A `bfd_reloc_outofrange' condition from `mips_elf_calculate_relocation'
currently triggers the warning callback, which in the case of LD prints
messages like:
foo.o: In function `foo':
(.text+0x0): warning: JALX to a non-word-aligned address
or:
foo.o: In function `foo':
(.text+0x0): warning: PC-relative load from unaligned address
and nothing else, which suggests this is a benign condition and link has
otherwise successfully run to completion. This is however not the case,
the link terminates right away with no further messages and no output
produced.
Use the general error or warning info callback then, preserving the
message format. Also set a BFD error condition so that a failure is
unambiguously reported. Complement the change with a set of suitable
test suite additions.
bfd/
* elfxx-mips.c (_bfd_mips_elf_relocate_section)
<bfd_reloc_outofrange>: Call `->einfo' rather than `->warning'.
Call `bfd_set_error'.
ld/
* testsuite/ld-mips-elf/unaligned-jalx-0.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-1.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-2.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-mips16-0.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-mips16-1.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-mips16-2.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-micromips-0.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-micromips-1.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-micromips-2.d: New test.
* testsuite/ld-mips-elf/unaligned-lwpc-0.d: New test.
* testsuite/ld-mips-elf/unaligned-lwpc-1.d: New test.
* testsuite/ld-mips-elf/unaligned-lwpc-2.d: New test.
* testsuite/ld-mips-elf/unaligned-lwpc-3.d: New test.
* testsuite/ld-mips-elf/unaligned-ldpc-0.d: New test.
* testsuite/ld-mips-elf/unaligned-ldpc-1.d: New test.
* testsuite/ld-mips-elf/unaligned-ldpc-2.d: New test.
* testsuite/ld-mips-elf/unaligned-ldpc-3.d: New test.
* testsuite/ld-mips-elf/unaligned-ldpc-4.d: New test.
* testsuite/ld-mips-elf/unaligned-jalx-0.s: New test source.
* testsuite/ld-mips-elf/unaligned-jalx-1.s: New test source.
* testsuite/ld-mips-elf/unaligned-jalx-2.s: New test source.
* testsuite/ld-mips-elf/unaligned-insn.s: New test source.
* testsuite/ld-mips-elf/unaligned-lwpc-0.s: New test source.
* testsuite/ld-mips-elf/unaligned-lwpc-1.s: New test source.
* testsuite/ld-mips-elf/unaligned-lwpc-2.s: New test source.
* testsuite/ld-mips-elf/unaligned-lwpc-3.s: New test source.
* testsuite/ld-mips-elf/unaligned-ldpc-0.s: New test source.
* testsuite/ld-mips-elf/unaligned-ldpc-1.s: New test source.
* testsuite/ld-mips-elf/unaligned-ldpc-2.s: New test source.
* testsuite/ld-mips-elf/unaligned-ldpc-3.s: New test source.
* testsuite/ld-mips-elf/unaligned-ldpc-4.s: New test source.
* testsuite/ld-mips-elf/unaligned-syms.s: New test source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
During archive rescan to resolve symbol references for files added by
LTO, linker add_archive_element callback is called to check if an
archive element should added. After all IR symbols have been claimed,
linker won't claim new IR symbols and shouldn't add the LTO archive
element. This patch updates linker add_archive_element callback to
return FALSE when seeing an LTO archive element during rescan and
changes ELF linker to skip such archive element.
bfd/
PR ld/20103
* cofflink.c (coff_link_check_archive_element): Return TRUE if
linker add_archive_element callback returns FALSE.
* ecoff.c (ecoff_link_check_archive_element): Likewise.
* elf64-ia64-vms.c (elf64_vms_link_add_archive_symbols): Skip
archive element if linker add_archive_element callback returns
FALSE.
* elflink.c (elf_link_add_archive_symbols): Likewise.
* pdp11.c (aout_link_check_ar_symbols): Likewise.
* vms-alpha.c (alpha_vms_link_add_archive_symbols): Likewise.
* xcofflink.c (xcoff_link_check_dynamic_ar_symbols): Likewise.
(xcoff_link_check_ar_symbols): Likewise.
ld/
PR ld/20103
* ldmain.c (add_archive_element): Don't claim new IR symbols
after all IR symbols have been claimed.
* plugin.c (plugin_call_claim_file): Remove no_more_claiming
check.
* testsuite/ld-plugin/lto.exp (pr20103): New proc.
Run PR ld/20103 tests.
* testsuite/ld-plugin/pr20103a.c: New file.
* testsuite/ld-plugin/pr20103b.c: Likewise.
* testsuite/ld-plugin/pr20103c.c: Likewise.
Do not convert jump relocs against local MIPS16 or microMIPS symbols to
refer to a section symbol instead even on RELA targets, as it makes it
impossible for the linker to make a JAL to JALX conversion based on ISA
symbol annotation, breaking regular and compressed MIPS interlinking.
gas/
* config/tc-mips.c (mips_fix_adjustable): Also return 0 for
jump relocations against MIPS16 or microMIPS symbols on RELA
targets.
* testsuite/gas/mips/jalx-local.d: New test.
* testsuite/gas/mips/jalx-local-n32.d: New test.
* testsuite/gas/mips/jalx-local-n64.d: New test.
* testsuite/gas/mips/jalx-local.s: New test source.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-mips-elf/jalx-local.d: New test.
* testsuite/ld-mips-elf/jalx-local-n32.d: New test.
* testsuite/ld-mips-elf/jalx-local-n64.d: New test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
2016-05-23 Thomas Preud'homme <thomas.preudhomme@arm.com>
bfd/
* bfd-in.h (bfd_elf32_arm_keep_private_stub_output_sections): Declare
bfd hook.
* bfd-in2.h: Regenerate.
* elf32-arm.c (arm_dedicated_stub_output_section_required): New
function.
(arm_dedicated_stub_output_section_required_alignment): Likewise.
(arm_dedicated_stub_output_section_name): Likewise.
(arm_dedicated_stub_input_section_ptr): Likewise.
(elf32_arm_create_or_find_stub_sec): Add stub type parameter and
function description comment. Add support for dedicated output stub
section to given stub types.
(elf32_arm_add_stub): Add a stub type parameter and pass it down to
elf32_arm_create_or_find_stub_sec.
(elf32_arm_create_stub): Pass stub type down to elf32_arm_add_stub.
(elf32_arm_size_stubs): Pass stub type when calling
elf32_arm_create_or_find_stub_sec for Cortex-A8 erratum veneers.
(bfd_elf32_arm_keep_private_stub_output_sections): New function.
ld/
* emultempl/armelf.em (arm_elf_before_allocation): Call
bfd_elf32_arm_keep_private_stub_output_sections before generic
before_allocation function.
The microMIPS JALX instruction shares the R_MICROMIPS_26_S1 relocation
with microMIPS J/JAL/JALS instructions, however unlike the latters its
encoded immediate argument is unusually shifted left by 2 rather than 1
in calculating the value used for the operation requested.
We already handle this exception in `mips_elf_calculate_relocation' in
LD, in a scenario where JALX is produced as a result of relaxing JAL for
the purpose of making a cross-mode jump. We also get it right in the
disassembler in `decode_micromips_operand'.
What we don't correctly do however is processing microMIPS JALX produced
by GAS from an assembly source, where a non-zero constant argument or a
symbol reference with a non-zero in-place addend has been used. In this
case the same calculation is made as for microMIPS J/JAL/JALS, causing
the wrong encoding to be produced by GAS on making an object file, and
then again by LD in the final link. The latter in particular causes the
calculation, where the addend fits in the relocatable field, to produce
different final addresses for the same source code depending on whether
REL or RELA relocations are used.
Correct these issues by special-casing microMIPS JALX in the places that
have been previously missed.
bfd/
* elfxx-mips.c (mips_elf_read_rel_addend): Adjust the addend for
microMIPS JALX.
gas/
* config/tc-mips.c (append_insn): Correct the encoding of a
constant argument for microMIPS JALX.
(tc_gen_reloc): Correct the encoding of an in-place addend for
microMIPS JALX.
* testsuite/gas/mips/jalx-addend.d: New test.
* testsuite/gas/mips/jalx-addend-n32.d: New test.
* testsuite/gas/mips/jalx-addend-n64.d: New test.
* testsuite/gas/mips/jalx-imm.d: New test.
* testsuite/gas/mips/jalx-imm-n32.d: New test.
* testsuite/gas/mips/jalx-imm-n64.d: New test.
* testsuite/gas/mips/jalx-addend.s: New test source.
* testsuite/gas/mips/jalx-imm.s: New test source.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-mips-elf/jalx-addend.d: New test.
* testsuite/ld-mips-elf/jalx-addend-n32.d: New test.
* testsuite/ld-mips-elf/jalx-addend-n64.d: New test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
Don't convert R_386_GOT32 since we can't tell if it is applied
to "mov $foo@GOT, %reg" which isn't a load via GOT.
bfd/
PR ld/20117
* elf32-i386.c (elf_i386_convert_load_reloc): Don't check
R_386_GOT32X.
(elf_i386_convert_load): Don't convert R_386_GOT32.
ld/
PR ld/20117
* testsuite/ld-i386/i386.exp: Run pr20117.
* testsuite/ld-i386/pr19609-1i.d: Updated.
* testsuite/ld-i386/pr20117.d: New file.
* testsuite/ld-i386/pr20117.s: Likewise.
2016-05-19 Cupertino Miranda <cmiranda@synopsys.com>
* emulparams/arcelf.sh: Changed.
* emulparams/arclinux.sh: Likewise.
* scripttempl/arclinux.sc: Moved to a more standard implementation
similar to elf.sc.
The `am34-*-linux*' target cannot be configured for, `am34' is not a CPU
name recognized by `config.sub'. It has never been, required code has
not been contributed to GNU config, neither before nor since the
addition of the target triplet to our configury with commit bfff164249
("Add MN10300 linker relaxation support for symbol differences") back in
2007. Also there is no difference in actual tool configuration between
the `am34-*-linux*' and `am33_2.0-*-linux*' targets, except from a
different executable prefix and tooldir name.
Given the above remove the target triplet from our configuration.
bfd/
* config.bfd: Remove `am34-*-linux*' support.
ld/
* configure.tgt: Remove `am34-*-linux*' support.
A different set of hacks to make the crossref tests pass on powerpc64
and powerpc64le.
* testsuite/ld-scripts/crossref.exp: Remove -mcall-aixdesc hack.
* testsuite/ld-scripts/cross2.t: Tweak .opd and .toc placement.
* testsuite/ld-scripts/cross3.t: Likewise.
* testsuite/ld-scripts/cross4.t: Likewise.
* testsuite/ld-scripts/cross5.t: Likewise.
* testsuite/ld-scripts/cross6.t: Likewise.
* testsuite/ld-scripts/cross7.t: Likewise.
Tweaks to make it easier to re-run these testcases by hand.
* testsuite/ld-elf/shared.exp (mix_pic_and_non_pic): Pass in
exe name rather than constructing testname. Fix typo in
sub-test name. Log copying. Use -rpath rather than -R.
* scripttempl/ft32.sc: Use fixed constants for memory region
lengths. Include DWARF debug sections.
(.data .bss): Do not assign locations during relocatable links.
* testsuite/ld-elf/compressed1d.d: Skip for FT32.
* testsuite/ld-elf/sec-to-seg.exp: Likewise.
* testsuite/ld-elf/sec64k.exp: Likewise.
* testsuite/ld-elf/init-fini-array.d: XFail for FT32.
* testsuite/ld-elf/merge.d: Likewise.
* testsuite/ld-elf/orphan-region.d: Likewise.
* testsuite/ld-elf/orphan.s: Likewise.
* testsuite/ld-elf/orphan3.d: Likewise.
* testsuite/ld-elf/pr349.d: Likewise.
* testsuite/ld-elf/warn2.d: Likewise.
* testsuite/lib/ld-lib.exp (check_shared_lib_support): Note
that the FT32 does not support shared libraries.
The plugin is called to claim symbols in an archive element from
plugin_object_p. But those symbols aren't needed to create output.
They are defined and referenced only within IR. get_symbols should
return resolution based on IR symbol kinds.
PR ld/20070
* Makefile.am (noinst_LTLIBRARIES): Add libldtestplug4.la.
(libldtestplug4_la_SOURCES): New.
(libldtestplug4_la_CFLAGS): Likewise.
(libldtestplug4_la_LDFLAGS): Likewise.
* Makefile.in: Regenerated.
* plugin.c (get_symbols): Return resolution based on IR symbol
kinds for symbols defined/referenced only within IR.
* testplug4.c: New file.
* ld/testsuite/ld-plugin/pr20070.d: Likewise.
* ld/testsuite/ld-plugin/pr20070a.c: Likewise.
* ld/testsuite/ld-plugin/pr20070b.c: Likewise.
* testsuite/ld-plugin/plugin.exp (plugin4_name): New.
(plugin4_path): Likewise.
Add a test for ld/20070.
2016-05-10 Thomas Preud'homme <thomas.preudhomme@arm.com>
bfd/
* elf32-arm.c (elf32_arm_size_stubs): Use new macros
ARM_GET_SYM_BRANCH_TYPE and ARM_SET_SYM_BRANCH_TYPE to respectively get
and set branch type of a symbol.
(bfd_elf32_arm_process_before_allocation): Likewise.
(elf32_arm_relocate_section): Likewise and fix identation along the
way.
(allocate_dynrelocs_for_symbol): Likewise.
(elf32_arm_finish_dynamic_symbol): Likewise.
(elf32_arm_swap_symbol_in): Likewise.
(elf32_arm_swap_symbol_out): Likewise.
gas/
* config/tc-arm.c (arm_adjust_symtab): Use ARM_SET_SYM_BRANCH_TYPE to
set branch type of a symbol.
gdb/
* arm-tdep.c (arm_elf_make_msymbol_special): Use
ARM_GET_SYM_BRANCH_TYPE to get branch type of a symbol.
include/
* arm.h (enum arm_st_branch_type): Add new ST_BRANCH_ENUM_SIZE
enumerator.
(NUM_ENUM_ARM_ST_BRANCH_TYPE_BITS): New macro.
(ENUM_ARM_ST_BRANCH_TYPE_BITMASK): Likewise.
(ARM_SYM_BRANCH_TYPE): Replace by ...
(ARM_GET_SYM_BRANCH_TYPE): This and ...
(ARM_SET_SYM_BRANCH_TYPE): This in two versions depending on whether
BFD_ASSERT is defined or not.
ld/
* emultempl/armelf.em (gld${EMULATION_NAME}_finish): Use
ARM_GET_SYM_BRANCH_TYPE to get branch type of a symbol.
opcodes/
* arm-dis.c (get_sym_code_type): Use ARM_GET_SYM_BRANCH_TYPE to get
branch type of a symbol.
(print_insn): Likewise.
2016-05-10 Thomas Preud'homme <thomas.preudhomme@arm.com>
bfd/
* bfd-in.h (elf32_arm_size_stubs): Add an output section parameter.
* bfd-in2.h: Regenerated.
* elf32-arm.c (struct elf32_arm_link_hash_table): Add an output section
parameter to add_stub_section callback.
(elf32_arm_create_or_find_stub_sec): Get output section from link_sec
and pass it down to add_stub_section.
(elf32_arm_add_stub): Set section to stub_sec if NULL before using it
for error message.
(elf32_arm_size_stubs): Add output section parameter to
add_stub_section function pointer parameter.
ld/
* emultempl/armelf.em (elf32_arm_add_stub_section): Add output_section
parameter and rename input_section parameter to after_input_section.
Append input stub section to the output section if after_input_section
is NULL.
We don't want this to match .rela.text or similar.
* testsuite/ld-scripts/pr14962-2.t: Match .text, not *.text.
* testsuite/ld-scripts/rgn-at5.t: Similarly, .sec not *.sec.
* testsuite/ld-scripts/section-match-1.t: Likewise.
When a global symbol is defined in COMDAT group, we shouldn't leave an
undefined symbol in symbol table when the symbol section is discarded
unless there is a reference to the symbol outside of COMDAT group.
bfd/
PR ld/17550
* elf-bfd.h (elf_link_hash_entry): Update comments for indx,
documenting that indx == -3 if symbol is defined in a discarded
section.
* elflink.c (elf_link_add_object_symbols): Set indx to -3 if
symbol is defined in a discarded section.
(elf_link_output_extsym): Strip a global symbol defined in a
discarded section.
ld/
PR ld/17550
* testsuite/ld-elf/pr17550-1.s: New file.
* testsuite/ld-elf/pr17550-2.s: Likewise.
* testsuite/ld-elf/pr17550-3.s: Likewise.
* testsuite/ld-elf/pr17550-4.s: Likewise.
* testsuite/ld-elf/pr17550a.d: Likewise.
* testsuite/ld-elf/pr17550b.d: Likewise.
* testsuite/ld-elf/pr17550c.d: Likewise.
* testsuite/ld-elf/pr17550d.d: Likewise.
Some targets are only really, or at least regularly, regression-tested
in a crossed configuration. Currently we only have native compiled test
cases for the STB_GNU_UNIQUE feature in the linker test suite. This is
nice, covering run-time semantics even, but quite often not run at all.
Consequently a regression may remain unnoticed for long.
Add a simple test case then to provide basic linker coverage with no
need for a compiler or a native toolchain.
ld/
* testsuite/ld-unique/unique.d: New test.
* testsuite/ld-unique/unique.exp: Run the new test. Adjust
messages for compiled tests.
binutils* testsuite/lib/binutils-common.exp (is_elf_format): Add avr-*-*.
ld * testsuite/ld-elf/pr18735.d: Allow other symbols.
* testsuite/ld-elf/sec64k.exp: Skip 64ksec for avr.
* testsuite/ld-gc/pr14265.d: Allow other symbols.
* testsuite/ld-plugin/plugin.exp: Add PR ld/17973 to
plugin_tests only if check_shared_lib_support is true.
* testsuite/ld-selective/selective.exp: Add --section-start
flag for avr.
When handling absolute relocations for global symbols bind within the
shared object, AArch64 will generate one dynamic RELATIVE relocation,
but won't apply the value for this absolution relocations at static
linking stage. This is different from AArch64 gold linker and x86-64.
This is not a bug as AArch64 is RELA, there is only guarantee that
relocation addend is placed in the relocation entry. But some
system softwares originally writen for x86-64 might assume AArch64
bfd linker gets the same behavior as x86-64, then they could take
advantage of this buy skipping those RELATIVE dynamic relocations
if the load address is the same as the static linking address.
This patch makes AArch64 BFD linker applies absolution relocations at
static linking stage for scenario described above. Meanwhile old AArch64
android loader has a bug (PR19163) which relies on current linker behavior
as a workaround, so the same option --no-apply-dynamic-relocs added.
There is no need to download source if we aren't on remote host.
Otherwise, each ld test run on local host leaves behind a couple
test files.
* config/default.exp (NOPIE_CFLAGS): Download source only on
remote host.
(NOPIE_LDFLAGS): Likewise.
* testsuite/lib/ld-lib.exp (check_lto_available): Likewise.
(check_lto_fat_available): Likewise.
(check_lto_shared_available): Likewise.
(check_ifunc_available): Likewise.
(check_ifunc_attribute_available): Likewise.
Since not all ELF targets use the elf.em emulation to support ld option:
--compress-debug-sections=zlib-gnu, limit compressed1b.d to Linux/GNU
targets.
* testsuite/ld-elf/compressed1b.d: Only run for Linux/GNU targets.
Skip debug sections when estimating distances between output sections
since compressed_size is used to compress debug sections and debug
sections aren't excluded from distances between output sections.
bfd/
PR ld/20006
* elf64-x86-64.c (elf_x86_64_convert_load): Skip debug sections
when estimating distances between output sections.
ld/
PR ld/20006
* testsuite/ld-elfvsb/elfvsb.exp (COMPRESS_LDFLAG): New.
(visibility_run): Pass COMPRESS_LDFLAG to visibility_test on
ELF targets.
Since ld may generate compressed debug sections by default, pass
--compress-debug-sections=none to ld to avoid compressed debug
sections.
* ld-elf/compressed1b.d: Pass --compress-debug-sections=none
to ld.
* ld-elf/compressed1c.d: Likewise.
Check for LTO availability will hide LTO bugs in ld. Since GCC 4.9 adds
-ffat-lto-objects, we always run LTO tests on Linux with GCC 4.9 or newer.
* testsuite/lib/ld-lib.exp (check_lto_available): Return 1 on
Linux with GCC 4.9 or newer.
(check_lto_fat_available): Likewise.
(check_lto_shared_available): Likewise.
Fixes failures on hppa-linux and alpha-linux due to not merging
.data.* and .sdata into .data. cross3.t modified too since it is the
template for the NOCROSSREFS_TO scripts.
* testsuite/ld-scripts/cross3.t: Add commonly used data
and text section names to output section statements.
* testsuite/ld-scripts/cross4.t: Likewise.
* testsuite/ld-scripts/cross5.t: Likewise.
* testsuite/ld-scripts/cross6.t: Likewise.
* testsuite/ld-scripts/cross7.t: Likewise.
Move ELF relocation check after lang_gc_sections so that all the
reference counting code for plt and got relocs can be removed. This
only affects ELF targets which check relocations after opening all
input file.
* ldlang.c (lang_check_relocs): New function.
(lang_process): Call lang_check_relocs after lang_gc_sections.
* emultempl/elf32.em (gld${EMULATION_NAME}_before_parse): Don't
call _bfd_elf_link_check_relocs here.
There is no need for run-time relocation when converting pointers
in .eh_frame section to DW_EH_PE_pcrel encoding. R_386_NONE and
R_X86_64_NONE are expected since the space for run-time relocation
has been allocated. This is an optimization.
PR ld/19972
* testsuite/ld-elf/eh6.d: Pass -rW to readelf and check for
R_386_NONE or R_X86_64_NONE.
Since elf_x86_64_check_relocs is called after opening all input files,
we can detect dynamic R_X86_64_32 relocation overflow there.
bfd/
PR ld/19969
* elf64-x86-64.c (check_relocs_failed): New.
(elf_x86_64_need_pic): Moved before elf_x86_64_check_relocs.
Support relocation agaist local symbol. Set check_relocs_failed.
(elf_x86_64_check_relocs): Use elf_x86_64_need_pic. Check
R_X86_64_32 relocation overflow.
(elf_x86_64_relocate_section): Skip if check_relocs failed.
Update one elf_x86_64_need_pic and remove one elf_x86_64_need_pic.
ld/
PR ld/19969
* testsuite/ld-x86-64/pr19969.d: New file.
* testsuite/ld-x86-64/pr19969a.S: Likewise.
* testsuite/ld-x86-64/pr19969b.S: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run pr19969 tests.
Delaying checking ELF relocations until opening all input files so
that symbol information is final when relocations are checked. This
is only enabled for x86 targets.
bfd/
* elf-bfd.h (_bfd_elf_link_check_relocs): New.
* elflink.c (_bfd_elf_link_check_relocs): New function.
(elf_link_add_object_symbols): Call _bfd_elf_link_check_relocs
if check_relocs_after_open_input is FALSE.
include/
* bfdlink.h (bfd_link_info): Add check_relocs_after_open_input.
ld/
* emulparams/elf32_x86_64.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
New.
* emulparams/elf_i386.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_be.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_chaos.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_ldso.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_i386_vxworks.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/elf_x86_64.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/i386nto.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emultempl/elf32.em (gld${EMULATION_NAME}_before_parse):
Set check_relocs_after_open_input to TRUE if
CHECK_RELOCS_AFTER_OPEN_INPUT is yes.
(gld${EMULATION_NAME}_after_open): Call
_bfd_elf_link_check_relocs on all inputs if
check_relocs_after_open_input is TRUE.
This test checks run-time relocation overflow with GOT relocation and
32-bit relocation against the same symbol.
PR ld/19719
* testsuite/ld-x86-64/pr19719.d: New file.
* testsuite/ld-x86-64/pr19719.s: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run pr19719.
NOCROSSREFS_TO is similar to the existing NOCROSSREFS command but only
checks one direction of cross referencing.
ld/ChangeLog
* ld.texinfo: Document NOCROSSREFS_TO script command.
* ldlang.h (struct lang_nocrossrefs): Add onlyfirst field.
(lang_add_nocrossref_to): New prototype.
* ldcref.c (check_local_sym_xref): Use onlyfirst to only look for
symbols defined in the first section.
(check_nocrossref): Likewise.
* ldgram.y (NOCROSSREFS_TO): New script command.
* ldlang.c (lang_add_nocrossref): Set onlyfirst to FALSE.
(lang_add_nocrossref_to): New function.
* ldlex.l (NOCROSSREFS_TO): New token.
* NEWS: Mention NOCROSSREFS_TO.
* testsuite/ld-scripts/cross4.t: New file.
* testsuite/ld-scripts/cross5.t: Likewise.
* testsuite/ld-scripts/cross6.t: Likewise.
* testsuite/ld-scripts/cross7.t: Likewise.
* testsuite/ld-scripts/crossref.exp: Run 4 new NOCROSSREFS_TO
tests.
Add support for arc/nps400 cmem instructions, these load and store
instructions are hard-wired to access "0x57f00000 + 16-bit-offset".
Supporting this relocation required some additions to the arc relocation
handling in the bfd library, as well as the standard changes required to
add a new relocation type.
There's a test of the new instructions in the assembler, and a test of
the relocation in the linker.
bfd/ChangeLog:
* reloc.c: Add BFD_RELOC_ARC_NPS_CMEM16 entry.
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
* elf32-arc.c: Add 'opcode/arc.h' include.
(struct arc_relocation_data): Add symbol_name.
(arc_special_overflow_checks): New function.
(arc_do_relocation): Use arc_special_overflow_checks, reindent as
required, add an extra comment.
(elf_arc_relocate_section): Setup symbol_name in reloc_data.
gas/ChangeLog:
* testsuite/gas/arc/nps400-3.d: New file.
* testsuite/gas/arc/nps400-3.s: New file.
include/ChangeLog:
* elf/arc-reloc.def: Add ARC_NPS_CMEM16 reloc.
* opcode/arc.h (NPS_CMEM_HIGH_VALUE): Define.
ld/ChangeLog:
* testsuite/ld-arc/arc.exp: New file.
* testsuite/ld-arc/nps-1.s: New file.
* testsuite/ld-arc/nps-1a.d: New file.
* testsuite/ld-arc/nps-1b.d: New file.
* testsuite/ld-arc/nps-1b.err: New file.
opcodes/ChangeLog:
* arc-nps400-tbl.h: Add xldb, xldw, xld, xstb, xstw, and xst
instructions.
* arc-opc.c (insert_nps_cmem_uimm16): New function.
(extract_nps_cmem_uimm16): New function.
(arc_operands): Add NPS_XLDST_UIMM16 operand.
In some cases a variable could be left uninitialised and then an attempt
made to read this variable, resulting in a tcl error. This commit
initialises the variable in all cases.
ld/ChangeLog:
* testsuite/lib/ld-lib.exp (run_dump_test): Initialise
check_ld(terminal).
Since compiler may pass --as-needed to ld by default, link .o file
before .so file in x86-64 tests.
PR ld/19774
* testsuite/ld-x86-64/x86-64.exp: Link tmpdir/pr17689b.o before
tmpdir/pr17689.so, fix gotpcrel1 test and add more --as-needed
tests.
We shouldn't issue an error for read-only segment with dynamic IFUNC
relocations when dynamic relocations are against normal symbols.
bfd/
PR ld/19939
* elf-bfd.h (_bfd_elf_allocate_ifunc_dyn_relocs): Add a pointer
to bfd_boolean.
* elf-ifunc.c (_bfd_elf_allocate_ifunc_dyn_relocs): Updated.
Set *readonly_dynrelocs_against_ifunc_p to TRUE if dynamic reloc
applies to read-only section.
* elf32-i386.c (elf_i386_link_hash_table): Add
readonly_dynrelocs_against_ifunc.
(elf_i386_allocate_dynrelocs): Updated.
(elf_i386_size_dynamic_sections): Issue an error for read-only
segment with dynamic IFUNC relocations only if
readonly_dynrelocs_against_ifunc is TRUE.
* elf64-x86-64.c (elf_x86_64_link_hash_table): Add
readonly_dynrelocs_against_ifunc.
(elf_x86_64_allocate_dynrelocs): Updated.
(elf_x86_64_size_dynamic_sections): Issue an error for read-only
segment with dynamic IFUNC relocations only if
readonly_dynrelocs_against_ifunc is TRUE.
* elfnn-aarch64.c (elfNN_aarch64_allocate_ifunc_dynrelocs):
Updated.
ld/
PR ld/19939
* testsuite/ld-i386/i386.exp: Run PR ld/19939 tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr19939.s: New file.
* testsuite/ld-i386/pr19939a.d: Likewise.
* testsuite/ld-i386/pr19939b.d: Likewise.
* testsuite/ld-x86-64/pr19939.s: Likewise.
* testsuite/ld-x86-64/pr19939a.d: Likewise.
* testsuite/ld-x86-64/pr19939b.d: Likewise.
* ldlang.c (print_output_section_statement): Show minfo size
in target machine address units.
(print_reloc_statement): Likewise.
(print_padding_statement): Likewise.
(print_data_statement): Likewise. Ensure minimum print_dot
increment of one address unit.
When building with --enable-targets=all the target string is not set to
something that matches the pattern arc*-*, and so the script used to
decide if we should build big or little endian linker script currently
exits with an error.
This commit makes little endian linker script be the default, which will
be used when building for all targets, this matches the behaviour from
before I made the endianness switchable, when we only ever built little
endian linker scripts anyway.
ld/ChangeLog:
* emulparams/arc-endianness.sh: Make little endian default choice.
This aims to bring the linker for big-endian arc targets into line with
the linker for (the default) little endian arc targets.
The bulk of the changes are to extend the target pattern in the test
files from 'arc-*...' to 'arc*-*...' and so match both big and little
endian arc targets.
In the ld/emulparams/ directory the existing scripts checked for a
variable ARC_ENDIAN to switch between big and little endian targets,
however, this variable is never set up.
So, a new script snippet is introduced which sets up ARC_ENDIAN based on
the value of target, this snippet is then included from all of the
existing arc scripts.
The existing big-endian variants of all the scripts, which existed, but
were never used, are deleted in this commit.
ld/ChangeLog:
* emulparams/arc-endianness.sh: New file.
* emulparams/arcebelf.sh: Deleted.
* emulparams/arcebelf_prof.sh: Deleted.
* emulparams/arceblinux.sh: Deleted.
* emulparams/arceblinux_prof.sh: Deleted.
* emulparams/arcelf.sh: Include arc-endinness.sh.
* emulparams/arcelf_prof.sh: Include arc-endinness.sh.
* emulparams/arclinux.sh: Include arc-endinness.sh.
* emulparams/arclinux_prof.sh: Include arc-endinness.sh.
* emulparams/arcv2elf.sh: Include arc-endinness.sh.
* emulparams/arcv2elfx.sh: Include arc-endinness.sh.
* testsuite/ld-elf/compressed1d.d: Update pattern for big and
little endian arc targets.
* testsuite/ld-elf/eh-frame-hdr.d: Likewise.
* testsuite/ld-elf/group1.d: Likewise.
* testsuite/ld-elf/group3b.d: Likewise.
* testsuite/ld-elf/group8a.d: Likewise.
* testsuite/ld-elf/group8b.d: Likewise.
* testsuite/ld-elf/group9a.d: Likewise.
* testsuite/ld-elf/group9b.d: Likewise.
* testsuite/ld-elf/linkonce2.d: Likewise.
* testsuite/ld-elf/pr12851.d: Likewise.
* testsuite/ld-elf/pr12975.d: Likewise.
* testsuite/ld-elf/pr13177.d: Likewise.
* testsuite/ld-elf/pr13195.d: Likewise.
* testsuite/ld-elf/pr17615.d: Likewise.
* testsuite/ld-elf/pr19162.d: Likewise.
* testsuite/ld-elf/sec64k.exp: Likewise.
* testsuite/lib/ld-lib.exp: Likewise.
Always turn hidden and internal symbols which have a dynamic index into
local ones. This is required by the the ELF gABI[1]:
"A hidden symbol contained in a relocatable object must be either
removed or converted to STB_LOCAL binding by the link-editor when the
relocatable object is included in an executable file or shared object."
"An internal symbol contained in a relocatable object must be either
removed or converted to STB_LOCAL binding by the link-editor when the
relocatable object is included in an executable file or shared object."
The ELF linker usually respects this requirement, however in the case
where a dynamic symbol has been preallocated due to a reference of the
default export class aka visibility from the object being linked, and
then merged with a hidden or internal symbol definition from within the
same object, then the original export class is carried over to the
output dynamic symbol table, because while merging the generic ELF
linker only converts affected dynamic symbols to local when they are
defined or referenced by the object being linked and a dynamic object
involved in the link both at a time.
The dynamic symbol produced confuses then the dynamic loader at the run
time -- the hidden or internal export class is ignored and the symbol
follows preemption rules as with the default export class.
In the MIPS target it happens when `mips_elf_record_global_got_symbol'
creates a dynamic symbol when a call relocation is encountered.
Additionally if the undefined symbol referred by such a relocation does
specify the intended export class, then a local dynamic symbol is
created instead, which is harmless and allowed, but useless. Normally
no local dynamic symbols are created, except for a single dummy one at
the beginning.
Correct the problem by removing the extra check for a dynamic symbol
being defined or referenced by the object being linked and a dynamic
object involved in the link both at a time. The test cases included
cover the internal and hidden symbol cases, as well as a protected
symbol for a reference, the handling of which is unchanged by this fix.
Both cases described above are covered, that is where an internal or
hidden dynamic symbol is produced and where a local one is.
NB this change affects CRIS results where some symbols in the static
table produced in a final link are now converted from STV_HIDDEN to
STB_LOCAL. This happens whenever the `elf_backend_hide_symbol' handler
is called, so the affected symbols must have been chosen for entering
into the dynamic symbol table, except in these test cases no such symbol
table is produced. In fully linked binaries the static symbol table is
only used for debugging though, so such a change is fine.
References:
[1] "System V Application Binary Interface - DRAFT - 24 April 2001",
The Santa Cruz Operation, Inc., "Symbol Table",
<http://www.sco.com/developers/gabi/2001-04-24/ch4.symtab.html>
bfd/
PR ld/19908
* elflink.c (elf_link_add_object_symbols): Always turn hidden
and internal symbols which have a dynamic index into local
ones.
ld/
PR ld/19908
* testsuite/ld-cris/tls-e-20.d: Adjust for hidden symbol
handling fix.
* testsuite/ld-cris/tls-e-20a.d: Likewise.
* testsuite/ld-cris/tls-e-21.d: Likewise.
* testsuite/ld-cris/tls-e-23.d: Likewise.
* testsuite/ld-cris/tls-e-80.d: Likewise.
* testsuite/ld-cris/tls-gd-3h.d: Likewise.
* testsuite/ld-cris/tls-leie-19.d: Likewise.
* testsuite/ld-mips-elf/export-class-ref-lib.sd: New test.
* testsuite/ld-mips-elf/export-hidden-ref.sd: New test.
* testsuite/ld-mips-elf/export-internal-ref.sd: New test.
* testsuite/ld-mips-elf/export-protected-ref.sd: New test.
* testsuite/ld-mips-elf/export-class-ref-f0.s: New test source.
* testsuite/ld-mips-elf/export-class-ref-f1.s: New test source.
* testsuite/ld-mips-elf/export-class-ref-f2.s: New test source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
PR 19803
* emultempl/pe.em (change_undef): New function. Encapsulates
duplicated code in pe_fixup_stdcalls and adds the newly defined
sym to the gc root list.
(pe_fixup_stdcall): Use the new function.
* pe-dll.c (process_def_file_and_drectve); Add alias of exported
symbol to gc root list.
PR 19872
bfd * dwarf2.c (parse_comp_unit): Skip warning about unrecognised
version number if the version is zero.
bin * dwarf.c (display_debug_aranges): Skip warning about unrecognised
version number if the version is zero.
and one extraneous occurrence.
* ldlang.c (TO_ADDR, TO_SIZE, opb_shift): Move earlier in file.
(lang_insert_orphan): Use TO_ADDR in __stop sym calculation.
(print_input_section): Don't use TO_ADDR when printing section
size.
(lang_size_sections_1): Use TO_ADDR in overlay lma calculation.
(lang_size_sections): Use TO_ADDR in relro end calculation.
The options warning_output and error_output to the run_dump_test
function were incorrectly checking the return value from the regexp_diff
function, and so, as a result failing tests were showing as a pass.
Fixed in this commit.
ld/ChangeLog:
* testsuite/lib/ld-lib.exp (run_dump_test): Fix check of return
value from regexp_diff.
* testsuite/ld-elf/orphan-5.l: Fix expected output.
* testsuite/ld-elf/orphan-6.l: Likewise.
PR 18452
* ldlang.c (maybe_overlays): New static var.
(lang_size_sections_1): Set it here.
(struct check_sec): New.
(sort_sections_by_lma): Adjust for array of structs.
(sort_sections_by_vma): New function.
(lang_check_section_addresses): Check both LMA and VMA for overlap.
* testsuite/ld-scripts/rgn-over7.d: Adjust.
Some places tested SEC_LOAD, others SEC_HAS_CONTENTS.
* ldlang.c (IS_TBSS): New macro, extracted from..
(IGNORE_SECTION): ..here.
(lang_size_sections_1): Use IS_TBSS and IGNORE_SECTION.
(lang_size_sections, lang_do_assignments_1): Use IS_TBSS.
PR ld/19803
* ldlang.c (lang_add_gc_name): New function. Adds the provided
symbol name to the list of gc symbols.
(lang_process): Call lang_add_gc_name with entry_symbol_default if
entry_symbol.name is NULL. Use lang_add_gc_name to add the init
and fini function names.
* pe-dll.c (process_def_file_and_drectve): Add exported names to
the gc symbol list.
* testsuite/ld-pe/pr19803.s: Do not export _testval symbol.
* testsuite/ld-pe/pr19803.d: Tweak expected output.
bfd * warning.m4 (GCC_WARN_CFLAGS): Only add -Wstack-usage if using a
sufficiently recent version of GCC.
* configure: Regenerate.
others * configure: Regenerate.
Symbols defined in PIE should be bound locally, the same as -shared
-Bsymbolic.
bfd/
PR ld/19827
* elf32-i386.c (elf_i386_check_relocs): Bind defined symbol
locally in PIE.
(elf_i386_relocate_section): Likewise.
* elf64-x86-64.c (elf_x86_64_check_relocs): Likewise.
(elf_x86_64_relocate_section): Likewise.
ld/
PR ld/19827
* testsuite/ld-i386/i386.exp: Run PR ld/19827 tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr19827.rd: New file.
* testsuite/ld-i386/pr19827a.S: Likewise.
* testsuite/ld-i386/pr19827b.S: Likewise.
* testsuite/ld-x86-64/pr19827.rd: Likewise.
* testsuite/ld-x86-64/pr19827a.S: Likewise.
* testsuite/ld-x86-64/pr19827b.S: Likewise.
Currently, it's not possible to manually set some of the v850 archs in
gdb:
(gdb) set architecture v850<TAB>
v850 (using old gcc ABI)
v850-rh850
v850e
v850e (using old gcc ABI)
v850e1
[...]
(gdb) set architecture v850 (using old gcc ABI)
Ambiguous item "v850 (using old gcc ABI)".
The problem is that "set architecture" is a GDB "enum command", and
GDB only considers an enum value to be the string up until the first
space. So writing "v850 (using old gcc ABI)" is the same as writing
"v850", and then that's not an unambiguous arch printable name prefix.
v850 is actually the only arch that has spaces in its printable name.
One can conveniently see that with e.g.:
(gdb) set max-completions unlimited
(gdb) complete set architecture
...
Rather than hack GDB into accepting this somehow, make v850 arch
printable names more like the printable names of the other archs, and
put the abi variant in the "machine" part, after a ':'.
We now get:
(gdb) set architecture v850<TAB>
v850:old-gcc-abi
v850:rh850
v850e
v850e1
v850e1:old-gcc-abi
v850e2
v850e2:old-gcc-abi
[...]
And now "set architecture v850:old-gcc-abi" works as expected.
I ran the binutils/gas/ld testsuites, and found no regressions. I
don't have a cross compiler handy, but I ran the gdb tests anyway,
which covers at least some snoke testing.
I think that the OUTPUT_ARCH in ld/scripttempl/v850.sc may have got
broken with the previous 2012 change, since I hacked v850_rh850.sc to
output "v850" and ld failed to grok it. I think it only works if the
old GCC ABI is the configured v850 default ABI. That's now fixed by
changing to use explicit v850:old-gcc-abi.
Also, this actually "fixes" an existing GDB test, which isn't likewise
expecting spaces in arch names, when GDB is configured for
--target=v850:
(gdb) FAIL: gdb.xml/tdesc-arch.exp: read valid architectures
bfd/ChangeLog:
2016-03-09 Pedro Alves <palves@redhat.com>
* cpu-v850.c (N): Append ":old-gcc-abi" instead of " (using old
gcc ABI)" to printable name.
* cpu-v850_rh850.c (bfd_v850_rh850_arch): Use "v850:rh850" instead
of "v850-rh850" as printable name.
ld/ChangeLog:
2016-03-09 Pedro Alves <palves@redhat.com>
* scripttempl/v850.sc: Use "v850:old-gcc-abi" as OUTPUT_ARCH.
* scripttempl/v850_rh850.sc: Use "v850:rh850" as OUTPUT_ARCH.