qemu-e2k/hw/pci.c

1849 lines
51 KiB
C
Raw Normal View History

/*
* QEMU PCI bus manager
*
* Copyright (c) 2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
//#define DEBUG_PCI
#define PCI_VENDOR_ID 0x00 /* 16 bits */
#define PCI_DEVICE_ID 0x02 /* 16 bits */
#define PCI_COMMAND 0x04 /* 16 bits */
#define PCI_COMMAND_IO 0x1 /* Enable response in I/O space */
#define PCI_COMMAND_MEMORY 0x2 /* Enable response in Memory space */
#define PCI_CLASS_DEVICE 0x0a /* Device class */
#define PCI_INTERRUPT_LINE 0x3c /* 8 bits */
#define PCI_INTERRUPT_PIN 0x3d /* 8 bits */
#define PCI_MIN_GNT 0x3e /* 8 bits */
#define PCI_MAX_LAT 0x3f /* 8 bits */
/* just used for simpler irq handling. */
#define PCI_DEVICES_MAX 64
#define PCI_IRQ_WORDS ((PCI_DEVICES_MAX + 31) / 32)
struct PCIBus {
int bus_num;
int devfn_min;
void (*set_irq)(PCIDevice *pci_dev, int irq_num, int level);
uint32_t config_reg; /* XXX: suppress */
/* low level pic */
SetIRQFunc *low_set_irq;
void *irq_opaque;
PCIDevice *devices[256];
};
target_phys_addr_t pci_mem_base;
static int pci_irq_index;
static uint32_t pci_irq_levels[4][PCI_IRQ_WORDS];
static PCIBus *first_bus;
static PCIBus *pci_register_bus(void)
{
PCIBus *bus;
bus = qemu_mallocz(sizeof(PCIBus));
first_bus = bus;
return bus;
}
void generic_pci_save(QEMUFile* f, void *opaque)
{
PCIDevice* s=(PCIDevice*)opaque;
qemu_put_buffer(f, s->config, 256);
}
int generic_pci_load(QEMUFile* f, void *opaque, int version_id)
{
PCIDevice* s=(PCIDevice*)opaque;
if (version_id != 1)
return -EINVAL;
qemu_get_buffer(f, s->config, 256);
return 0;
}
/* -1 for devfn means auto assign */
PCIDevice *pci_register_device(PCIBus *bus, const char *name,
int instance_size, int devfn,
PCIConfigReadFunc *config_read,
PCIConfigWriteFunc *config_write)
{
PCIDevice *pci_dev;
if (pci_irq_index >= PCI_DEVICES_MAX)
return NULL;
if (devfn < 0) {
for(devfn = bus->devfn_min ; devfn < 256; devfn += 8) {
if (!bus->devices[devfn])
goto found;
}
return NULL;
found: ;
}
pci_dev = qemu_mallocz(instance_size);
if (!pci_dev)
return NULL;
pci_dev->bus = bus;
pci_dev->devfn = devfn;
pstrcpy(pci_dev->name, sizeof(pci_dev->name), name);
if (!config_read)
config_read = pci_default_read_config;
if (!config_write)
config_write = pci_default_write_config;
pci_dev->config_read = config_read;
pci_dev->config_write = config_write;
pci_dev->irq_index = pci_irq_index++;
bus->devices[devfn] = pci_dev;
return pci_dev;
}
void pci_register_io_region(PCIDevice *pci_dev, int region_num,
uint32_t size, int type,
PCIMapIORegionFunc *map_func)
{
PCIIORegion *r;
if ((unsigned int)region_num >= PCI_NUM_REGIONS)
return;
r = &pci_dev->io_regions[region_num];
r->addr = -1;
r->size = size;
r->type = type;
r->map_func = map_func;
}
static void pci_addr_writel(void* opaque, uint32_t addr, uint32_t val)
{
PCIBus *s = opaque;
s->config_reg = val;
}
static uint32_t pci_addr_readl(void* opaque, uint32_t addr)
{
PCIBus *s = opaque;
return s->config_reg;
}
static void pci_update_mappings(PCIDevice *d)
{
PCIIORegion *r;
int cmd, i;
uint32_t last_addr, new_addr, config_ofs;
cmd = le16_to_cpu(*(uint16_t *)(d->config + PCI_COMMAND));
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
if (i == PCI_ROM_SLOT) {
config_ofs = 0x30;
} else {
config_ofs = 0x10 + i * 4;
}
if (r->size != 0) {
if (r->type & PCI_ADDRESS_SPACE_IO) {
if (cmd & PCI_COMMAND_IO) {
new_addr = le32_to_cpu(*(uint32_t *)(d->config +
config_ofs));
new_addr = new_addr & ~(r->size - 1);
last_addr = new_addr + r->size - 1;
/* NOTE: we have only 64K ioports on PC */
if (last_addr <= new_addr || new_addr == 0 ||
last_addr >= 0x10000) {
new_addr = -1;
}
} else {
new_addr = -1;
}
} else {
if (cmd & PCI_COMMAND_MEMORY) {
new_addr = le32_to_cpu(*(uint32_t *)(d->config +
config_ofs));
/* the ROM slot has a specific enable bit */
if (i == PCI_ROM_SLOT && !(new_addr & 1))
goto no_mem_map;
new_addr = new_addr & ~(r->size - 1);
last_addr = new_addr + r->size - 1;
/* NOTE: we do not support wrapping */
/* XXX: as we cannot support really dynamic
mappings, we handle specific values as invalid
mappings. */
if (last_addr <= new_addr || new_addr == 0 ||
last_addr == -1) {
new_addr = -1;
}
} else {
no_mem_map:
new_addr = -1;
}
}
/* now do the real mapping */
if (new_addr != r->addr) {
if (r->addr != -1) {
if (r->type & PCI_ADDRESS_SPACE_IO) {
int class;
/* NOTE: specific hack for IDE in PC case:
only one byte must be mapped. */
class = d->config[0x0a] | (d->config[0x0b] << 8);
if (class == 0x0101 && r->size == 4) {
isa_unassign_ioport(r->addr + 2, 1);
} else {
isa_unassign_ioport(r->addr, r->size);
}
} else {
cpu_register_physical_memory(r->addr + pci_mem_base,
r->size,
IO_MEM_UNASSIGNED);
}
}
r->addr = new_addr;
if (r->addr != -1) {
r->map_func(d, i, r->addr, r->size, r->type);
}
}
}
}
}
uint32_t pci_default_read_config(PCIDevice *d,
uint32_t address, int len)
{
uint32_t val;
switch(len) {
case 1:
val = d->config[address];
break;
case 2:
val = le16_to_cpu(*(uint16_t *)(d->config + address));
break;
default:
case 4:
val = le32_to_cpu(*(uint32_t *)(d->config + address));
break;
}
return val;
}
void pci_default_write_config(PCIDevice *d,
uint32_t address, uint32_t val, int len)
{
int can_write, i;
uint32_t end, addr;
if (len == 4 && ((address >= 0x10 && address < 0x10 + 4 * 6) ||
(address >= 0x30 && address < 0x34))) {
PCIIORegion *r;
int reg;
if ( address >= 0x30 ) {
reg = PCI_ROM_SLOT;
}else{
reg = (address - 0x10) >> 2;
}
r = &d->io_regions[reg];
if (r->size == 0)
goto default_config;
/* compute the stored value */
if (reg == PCI_ROM_SLOT) {
/* keep ROM enable bit */
val &= (~(r->size - 1)) | 1;
} else {
val &= ~(r->size - 1);
val |= r->type;
}
*(uint32_t *)(d->config + address) = cpu_to_le32(val);
pci_update_mappings(d);
return;
}
default_config:
/* not efficient, but simple */
addr = address;
for(i = 0; i < len; i++) {
/* default read/write accesses */
switch(d->config[0x0e]) {
case 0x00:
case 0x80:
switch(addr) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0e:
case 0x10 ... 0x27: /* base */
case 0x30 ... 0x33: /* rom */
case 0x3d:
can_write = 0;
break;
default:
can_write = 1;
break;
}
break;
default:
case 0x01:
switch(addr) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0e:
case 0x38 ... 0x3b: /* rom */
case 0x3d:
can_write = 0;
break;
default:
can_write = 1;
break;
}
break;
}
if (can_write) {
d->config[addr] = val;
}
addr++;
val >>= 8;
}
end = address + len;
if (end > PCI_COMMAND && address < (PCI_COMMAND + 2)) {
/* if the command register is modified, we must modify the mappings */
pci_update_mappings(d);
}
}
static void pci_data_write(void *opaque, uint32_t addr,
uint32_t val, int len)
{
PCIBus *s = opaque;
PCIDevice *pci_dev;
int config_addr, bus_num;
#if defined(DEBUG_PCI) && 0
printf("pci_data_write: addr=%08x val=%08x len=%d\n",
s->config_reg, val, len);
#endif
if (!(s->config_reg & (1 << 31))) {
return;
}
bus_num = (s->config_reg >> 16) & 0xff;
if (bus_num != 0)
return;
pci_dev = s->devices[(s->config_reg >> 8) & 0xff];
if (!pci_dev)
return;
config_addr = (s->config_reg & 0xfc) | (addr & 3);
#if defined(DEBUG_PCI)
printf("pci_config_write: %s: addr=%02x val=%08x len=%d\n",
pci_dev->name, config_addr, val, len);
#endif
pci_dev->config_write(pci_dev, config_addr, val, len);
}
static uint32_t pci_data_read(void *opaque, uint32_t addr,
int len)
{
PCIBus *s = opaque;
PCIDevice *pci_dev;
int config_addr, bus_num;
uint32_t val;
if (!(s->config_reg & (1 << 31)))
goto fail;
bus_num = (s->config_reg >> 16) & 0xff;
if (bus_num != 0)
goto fail;
pci_dev = s->devices[(s->config_reg >> 8) & 0xff];
if (!pci_dev) {
fail:
switch(len) {
case 1:
val = 0xff;
break;
case 2:
val = 0xffff;
break;
default:
case 4:
val = 0xffffffff;
break;
}
goto the_end;
}
config_addr = (s->config_reg & 0xfc) | (addr & 3);
val = pci_dev->config_read(pci_dev, config_addr, len);
#if defined(DEBUG_PCI)
printf("pci_config_read: %s: addr=%02x val=%08x len=%d\n",
pci_dev->name, config_addr, val, len);
#endif
the_end:
#if defined(DEBUG_PCI) && 0
printf("pci_data_read: addr=%08x val=%08x len=%d\n",
s->config_reg, val, len);
#endif
return val;
}
static void pci_data_writeb(void* opaque, uint32_t addr, uint32_t val)
{
pci_data_write(opaque, addr, val, 1);
}
static void pci_data_writew(void* opaque, uint32_t addr, uint32_t val)
{
pci_data_write(opaque, addr, val, 2);
}
static void pci_data_writel(void* opaque, uint32_t addr, uint32_t val)
{
pci_data_write(opaque, addr, val, 4);
}
static uint32_t pci_data_readb(void* opaque, uint32_t addr)
{
return pci_data_read(opaque, addr, 1);
}
static uint32_t pci_data_readw(void* opaque, uint32_t addr)
{
return pci_data_read(opaque, addr, 2);
}
static uint32_t pci_data_readl(void* opaque, uint32_t addr)
{
return pci_data_read(opaque, addr, 4);
}
/* i440FX PCI bridge */
static void piix3_set_irq(PCIDevice *pci_dev, int irq_num, int level);
PCIBus *i440fx_init(void)
{
PCIBus *s;
PCIDevice *d;
s = pci_register_bus();
s->set_irq = piix3_set_irq;
register_ioport_write(0xcf8, 4, 4, pci_addr_writel, s);
register_ioport_read(0xcf8, 4, 4, pci_addr_readl, s);
register_ioport_write(0xcfc, 4, 1, pci_data_writeb, s);
register_ioport_write(0xcfc, 4, 2, pci_data_writew, s);
register_ioport_write(0xcfc, 4, 4, pci_data_writel, s);
register_ioport_read(0xcfc, 4, 1, pci_data_readb, s);
register_ioport_read(0xcfc, 4, 2, pci_data_readw, s);
register_ioport_read(0xcfc, 4, 4, pci_data_readl, s);
d = pci_register_device(s, "i440FX", sizeof(PCIDevice), 0,
NULL, NULL);
d->config[0x00] = 0x86; // vendor_id
d->config[0x01] = 0x80;
d->config[0x02] = 0x37; // device_id
d->config[0x03] = 0x12;
d->config[0x08] = 0x02; // revision
d->config[0x0a] = 0x00; // class_sub = host2pci
d->config[0x0b] = 0x06; // class_base = PCI_bridge
d->config[0x0e] = 0x00; // header_type
return s;
}
/* PIIX3 PCI to ISA bridge */
typedef struct PIIX3State {
PCIDevice dev;
} PIIX3State;
PIIX3State *piix3_state;
/* return the global irq number corresponding to a given device irq
pin. We could also use the bus number to have a more precise
mapping. */
static inline int pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
{
int slot_addend;
slot_addend = (pci_dev->devfn >> 3) - 1;
return (irq_num + slot_addend) & 3;
}
static inline int get_pci_irq_level(int irq_num)
{
int pic_level;
#if (PCI_IRQ_WORDS == 2)
pic_level = ((pci_irq_levels[irq_num][0] |
pci_irq_levels[irq_num][1]) != 0);
#else
{
int i;
pic_level = 0;
for(i = 0; i < PCI_IRQ_WORDS; i++) {
if (pci_irq_levels[irq_num][i]) {
pic_level = 1;
break;
}
}
}
#endif
return pic_level;
}
static void piix3_set_irq(PCIDevice *pci_dev, int irq_num, int level)
{
int irq_index, shift, pic_irq, pic_level;
uint32_t *p;
irq_num = pci_slot_get_pirq(pci_dev, irq_num);
irq_index = pci_dev->irq_index;
p = &pci_irq_levels[irq_num][irq_index >> 5];
shift = (irq_index & 0x1f);
*p = (*p & ~(1 << shift)) | (level << shift);
/* now we change the pic irq level according to the piix irq mappings */
/* XXX: optimize */
pic_irq = piix3_state->dev.config[0x60 + irq_num];
if (pic_irq < 16) {
/* the pic level is the logical OR of all the PCI irqs mapped
to it */
pic_level = 0;
if (pic_irq == piix3_state->dev.config[0x60])
pic_level |= get_pci_irq_level(0);
if (pic_irq == piix3_state->dev.config[0x61])
pic_level |= get_pci_irq_level(1);
if (pic_irq == piix3_state->dev.config[0x62])
pic_level |= get_pci_irq_level(2);
if (pic_irq == piix3_state->dev.config[0x63])
pic_level |= get_pci_irq_level(3);
pic_set_irq(pic_irq, pic_level);
}
}
static void piix3_reset(PIIX3State *d)
{
uint8_t *pci_conf = d->dev.config;
pci_conf[0x04] = 0x07; // master, memory and I/O
pci_conf[0x05] = 0x00;
pci_conf[0x06] = 0x00;
pci_conf[0x07] = 0x02; // PCI_status_devsel_medium
pci_conf[0x4c] = 0x4d;
pci_conf[0x4e] = 0x03;
pci_conf[0x4f] = 0x00;
pci_conf[0x60] = 0x80;
pci_conf[0x69] = 0x02;
pci_conf[0x70] = 0x80;
pci_conf[0x76] = 0x0c;
pci_conf[0x77] = 0x0c;
pci_conf[0x78] = 0x02;
pci_conf[0x79] = 0x00;
pci_conf[0x80] = 0x00;
pci_conf[0x82] = 0x00;
pci_conf[0xa0] = 0x08;
pci_conf[0xa0] = 0x08;
pci_conf[0xa2] = 0x00;
pci_conf[0xa3] = 0x00;
pci_conf[0xa4] = 0x00;
pci_conf[0xa5] = 0x00;
pci_conf[0xa6] = 0x00;
pci_conf[0xa7] = 0x00;
pci_conf[0xa8] = 0x0f;
pci_conf[0xaa] = 0x00;
pci_conf[0xab] = 0x00;
pci_conf[0xac] = 0x00;
pci_conf[0xae] = 0x00;
}
void piix3_init(PCIBus *bus)
{
PIIX3State *d;
uint8_t *pci_conf;
d = (PIIX3State *)pci_register_device(bus, "PIIX3", sizeof(PIIX3State),
-1, NULL, NULL);
register_savevm("PIIX3", 0, 1, generic_pci_save, generic_pci_load, d);
piix3_state = d;
pci_conf = d->dev.config;
pci_conf[0x00] = 0x86; // Intel
pci_conf[0x01] = 0x80;
pci_conf[0x02] = 0x00; // 82371SB PIIX3 PCI-to-ISA bridge (Step A1)
pci_conf[0x03] = 0x70;
pci_conf[0x0a] = 0x01; // class_sub = PCI_ISA
pci_conf[0x0b] = 0x06; // class_base = PCI_bridge
pci_conf[0x0e] = 0x80; // header_type = PCI_multifunction, generic
piix3_reset(d);
}
/* PREP pci init */
static inline void set_config(PCIBus *s, target_phys_addr_t addr)
{
int devfn, i;
for(i = 0; i < 11; i++) {
if ((addr & (1 << (11 + i))) != 0)
break;
}
devfn = ((addr >> 8) & 7) | (i << 3);
s->config_reg = 0x80000000 | (addr & 0xfc) | (devfn << 8);
}
static void PPC_PCIIO_writeb (void *opaque, target_phys_addr_t addr, uint32_t val)
{
PCIBus *s = opaque;
set_config(s, addr);
pci_data_write(s, addr, val, 1);
}
static void PPC_PCIIO_writew (void *opaque, target_phys_addr_t addr, uint32_t val)
{
PCIBus *s = opaque;
set_config(s, addr);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
pci_data_write(s, addr, val, 2);
}
static void PPC_PCIIO_writel (void *opaque, target_phys_addr_t addr, uint32_t val)
{
PCIBus *s = opaque;
set_config(s, addr);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
pci_data_write(s, addr, val, 4);
}
static uint32_t PPC_PCIIO_readb (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
set_config(s, addr);
val = pci_data_read(s, addr, 1);
return val;
}
static uint32_t PPC_PCIIO_readw (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
set_config(s, addr);
val = pci_data_read(s, addr, 2);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
return val;
}
static uint32_t PPC_PCIIO_readl (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
set_config(s, addr);
val = pci_data_read(s, addr, 4);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
static CPUWriteMemoryFunc *PPC_PCIIO_write[] = {
&PPC_PCIIO_writeb,
&PPC_PCIIO_writew,
&PPC_PCIIO_writel,
};
static CPUReadMemoryFunc *PPC_PCIIO_read[] = {
&PPC_PCIIO_readb,
&PPC_PCIIO_readw,
&PPC_PCIIO_readl,
};
static void prep_set_irq(PCIDevice *d, int irq_num, int level)
{
/* XXX: we do not simulate the hardware - we rely on the BIOS to
set correctly for irq line field */
pic_set_irq(d->config[PCI_INTERRUPT_LINE], level);
}
PCIBus *pci_prep_init(void)
{
PCIBus *s;
PCIDevice *d;
int PPC_io_memory;
s = pci_register_bus();
s->set_irq = prep_set_irq;
register_ioport_write(0xcf8, 4, 4, pci_addr_writel, s);
register_ioport_read(0xcf8, 4, 4, pci_addr_readl, s);
register_ioport_write(0xcfc, 4, 1, pci_data_writeb, s);
register_ioport_write(0xcfc, 4, 2, pci_data_writew, s);
register_ioport_write(0xcfc, 4, 4, pci_data_writel, s);
register_ioport_read(0xcfc, 4, 1, pci_data_readb, s);
register_ioport_read(0xcfc, 4, 2, pci_data_readw, s);
register_ioport_read(0xcfc, 4, 4, pci_data_readl, s);
PPC_io_memory = cpu_register_io_memory(0, PPC_PCIIO_read,
PPC_PCIIO_write, s);
cpu_register_physical_memory(0x80800000, 0x00400000, PPC_io_memory);
/* PCI host bridge */
d = pci_register_device(s, "PREP Host Bridge - Motorola Raven",
sizeof(PCIDevice), 0, NULL, NULL);
d->config[0x00] = 0x57; // vendor_id : Motorola
d->config[0x01] = 0x10;
d->config[0x02] = 0x01; // device_id : Raven
d->config[0x03] = 0x48;
d->config[0x08] = 0x00; // revision
d->config[0x0A] = 0x00; // class_sub = pci host
d->config[0x0B] = 0x06; // class_base = PCI_bridge
d->config[0x0C] = 0x08; // cache_line_size
d->config[0x0D] = 0x10; // latency_timer
d->config[0x0E] = 0x00; // header_type
d->config[0x34] = 0x00; // capabilities_pointer
return s;
}
/* Grackle PCI host */
static void pci_grackle_config_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
s->config_reg = val;
}
static uint32_t pci_grackle_config_readl (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = s->config_reg;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
static CPUWriteMemoryFunc *pci_grackle_config_write[] = {
&pci_grackle_config_writel,
&pci_grackle_config_writel,
&pci_grackle_config_writel,
};
static CPUReadMemoryFunc *pci_grackle_config_read[] = {
&pci_grackle_config_readl,
&pci_grackle_config_readl,
&pci_grackle_config_readl,
};
static void pci_grackle_writeb (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
pci_data_write(s, addr, val, 1);
}
static void pci_grackle_writew (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
pci_data_write(s, addr, val, 2);
}
static void pci_grackle_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
pci_data_write(s, addr, val, 4);
}
static uint32_t pci_grackle_readb (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr, 1);
return val;
}
static uint32_t pci_grackle_readw (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr, 2);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
return val;
}
static uint32_t pci_grackle_readl (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr, 4);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
static CPUWriteMemoryFunc *pci_grackle_write[] = {
&pci_grackle_writeb,
&pci_grackle_writew,
&pci_grackle_writel,
};
static CPUReadMemoryFunc *pci_grackle_read[] = {
&pci_grackle_readb,
&pci_grackle_readw,
&pci_grackle_readl,
};
void pci_set_pic(PCIBus *bus, SetIRQFunc *set_irq, void *irq_opaque)
{
bus->low_set_irq = set_irq;
bus->irq_opaque = irq_opaque;
}
/* XXX: we do not simulate the hardware - we rely on the BIOS to
set correctly for irq line field */
static void pci_set_irq_simple(PCIDevice *d, int irq_num, int level)
{
PCIBus *s = d->bus;
s->low_set_irq(s->irq_opaque, d->config[PCI_INTERRUPT_LINE], level);
}
PCIBus *pci_grackle_init(uint32_t base)
{
PCIBus *s;
PCIDevice *d;
int pci_mem_config, pci_mem_data;
s = pci_register_bus();
s->set_irq = pci_set_irq_simple;
pci_mem_config = cpu_register_io_memory(0, pci_grackle_config_read,
pci_grackle_config_write, s);
pci_mem_data = cpu_register_io_memory(0, pci_grackle_read,
pci_grackle_write, s);
cpu_register_physical_memory(base, 0x1000, pci_mem_config);
cpu_register_physical_memory(base + 0x00200000, 0x1000, pci_mem_data);
d = pci_register_device(s, "Grackle host bridge", sizeof(PCIDevice),
0, NULL, NULL);
d->config[0x00] = 0x57; // vendor_id
d->config[0x01] = 0x10;
d->config[0x02] = 0x02; // device_id
d->config[0x03] = 0x00;
d->config[0x08] = 0x00; // revision
d->config[0x09] = 0x01;
d->config[0x0a] = 0x00; // class_sub = host
d->config[0x0b] = 0x06; // class_base = PCI_bridge
d->config[0x0e] = 0x00; // header_type
d->config[0x18] = 0x00; // primary_bus
d->config[0x19] = 0x01; // secondary_bus
d->config[0x1a] = 0x00; // subordinate_bus
d->config[0x1c] = 0x00;
d->config[0x1d] = 0x00;
d->config[0x20] = 0x00; // memory_base
d->config[0x21] = 0x00;
d->config[0x22] = 0x01; // memory_limit
d->config[0x23] = 0x00;
d->config[0x24] = 0x00; // prefetchable_memory_base
d->config[0x25] = 0x00;
d->config[0x26] = 0x00; // prefetchable_memory_limit
d->config[0x27] = 0x00;
#if 0
/* PCI2PCI bridge same values as PearPC - check this */
d->config[0x00] = 0x11; // vendor_id
d->config[0x01] = 0x10;
d->config[0x02] = 0x26; // device_id
d->config[0x03] = 0x00;
d->config[0x08] = 0x02; // revision
d->config[0x0a] = 0x04; // class_sub = pci2pci
d->config[0x0b] = 0x06; // class_base = PCI_bridge
d->config[0x0e] = 0x01; // header_type
d->config[0x18] = 0x0; // primary_bus
d->config[0x19] = 0x1; // secondary_bus
d->config[0x1a] = 0x1; // subordinate_bus
d->config[0x1c] = 0x10; // io_base
d->config[0x1d] = 0x20; // io_limit
d->config[0x20] = 0x80; // memory_base
d->config[0x21] = 0x80;
d->config[0x22] = 0x90; // memory_limit
d->config[0x23] = 0x80;
d->config[0x24] = 0x00; // prefetchable_memory_base
d->config[0x25] = 0x84;
d->config[0x26] = 0x00; // prefetchable_memory_limit
d->config[0x27] = 0x85;
#endif
return s;
}
/* Uninorth PCI host (for all Mac99 and newer machines */
static void pci_unin_main_config_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
int i;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
for (i = 11; i < 32; i++) {
if ((val & (1 << i)) != 0)
break;
}
#if 0
s->config_reg = 0x80000000 | (1 << 16) | (val & 0x7FC) | (i << 11);
#else
s->config_reg = 0x80000000 | (0 << 16) | (val & 0x7FC) | (i << 11);
#endif
}
static uint32_t pci_unin_main_config_readl (void *opaque,
target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
int devfn;
devfn = (s->config_reg >> 8) & 0xFF;
val = (1 << (devfn >> 3)) | ((devfn & 0x07) << 8) | (s->config_reg & 0xFC);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
static CPUWriteMemoryFunc *pci_unin_main_config_write[] = {
&pci_unin_main_config_writel,
&pci_unin_main_config_writel,
&pci_unin_main_config_writel,
};
static CPUReadMemoryFunc *pci_unin_main_config_read[] = {
&pci_unin_main_config_readl,
&pci_unin_main_config_readl,
&pci_unin_main_config_readl,
};
static void pci_unin_main_writeb (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
pci_data_write(s, addr & 7, val, 1);
}
static void pci_unin_main_writew (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
pci_data_write(s, addr & 7, val, 2);
}
static void pci_unin_main_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
pci_data_write(s, addr & 7, val, 4);
}
static uint32_t pci_unin_main_readb (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr & 7, 1);
return val;
}
static uint32_t pci_unin_main_readw (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr & 7, 2);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
return val;
}
static uint32_t pci_unin_main_readl (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr, 4);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
static CPUWriteMemoryFunc *pci_unin_main_write[] = {
&pci_unin_main_writeb,
&pci_unin_main_writew,
&pci_unin_main_writel,
};
static CPUReadMemoryFunc *pci_unin_main_read[] = {
&pci_unin_main_readb,
&pci_unin_main_readw,
&pci_unin_main_readl,
};
#if 0
static void pci_unin_config_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
s->config_reg = 0x80000000 | (val & ~0x00000001);
}
static uint32_t pci_unin_config_readl (void *opaque,
target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = (s->config_reg | 0x00000001) & ~0x80000000;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
static CPUWriteMemoryFunc *pci_unin_config_write[] = {
&pci_unin_config_writel,
&pci_unin_config_writel,
&pci_unin_config_writel,
};
static CPUReadMemoryFunc *pci_unin_config_read[] = {
&pci_unin_config_readl,
&pci_unin_config_readl,
&pci_unin_config_readl,
};
static void pci_unin_writeb (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
pci_data_write(s, addr & 3, val, 1);
}
static void pci_unin_writew (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
pci_data_write(s, addr & 3, val, 2);
}
static void pci_unin_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
pci_data_write(s, addr & 3, val, 4);
}
static uint32_t pci_unin_readb (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr & 3, 1);
return val;
}
static uint32_t pci_unin_readw (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr & 3, 2);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
return val;
}
static uint32_t pci_unin_readl (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr & 3, 4);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
static CPUWriteMemoryFunc *pci_unin_write[] = {
&pci_unin_writeb,
&pci_unin_writew,
&pci_unin_writel,
};
static CPUReadMemoryFunc *pci_unin_read[] = {
&pci_unin_readb,
&pci_unin_readw,
&pci_unin_readl,
};
#endif
PCIBus *pci_pmac_init(void)
{
PCIBus *s;
PCIDevice *d;
int pci_mem_config, pci_mem_data;
/* Use values found on a real PowerMac */
/* Uninorth main bus */
s = pci_register_bus();
s->set_irq = pci_set_irq_simple;
pci_mem_config = cpu_register_io_memory(0, pci_unin_main_config_read,
pci_unin_main_config_write, s);
pci_mem_data = cpu_register_io_memory(0, pci_unin_main_read,
pci_unin_main_write, s);
cpu_register_physical_memory(0xf2800000, 0x1000, pci_mem_config);
cpu_register_physical_memory(0xf2c00000, 0x1000, pci_mem_data);
s->devfn_min = 11 << 3;
d = pci_register_device(s, "Uni-north main", sizeof(PCIDevice),
11 << 3, NULL, NULL);
d->config[0x00] = 0x6b; // vendor_id : Apple
d->config[0x01] = 0x10;
d->config[0x02] = 0x1F; // device_id
d->config[0x03] = 0x00;
d->config[0x08] = 0x00; // revision
d->config[0x0A] = 0x00; // class_sub = pci host
d->config[0x0B] = 0x06; // class_base = PCI_bridge
d->config[0x0C] = 0x08; // cache_line_size
d->config[0x0D] = 0x10; // latency_timer
d->config[0x0E] = 0x00; // header_type
d->config[0x34] = 0x00; // capabilities_pointer
#if 0 // XXX: not activated as PPC BIOS doesn't handle mutiple buses properly
/* pci-to-pci bridge */
d = pci_register_device("Uni-north bridge", sizeof(PCIDevice), 0, 13 << 3,
NULL, NULL);
d->config[0x00] = 0x11; // vendor_id : TI
d->config[0x01] = 0x10;
d->config[0x02] = 0x26; // device_id
d->config[0x03] = 0x00;
d->config[0x08] = 0x05; // revision
d->config[0x0A] = 0x04; // class_sub = pci2pci
d->config[0x0B] = 0x06; // class_base = PCI_bridge
d->config[0x0C] = 0x08; // cache_line_size
d->config[0x0D] = 0x20; // latency_timer
d->config[0x0E] = 0x01; // header_type
d->config[0x18] = 0x01; // primary_bus
d->config[0x19] = 0x02; // secondary_bus
d->config[0x1A] = 0x02; // subordinate_bus
d->config[0x1B] = 0x20; // secondary_latency_timer
d->config[0x1C] = 0x11; // io_base
d->config[0x1D] = 0x01; // io_limit
d->config[0x20] = 0x00; // memory_base
d->config[0x21] = 0x80;
d->config[0x22] = 0x00; // memory_limit
d->config[0x23] = 0x80;
d->config[0x24] = 0x01; // prefetchable_memory_base
d->config[0x25] = 0x80;
d->config[0x26] = 0xF1; // prefectchable_memory_limit
d->config[0x27] = 0x7F;
// d->config[0x34] = 0xdc // capabilities_pointer
#endif
#if 0 // XXX: not needed for now
/* Uninorth AGP bus */
s = &pci_bridge[1];
pci_mem_config = cpu_register_io_memory(0, pci_unin_config_read,
pci_unin_config_write, s);
pci_mem_data = cpu_register_io_memory(0, pci_unin_read,
pci_unin_write, s);
cpu_register_physical_memory(0xf0800000, 0x1000, pci_mem_config);
cpu_register_physical_memory(0xf0c00000, 0x1000, pci_mem_data);
d = pci_register_device("Uni-north AGP", sizeof(PCIDevice), 0, 11 << 3,
NULL, NULL);
d->config[0x00] = 0x6b; // vendor_id : Apple
d->config[0x01] = 0x10;
d->config[0x02] = 0x20; // device_id
d->config[0x03] = 0x00;
d->config[0x08] = 0x00; // revision
d->config[0x0A] = 0x00; // class_sub = pci host
d->config[0x0B] = 0x06; // class_base = PCI_bridge
d->config[0x0C] = 0x08; // cache_line_size
d->config[0x0D] = 0x10; // latency_timer
d->config[0x0E] = 0x00; // header_type
// d->config[0x34] = 0x80; // capabilities_pointer
#endif
#if 0 // XXX: not needed for now
/* Uninorth internal bus */
s = &pci_bridge[2];
pci_mem_config = cpu_register_io_memory(0, pci_unin_config_read,
pci_unin_config_write, s);
pci_mem_data = cpu_register_io_memory(0, pci_unin_read,
pci_unin_write, s);
cpu_register_physical_memory(0xf4800000, 0x1000, pci_mem_config);
cpu_register_physical_memory(0xf4c00000, 0x1000, pci_mem_data);
d = pci_register_device("Uni-north internal", sizeof(PCIDevice),
3, 11 << 3, NULL, NULL);
d->config[0x00] = 0x6b; // vendor_id : Apple
d->config[0x01] = 0x10;
d->config[0x02] = 0x1E; // device_id
d->config[0x03] = 0x00;
d->config[0x08] = 0x00; // revision
d->config[0x0A] = 0x00; // class_sub = pci host
d->config[0x0B] = 0x06; // class_base = PCI_bridge
d->config[0x0C] = 0x08; // cache_line_size
d->config[0x0D] = 0x10; // latency_timer
d->config[0x0E] = 0x00; // header_type
d->config[0x34] = 0x00; // capabilities_pointer
#endif
return s;
}
/* Ultrasparc APB PCI host */
static void pci_apb_config_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
int i;
for (i = 11; i < 32; i++) {
if ((val & (1 << i)) != 0)
break;
}
s->config_reg = 0x80000000 | (1 << 16) | (val & 0x7FC) | (i << 11);
}
static uint32_t pci_apb_config_readl (void *opaque,
target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
int devfn;
devfn = (s->config_reg >> 8) & 0xFF;
val = (1 << (devfn >> 3)) | ((devfn & 0x07) << 8) | (s->config_reg & 0xFC);
return val;
}
static CPUWriteMemoryFunc *pci_apb_config_write[] = {
&pci_apb_config_writel,
&pci_apb_config_writel,
&pci_apb_config_writel,
};
static CPUReadMemoryFunc *pci_apb_config_read[] = {
&pci_apb_config_readl,
&pci_apb_config_readl,
&pci_apb_config_readl,
};
static void apb_config_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
//PCIBus *s = opaque;
switch (addr & 0x3f) {
case 0x00: // Control/Status
case 0x10: // AFSR
case 0x18: // AFAR
case 0x20: // Diagnostic
case 0x28: // Target address space
// XXX
default:
break;
}
}
static uint32_t apb_config_readl (void *opaque,
target_phys_addr_t addr)
{
//PCIBus *s = opaque;
uint32_t val;
switch (addr & 0x3f) {
case 0x00: // Control/Status
case 0x10: // AFSR
case 0x18: // AFAR
case 0x20: // Diagnostic
case 0x28: // Target address space
// XXX
default:
val = 0;
break;
}
return val;
}
static CPUWriteMemoryFunc *apb_config_write[] = {
&apb_config_writel,
&apb_config_writel,
&apb_config_writel,
};
static CPUReadMemoryFunc *apb_config_read[] = {
&apb_config_readl,
&apb_config_readl,
&apb_config_readl,
};
static void pci_apb_writeb (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
pci_data_write(s, addr & 7, val, 1);
}
static void pci_apb_writew (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
pci_data_write(s, addr & 7, val, 2);
}
static void pci_apb_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
PCIBus *s = opaque;
pci_data_write(s, addr & 7, val, 4);
}
static uint32_t pci_apb_readb (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr & 7, 1);
return val;
}
static uint32_t pci_apb_readw (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr & 7, 2);
return val;
}
static uint32_t pci_apb_readl (void *opaque, target_phys_addr_t addr)
{
PCIBus *s = opaque;
uint32_t val;
val = pci_data_read(s, addr, 4);
return val;
}
static CPUWriteMemoryFunc *pci_apb_write[] = {
&pci_apb_writeb,
&pci_apb_writew,
&pci_apb_writel,
};
static CPUReadMemoryFunc *pci_apb_read[] = {
&pci_apb_readb,
&pci_apb_readw,
&pci_apb_readl,
};
static void pci_apb_iowriteb (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
cpu_outb(NULL, addr & 0xffff, val);
}
static void pci_apb_iowritew (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
cpu_outw(NULL, addr & 0xffff, val);
}
static void pci_apb_iowritel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
cpu_outl(NULL, addr & 0xffff, val);
}
static uint32_t pci_apb_ioreadb (void *opaque, target_phys_addr_t addr)
{
uint32_t val;
val = cpu_inb(NULL, addr & 0xffff);
return val;
}
static uint32_t pci_apb_ioreadw (void *opaque, target_phys_addr_t addr)
{
uint32_t val;
val = cpu_inw(NULL, addr & 0xffff);
return val;
}
static uint32_t pci_apb_ioreadl (void *opaque, target_phys_addr_t addr)
{
uint32_t val;
val = cpu_inl(NULL, addr & 0xffff);
return val;
}
static CPUWriteMemoryFunc *pci_apb_iowrite[] = {
&pci_apb_iowriteb,
&pci_apb_iowritew,
&pci_apb_iowritel,
};
static CPUReadMemoryFunc *pci_apb_ioread[] = {
&pci_apb_ioreadb,
&pci_apb_ioreadw,
&pci_apb_ioreadl,
};
PCIBus *pci_apb_init(target_ulong special_base, target_ulong mem_base)
{
PCIBus *s;
PCIDevice *d;
int pci_mem_config, pci_mem_data, apb_config, pci_ioport;
/* Ultrasparc APB main bus */
s = pci_register_bus();
s->set_irq = pci_set_irq_simple;
pci_mem_config = cpu_register_io_memory(0, pci_apb_config_read,
pci_apb_config_write, s);
apb_config = cpu_register_io_memory(0, apb_config_read,
apb_config_write, s);
pci_mem_data = cpu_register_io_memory(0, pci_apb_read,
pci_apb_write, s);
pci_ioport = cpu_register_io_memory(0, pci_apb_ioread,
pci_apb_iowrite, s);
cpu_register_physical_memory(special_base + 0x2000ULL, 0x40, apb_config);
cpu_register_physical_memory(special_base + 0x1000000ULL, 0x10, pci_mem_config);
cpu_register_physical_memory(special_base + 0x2000000ULL, 0x10000, pci_ioport);
cpu_register_physical_memory(mem_base, 0x10000000, pci_mem_data); // XXX size should be 4G-prom
d = pci_register_device(s, "Advanced PCI Bus", sizeof(PCIDevice),
-1, NULL, NULL);
d->config[0x00] = 0x8e; // vendor_id : Sun
d->config[0x01] = 0x10;
d->config[0x02] = 0x00; // device_id
d->config[0x03] = 0xa0;
d->config[0x04] = 0x06; // command = bus master, pci mem
d->config[0x05] = 0x00;
d->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
d->config[0x07] = 0x03; // status = medium devsel
d->config[0x08] = 0x00; // revision
d->config[0x09] = 0x00; // programming i/f
d->config[0x0A] = 0x00; // class_sub = pci host
d->config[0x0B] = 0x06; // class_base = PCI_bridge
d->config[0x0D] = 0x10; // latency_timer
d->config[0x0E] = 0x00; // header_type
return s;
}
/***********************************************************/
/* generic PCI irq support */
/* 0 <= irq_num <= 3. level must be 0 or 1 */
void pci_set_irq(PCIDevice *pci_dev, int irq_num, int level)
{
PCIBus *bus = pci_dev->bus;
bus->set_irq(pci_dev, irq_num, level);
}
/***********************************************************/
/* monitor info on PCI */
static void pci_info_device(PCIDevice *d)
{
int i, class;
PCIIORegion *r;
term_printf(" Bus %2d, device %3d, function %d:\n",
d->bus->bus_num, d->devfn >> 3, d->devfn & 7);
class = le16_to_cpu(*((uint16_t *)(d->config + PCI_CLASS_DEVICE)));
term_printf(" ");
switch(class) {
case 0x0101:
term_printf("IDE controller");
break;
case 0x0200:
term_printf("Ethernet controller");
break;
case 0x0300:
term_printf("VGA controller");
break;
default:
term_printf("Class %04x", class);
break;
}
term_printf(": PCI device %04x:%04x\n",
le16_to_cpu(*((uint16_t *)(d->config + PCI_VENDOR_ID))),
le16_to_cpu(*((uint16_t *)(d->config + PCI_DEVICE_ID))));
if (d->config[PCI_INTERRUPT_PIN] != 0) {
term_printf(" IRQ %d.\n", d->config[PCI_INTERRUPT_LINE]);
}
for(i = 0;i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
if (r->size != 0) {
term_printf(" BAR%d: ", i);
if (r->type & PCI_ADDRESS_SPACE_IO) {
term_printf("I/O at 0x%04x [0x%04x].\n",
r->addr, r->addr + r->size - 1);
} else {
term_printf("32 bit memory at 0x%08x [0x%08x].\n",
r->addr, r->addr + r->size - 1);
}
}
}
}
void pci_info(void)
{
PCIBus *bus = first_bus;
PCIDevice *d;
int devfn;
if (bus) {
for(devfn = 0; devfn < 256; devfn++) {
d = bus->devices[devfn];
if (d)
pci_info_device(d);
}
}
}
/***********************************************************/
/* XXX: the following should be moved to the PC BIOS */
static __attribute__((unused)) uint32_t isa_inb(uint32_t addr)
{
return cpu_inb(NULL, addr);
}
static void isa_outb(uint32_t val, uint32_t addr)
{
cpu_outb(NULL, addr, val);
}
static __attribute__((unused)) uint32_t isa_inw(uint32_t addr)
{
return cpu_inw(NULL, addr);
}
static __attribute__((unused)) void isa_outw(uint32_t val, uint32_t addr)
{
cpu_outw(NULL, addr, val);
}
static __attribute__((unused)) uint32_t isa_inl(uint32_t addr)
{
return cpu_inl(NULL, addr);
}
static __attribute__((unused)) void isa_outl(uint32_t val, uint32_t addr)
{
cpu_outl(NULL, addr, val);
}
static void pci_config_writel(PCIDevice *d, uint32_t addr, uint32_t val)
{
PCIBus *s = d->bus;
s->config_reg = 0x80000000 | (s->bus_num << 16) |
(d->devfn << 8) | addr;
pci_data_write(s, 0, val, 4);
}
static void pci_config_writew(PCIDevice *d, uint32_t addr, uint32_t val)
{
PCIBus *s = d->bus;
s->config_reg = 0x80000000 | (s->bus_num << 16) |
(d->devfn << 8) | (addr & ~3);
pci_data_write(s, addr & 3, val, 2);
}
static void pci_config_writeb(PCIDevice *d, uint32_t addr, uint32_t val)
{
PCIBus *s = d->bus;
s->config_reg = 0x80000000 | (s->bus_num << 16) |
(d->devfn << 8) | (addr & ~3);
pci_data_write(s, addr & 3, val, 1);
}
static __attribute__((unused)) uint32_t pci_config_readl(PCIDevice *d, uint32_t addr)
{
PCIBus *s = d->bus;
s->config_reg = 0x80000000 | (s->bus_num << 16) |
(d->devfn << 8) | addr;
return pci_data_read(s, 0, 4);
}
static uint32_t pci_config_readw(PCIDevice *d, uint32_t addr)
{
PCIBus *s = d->bus;
s->config_reg = 0x80000000 | (s->bus_num << 16) |
(d->devfn << 8) | (addr & ~3);
return pci_data_read(s, addr & 3, 2);
}
static uint32_t pci_config_readb(PCIDevice *d, uint32_t addr)
{
PCIBus *s = d->bus;
s->config_reg = 0x80000000 | (s->bus_num << 16) |
(d->devfn << 8) | (addr & ~3);
return pci_data_read(s, addr & 3, 1);
}
static uint32_t pci_bios_io_addr;
static uint32_t pci_bios_mem_addr;
/* host irqs corresponding to PCI irqs A-D */
static uint8_t pci_irqs[4] = { 11, 9, 11, 9 };
static void pci_set_io_region_addr(PCIDevice *d, int region_num, uint32_t addr)
{
PCIIORegion *r;
uint16_t cmd;
uint32_t ofs;
if ( region_num == PCI_ROM_SLOT ) {
ofs = 0x30;
}else{
ofs = 0x10 + region_num * 4;
}
pci_config_writel(d, ofs, addr);
r = &d->io_regions[region_num];
/* enable memory mappings */
cmd = pci_config_readw(d, PCI_COMMAND);
if ( region_num == PCI_ROM_SLOT )
cmd |= 2;
else if (r->type & PCI_ADDRESS_SPACE_IO)
cmd |= 1;
else
cmd |= 2;
pci_config_writew(d, PCI_COMMAND, cmd);
}
static void pci_bios_init_device(PCIDevice *d)
{
int class;
PCIIORegion *r;
uint32_t *paddr;
int i, pin, pic_irq, vendor_id, device_id;
class = pci_config_readw(d, PCI_CLASS_DEVICE);
vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
device_id = pci_config_readw(d, PCI_DEVICE_ID);
switch(class) {
case 0x0101:
if (vendor_id == 0x8086 && device_id == 0x7010) {
/* PIIX3 IDE */
pci_config_writew(d, 0x40, 0x8000); // enable IDE0
pci_config_writew(d, 0x42, 0x8000); // enable IDE1
goto default_map;
} else {
/* IDE: we map it as in ISA mode */
pci_set_io_region_addr(d, 0, 0x1f0);
pci_set_io_region_addr(d, 1, 0x3f4);
pci_set_io_region_addr(d, 2, 0x170);
pci_set_io_region_addr(d, 3, 0x374);
}
break;
case 0x0300:
if (vendor_id != 0x1234)
goto default_map;
/* VGA: map frame buffer to default Bochs VBE address */
pci_set_io_region_addr(d, 0, 0xE0000000);
break;
case 0x0800:
/* PIC */
vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
device_id = pci_config_readw(d, PCI_DEVICE_ID);
if (vendor_id == 0x1014) {
/* IBM */
if (device_id == 0x0046 || device_id == 0xFFFF) {
/* MPIC & MPIC2 */
pci_set_io_region_addr(d, 0, 0x80800000 + 0x00040000);
}
}
break;
case 0xff00:
if (vendor_id == 0x0106b &&
(device_id == 0x0017 || device_id == 0x0022)) {
/* macio bridge */
pci_set_io_region_addr(d, 0, 0x80800000);
}
break;
default:
default_map:
/* default memory mappings */
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
if (r->size) {
if (r->type & PCI_ADDRESS_SPACE_IO)
paddr = &pci_bios_io_addr;
else
paddr = &pci_bios_mem_addr;
*paddr = (*paddr + r->size - 1) & ~(r->size - 1);
pci_set_io_region_addr(d, i, *paddr);
*paddr += r->size;
}
}
break;
}
/* map the interrupt */
pin = pci_config_readb(d, PCI_INTERRUPT_PIN);
if (pin != 0) {
pin = pci_slot_get_pirq(d, pin - 1);
pic_irq = pci_irqs[pin];
pci_config_writeb(d, PCI_INTERRUPT_LINE, pic_irq);
}
}
/*
* This function initializes the PCI devices as a normal PCI BIOS
* would do. It is provided just in case the BIOS has no support for
* PCI.
*/
void pci_bios_init(void)
{
PCIBus *bus;
PCIDevice *d;
int devfn, i, irq;
uint8_t elcr[2];
pci_bios_io_addr = 0xc000;
pci_bios_mem_addr = 0xf0000000;
/* activate IRQ mappings */
elcr[0] = 0x00;
elcr[1] = 0x00;
for(i = 0; i < 4; i++) {
irq = pci_irqs[i];
/* set to trigger level */
elcr[irq >> 3] |= (1 << (irq & 7));
/* activate irq remapping in PIIX */
pci_config_writeb((PCIDevice *)piix3_state, 0x60 + i, irq);
}
isa_outb(elcr[0], 0x4d0);
isa_outb(elcr[1], 0x4d1);
bus = first_bus;
if (bus) {
for(devfn = 0; devfn < 256; devfn++) {
d = bus->devices[devfn];
if (d)
pci_bios_init_device(d);
}
}
}
/* Initialize a PCI NIC. */
void pci_nic_init(PCIBus *bus, NICInfo *nd)
{
if (strcmp(nd->model, "ne2k_pci") == 0) {
pci_ne2000_init(bus, nd);
} else if (strcmp(nd->model, "rtl8139") == 0) {
pci_rtl8139_init(bus, nd);
} else {
fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd->model);
exit (1);
}
}