusive load remembers the address
and loaded value. The exclusive store throws an an exception which uses
those values to check for equality in a proper exclusive region.
This is not actually the architecture mandated semantics (for either
AArch32 or AArch64) but it is close enough for typical guest code
sequences to work correctly, and saves us from having to monitor all
guest stores. It's fairly easy to come up with test cases where we
don't behave like hardware - we don't for example model cache line
behaviour. However in the common patterns this works, and the existing
32 bit ARM exclusive access implementation has the same limitations.
AArch64 also implements new acquire/release loads/stores (which may be
either exclusive or non-exclusive). These imposes extra ordering
constraints on memory operations (ie they act as if they have an implicit
barrier built into them). As TCG is single-threaded all our barriers
are no-ops, so these just behave like normal loads and stores.
Signed-off-by: Michael Matz <matz@suse.de>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
In preparation for adding support for A64 load/store exclusive instructions,
widen the fields in the CPU state struct that deal with address and data values
for exclusives from 32 to 64 bits. Although in practice AArch64 and AArch32
exclusive accesses will be generally separate there are some odd theoretical
corner cases (eg you should be able to do the exclusive load in AArch32, take
an exception to AArch64 and successfully do the store exclusive there), and it's
also easier to reason about.
The changes in semantics for the variables are:
exclusive_addr -> extended to 64 bits; -1ULL for "monitor lost",
otherwise always < 2^32 for AArch32
exclusive_val -> extended to 64 bits. 64 bit exclusives in AArch32 now
use the high half of exclusive_val instead of a separate exclusive_high
exclusive_high -> is no longer used in AArch32; extended to 64 bits as
it will be needed for AArch64's pair-of-64-bit-values exclusives.
exclusive_test -> extended to 64 bits, as it is an address. Since this is
a linux-user-only field, in arm-linux-user it will always have the top
32 bits zero.
exclusive_info -> stays 32 bits, as it is neither data nor address, but
simply holds register indexes etc. AArch64 will be able to fit all its
information into 32 bits as well.
Note that the refactoring of gen_store_exclusive() coincidentally fixes
a minor bug where ldrexd would incorrectly update the first CPU register
even if the load for the second register faulted.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Adds support for Load Register (literal), both normal
and SIMD/FP forms.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
this patch adds support for C3.5.4 - C3.5.5
Conditional compare (both immediate and register)
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
The common pattern for system registers in a 64-bit capable ARM
CPU is that when in AArch32 the cp15 register is a view of the
bottom 32 bits of the 64-bit AArch64 system register; writes in
AArch32 leave the top half unchanged. The most natural way to
model this is to have the state field in the CPU struct be a
64 bit value, and simply have the AArch32 TCG code operate on
a pointer to its lower half.
For aarch64-linux-user the only registers we need to share like
this are the thread-local-storage ones. Widen their fields to
64 bits and provide the 64 bit reginfo struct to make them
visible in AArch64 state. Note that minor cleanup of the AArch64
system register encoding space means We can share the TPIDR_EL1
reginfo but need split encodings for TPIDR_EL0 and TPIDRRO_EL0.
Since we're touching almost every line in QEMU that uses the
c13_tls* fields in this patch anyway, we take the opportunity
to rename them in line with the standard ARM architectural names
for these registers.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement an initial minimal set of EL0-visible system registers:
* NZCV
* FPCR
* FPSR
* CTR_EL0
* DCZID_EL0
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
The AArch64 equivalent of the traditional AArch32
cp15 coprocessor registers is the set of instructions
MRS/MSR/SYS/SYSL, which cover between them both true
system registers and the "operations with side effects"
such as cache maintenance which in AArch32 are mixed
in with other cp15 registers. Implement these instructions
to look in the cpregs hashtable for the register or
operation.
Since we don't yet populate the cpregs hashtable with
any registers with the "AA64" bit set, everything will
still UNDEF at this point.
MSR/MRS is the first user of is_jmp = DISAS_UPDATE, so
fix an infelicity in its handling where the main loop
was requiring the caller to do the update of PC rather
than just doing it itself.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
The cpregs APIs used by the decoder (get_arm_cp_reginfo() and
cp_access_ok()) currently take either a CPUARMState* or an ARMCPU*.
This is problematic for the A64 decoder, which doesn't pass the
environment pointer around everywhere the way the 32 bit decoder
does. Adjust the parameters these functions take so that we can
copy only the relevant info from the CPUARMState into the
DisasContext and then use that.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Replace assert_no_error() usages with the error_abort system.
&error_abort is passed into API calls to signal to the Error sub-system
that any errors are fatal. Removes need for caller assertions.
Signed-off-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Update the generic cpreg support code to also handle AArch64:
AArch64-visible registers coexist in the same hash table with
AArch32-visible ones, with a bit in the hash key distinguishing
them.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
define_one_arm_cp_reg_with_opaque() has a set of nested loops which
insert a cpreg entry into the hashtable for each of the possible
opc/crn/crm values allowed by wildcard specifications. We're about
to add an extra loop to this nesting, so pull the core of the loop
(which adds a single entry to the hashtable) out into its own
function for clarity.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement FMOV, ie non-converting moves between general purpose
registers and floating point registers. This is a subtype of
the floating point <-> integer instruction class.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add a top level decoder skeleton for FP instructions.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add decoding for the exception generating instructions, and implement
SVC (syscalls) and BRK (software breakpoint).
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch adds emulation for the "Data-processing (3 source)"
family of instructions, namely MADD, MSUB, SMADDL, SMSUBL, SMULH,
UMADDL, UMSUBL, UMULH.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch adds emulation for the mov wide instructions
(MOVN, MOVZ, MOVK).
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the non-carry forms of addition and subtraction
(immediate, extended register and shifted register).
This includes the code to calculate NZCV if the instruction
calls for setting the flags.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This adds support for the pre/post-index ld/st forms with immediate
offsets as well as the un-scaled immediate form (which are all
variations on the same 9-bit immediate instruction form).
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This adds support for the load/store forms using a register offset.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This adds support for the forms of ld/st with a 12 bit
unsigned immediate offset.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch support the basic load and store pair instructions and
includes the generic helper functions:
* do_gpr_st()
* do_fp_st()
* do_gpr_ld()
* do_fp_ld()
* read_cpu_reg_sp()
* gen_check_sp_alignment()
The last function gen_check_sp_alignment() is a NULL op currently but
put in place to make it easy to add SP alignment checking later.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch adds support for C3.4.4 Logical (immediate),
which include AND, ANDS, ORR, EOR.
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio: adapted to new decoder, function renaming,
removed a TCG temp variable]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
[PMM: cleaned up some unnecessary code in logic_imm_decode_wmask
and added clarifying commentary on what it's actually doing.
Dropped an ext32u that's not needed if we've just done an AND.]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
this patch adds support for the CLS instruction.
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This adds support for C5.6.149 REV, C5.6.151 REV32, C5.6.150 REV16.
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This adds support for the C5.6.147 RBIT instruction.
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio: adapted to new decoder, use bswap64,
make RBIT part standalone from the rest of the patch,
splitting REV into a separate patch]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch adds support for decoding 1-src data processing insns,
and the first user, C5.6.40 CLZ (count leading zeroes).
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch adds support for decoding 2-src data processing insns,
and the first users, UDIV and SDIV.
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio: adapted to new decoder adding the 2-src decoding level,
always zero-extend result in 32bit mode]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch adds emulation support for the EXTR instruction.
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio: adapted for new decoder, removed a few temporaries,
fixed the 32bit bug, added checks for more
unallocated cases]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add support for the instructions described in
"C3.4.6 PC-rel. addressing" (ADR and ADRP).
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio: adapted to new decoder structure]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add support for the instructions described in "C3.5.10 Logical
(shifted register)".
We store the flags in the same locations as the 32 bit decoder.
This is slightly awkward when calculating 64 bit results, but seems
a better tradeoff than having to rework the whole 32 bit decoder
and also make 32 bit result calculation in A64 awkward.
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio: some refactoring to avoid hidden allocation of temps,
rework flags, use enums for shift types,
renaming of functions]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
[PMM: Use TCG's andc/orc/eqv ops rather than manually inverting]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch adds support for the instruction group "C3.5.6
Conditional select": CSEL, CSINC, CSINV, CSNEG.
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
[PMM: Improved code generated in the nomatch case as per RTH suggestions]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch adds emulation for the compare and branch insns,
CBZ and CBNZ.
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio: adapted to new decoder,
compare with immediate 0,
introduce read_cpu_reg to get the 0 extension on (!sf)]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch adds emulation for the test and branch insns,
TBZ and TBNZ.
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio:
adapted for new decoder
always compare with 0
remove a TCG temporary
]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This patch adds emulation for the conditional branch (b.cond) instruction.
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio: adapted to new decoder structure,
reused arm infrastructure for checking the flags]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement BR, BLR and RET. This is all of the 'unconditional
branch (register)' instruction category except for ERET
and DPRS (which are system mode only).
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio: reimplemented on top of new decoder structure]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the B and BL instructions (PC relative branches and calls).
For convenience in managing TCG temporaries which might be generated
if a source register is the zero-register XZR, we provide a simple
mechanism for creating a new temp which is automatically freed at the
end of decode of the instruction.
Signed-off-by: Alexander Graf <agraf@suse.de>
[claudio: renamed functions, adapted to new decoder layout]
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Decode the various kinds of system instructions:
hints (HINT), which include NOP, YIELD, WFE, WFI, SEV, SEL
sync instructions, which include CLREX, DSB, DMB, ISB
msr_i, which move immediate to processor state field
sys, which include all SYS and SYSL instructions
msr, which move from a gp register to a system register
mrs, which move from a system register to a gp register
Provide implementations where they are trivial nops.
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Provide a skeleton for a64 instruction decoding in translate-a64.c,
by dividing instructions into the classes defined by the
ARM Architecture Reference Manual(DDI0487A_a) section C3.
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
We will need helpers that only make sense with AArch64. Add
helper-a64.{c,h} files as stubs that we can fill with these
helpers in the following patches.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Register the aarch64-fpu XML and implement the necessary
read/write handlers so we can support reading and writing
of FP registers in the gdb stub.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
The information which AArch32 holds in the FPSCR is split for
AArch64 into two logically distinct registers, FPSR and FPCR.
Since they are carefully arranged to use non-overlapping bits,
we leave the underlying state in the same place, and provide
accessor functions which just update the appropriate bits
via vfp_get_fpscr() and vfp_set_fpscr().
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
When executing translation blocks we need to be able to recover
our program counter. Add a method to set it for AArch64 CPUs.
This covers user-mode, but for system mode emulation we will
need to check if the CPU is in an AArch32 execution state.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
The A32/T32 gen_intermediate_code_internal() is complicated because it
has to deal with:
* conditionally executed instructions
* Thumb IT blocks
* kernel helper page
* M profile exception-exit special casing
None of these apply to A64, so putting the "this is A64 so
call the A64 decoder" check in the middle of the A32/T32
loop is confusing and means the A64 decoder's handling of
things like conditional jump and singlestepping has to take
account of the conditional-execution jumps the main loop
might emit.
Refactor the code to give A64 its own gen_intermediate_code_internal
function instead.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add the bare minimum set of functions needed for control of an
AArch64 KVM vcpu:
* CPU initialization
* minimal get/put register functions which only handle the
basic state of the CPU
Signed-off-by: Mian M. Hamayun <m.hamayun@virtualopensystems.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1385645602-18662-4-git-send-email-peter.maydell@linaro.org
[PMM: significantly overhauled; most notably:
* code lives in kvm64.c rather than using #ifdefs
* support '-cpu host' rather than implicitly using whatever the
host's CPU is regardless of what the user requests
* fix bug attempting to get/set nonexistent X[31]
* fix bug writing 64 bit kernel pstate into uint32_t env field
]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>