qemu-e2k/hw/display/tcx.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

914 lines
25 KiB
C
Raw Normal View History

/*
* QEMU TCX Frame buffer
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
2016-03-14 09:01:28 +01:00
#include "qapi/error.h"
#include "ui/console.h"
#include "ui/pixel_ops.h"
#include "hw/loader.h"
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "qom/object.h"
#define TCX_ROM_FILE "QEMU,tcx.bin"
#define FCODE_MAX_ROM_SIZE 0x10000
#define MAXX 1024
#define MAXY 768
#define TCX_DAC_NREGS 16
#define TCX_THC_NREGS 0x1000
#define TCX_DHC_NREGS 0x4000
#define TCX_TEC_NREGS 0x1000
#define TCX_ALT_NREGS 0x8000
#define TCX_STIP_NREGS 0x800000
#define TCX_BLIT_NREGS 0x800000
#define TCX_RSTIP_NREGS 0x800000
#define TCX_RBLIT_NREGS 0x800000
#define TCX_THC_MISC 0x818
#define TCX_THC_CURSXY 0x8fc
#define TCX_THC_CURSMASK 0x900
#define TCX_THC_CURSBITS 0x980
#define TYPE_TCX "sun-tcx"
OBJECT_DECLARE_SIMPLE_TYPE(TCXState, TCX)
struct TCXState {
SysBusDevice parent_obj;
QemuConsole *con;
qemu_irq irq;
uint8_t *vram;
uint32_t *vram24, *cplane;
hwaddr prom_addr;
MemoryRegion rom;
MemoryRegion vram_mem;
MemoryRegion vram_8bit;
MemoryRegion vram_24bit;
MemoryRegion stip;
MemoryRegion blit;
MemoryRegion vram_cplane;
MemoryRegion rstip;
MemoryRegion rblit;
MemoryRegion tec;
MemoryRegion dac;
MemoryRegion thc;
MemoryRegion dhc;
MemoryRegion alt;
MemoryRegion thc24;
ram_addr_t vram24_offset, cplane_offset;
uint32_t tmpblit;
uint32_t vram_size;
uint32_t palette[260];
uint8_t r[260], g[260], b[260];
uint16_t width, height, depth;
uint8_t dac_index, dac_state;
uint32_t thcmisc;
uint32_t cursmask[32];
uint32_t cursbits[32];
uint16_t cursx;
uint16_t cursy;
};
static void tcx_set_dirty(TCXState *s, ram_addr_t addr, int len)
{
memory_region_set_dirty(&s->vram_mem, addr, len);
if (s->depth == 24) {
memory_region_set_dirty(&s->vram_mem, s->vram24_offset + addr * 4,
len * 4);
memory_region_set_dirty(&s->vram_mem, s->cplane_offset + addr * 4,
len * 4);
}
}
static int tcx_check_dirty(TCXState *s, DirtyBitmapSnapshot *snap,
ram_addr_t addr, int len)
{
int ret;
ret = memory_region_snapshot_get_dirty(&s->vram_mem, snap, addr, len);
if (s->depth == 24) {
ret |= memory_region_snapshot_get_dirty(&s->vram_mem, snap,
s->vram24_offset + addr * 4, len * 4);
ret |= memory_region_snapshot_get_dirty(&s->vram_mem, snap,
s->cplane_offset + addr * 4, len * 4);
}
return ret;
}
static void update_palette_entries(TCXState *s, int start, int end)
{
int i;
for (i = start; i < end; i++) {
s->palette[i] = rgb_to_pixel32(s->r[i], s->g[i], s->b[i]);
}
tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
}
static void tcx_draw_line32(TCXState *s1, uint8_t *d,
const uint8_t *s, int width)
{
int x;
uint8_t val;
uint32_t *p = (uint32_t *)d;
for (x = 0; x < width; x++) {
val = *s++;
*p++ = s1->palette[val];
}
}
static void tcx_draw_cursor32(TCXState *s1, uint8_t *d,
int y, int width)
{
int x, len;
uint32_t mask, bits;
uint32_t *p = (uint32_t *)d;
y = y - s1->cursy;
mask = s1->cursmask[y];
bits = s1->cursbits[y];
len = MIN(width - s1->cursx, 32);
p = &p[s1->cursx];
for (x = 0; x < len; x++) {
if (mask & 0x80000000) {
if (bits & 0x80000000) {
*p = s1->palette[259];
} else {
*p = s1->palette[258];
}
}
p++;
mask <<= 1;
bits <<= 1;
}
}
/*
* XXX Could be much more optimal:
* detect if line/page/whole screen is in 24 bit mode
*/
static inline void tcx24_draw_line32(TCXState *s1, uint8_t *d,
const uint8_t *s, int width,
const uint32_t *cplane,
const uint32_t *s24)
{
int x, r, g, b;
uint8_t val, *p8;
uint32_t *p = (uint32_t *)d;
uint32_t dval;
for(x = 0; x < width; x++, s++, s24++) {
if (be32_to_cpu(*cplane) & 0x03000000) {
/* 24-bit direct, BGR order */
p8 = (uint8_t *)s24;
p8++;
b = *p8++;
g = *p8++;
r = *p8;
dval = rgb_to_pixel32(r, g, b);
} else {
/* 8-bit pseudocolor */
val = *s;
dval = s1->palette[val];
}
*p++ = dval;
cplane++;
}
}
/* Fixed line length 1024 allows us to do nice tricks not possible on
VGA... */
static void tcx_update_display(void *opaque)
{
TCXState *ts = opaque;
DisplaySurface *surface = qemu_console_surface(ts->con);
ram_addr_t page;
DirtyBitmapSnapshot *snap = NULL;
int y, y_start, dd, ds;
uint8_t *d, *s;
assert(surface_bits_per_pixel(surface) == 32);
page = 0;
y_start = -1;
d = surface_data(surface);
s = ts->vram;
dd = surface_stride(surface);
ds = 1024;
snap = memory_region_snapshot_and_clear_dirty(&ts->vram_mem, 0x0,
memory_region_size(&ts->vram_mem),
DIRTY_MEMORY_VGA);
for (y = 0; y < ts->height; y++, page += ds) {
if (tcx_check_dirty(ts, snap, page, ds)) {
if (y_start < 0)
y_start = y;
tcx_draw_line32(ts, d, s, ts->width);
if (y >= ts->cursy && y < ts->cursy + 32 && ts->cursx < ts->width) {
tcx_draw_cursor32(ts, d, y, ts->width);
}
} else {
if (y_start >= 0) {
/* flush to display */
dpy_gfx_update(ts->con, 0, y_start,
ts->width, y - y_start);
y_start = -1;
}
}
s += ds;
d += dd;
}
if (y_start >= 0) {
/* flush to display */
dpy_gfx_update(ts->con, 0, y_start,
ts->width, y - y_start);
}
g_free(snap);
}
static void tcx24_update_display(void *opaque)
{
TCXState *ts = opaque;
DisplaySurface *surface = qemu_console_surface(ts->con);
ram_addr_t page;
DirtyBitmapSnapshot *snap = NULL;
int y, y_start, dd, ds;
uint8_t *d, *s;
uint32_t *cptr, *s24;
assert(surface_bits_per_pixel(surface) == 32);
page = 0;
y_start = -1;
d = surface_data(surface);
s = ts->vram;
s24 = ts->vram24;
cptr = ts->cplane;
dd = surface_stride(surface);
ds = 1024;
snap = memory_region_snapshot_and_clear_dirty(&ts->vram_mem, 0x0,
memory_region_size(&ts->vram_mem),
DIRTY_MEMORY_VGA);
for (y = 0; y < ts->height; y++, page += ds) {
if (tcx_check_dirty(ts, snap, page, ds)) {
if (y_start < 0)
y_start = y;
tcx24_draw_line32(ts, d, s, ts->width, cptr, s24);
if (y >= ts->cursy && y < ts->cursy+32 && ts->cursx < ts->width) {
tcx_draw_cursor32(ts, d, y, ts->width);
}
} else {
if (y_start >= 0) {
/* flush to display */
dpy_gfx_update(ts->con, 0, y_start,
ts->width, y - y_start);
y_start = -1;
}
}
d += dd;
s += ds;
cptr += ds;
s24 += ds;
}
if (y_start >= 0) {
/* flush to display */
dpy_gfx_update(ts->con, 0, y_start,
ts->width, y - y_start);
}
g_free(snap);
}
static void tcx_invalidate_display(void *opaque)
{
TCXState *s = opaque;
tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
qemu_console_resize(s->con, s->width, s->height);
}
static void tcx24_invalidate_display(void *opaque)
{
TCXState *s = opaque;
tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
qemu_console_resize(s->con, s->width, s->height);
}
static int vmstate_tcx_post_load(void *opaque, int version_id)
{
TCXState *s = opaque;
update_palette_entries(s, 0, 256);
tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
return 0;
}
static const VMStateDescription vmstate_tcx = {
.name ="tcx",
.version_id = 4,
.minimum_version_id = 4,
.post_load = vmstate_tcx_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT16(height, TCXState),
VMSTATE_UINT16(width, TCXState),
VMSTATE_UINT16(depth, TCXState),
VMSTATE_BUFFER(r, TCXState),
VMSTATE_BUFFER(g, TCXState),
VMSTATE_BUFFER(b, TCXState),
VMSTATE_UINT8(dac_index, TCXState),
VMSTATE_UINT8(dac_state, TCXState),
VMSTATE_END_OF_LIST()
}
};
static void tcx_reset(DeviceState *d)
{
TCXState *s = TCX(d);
/* Initialize palette */
memset(s->r, 0, 260);
memset(s->g, 0, 260);
memset(s->b, 0, 260);
s->r[255] = s->g[255] = s->b[255] = 255;
s->r[256] = s->g[256] = s->b[256] = 255;
s->r[258] = s->g[258] = s->b[258] = 255;
update_palette_entries(s, 0, 260);
memset(s->vram, 0, MAXX*MAXY);
memory_region_reset_dirty(&s->vram_mem, 0, MAXX * MAXY * (1 + 4 + 4),
DIRTY_MEMORY_VGA);
s->dac_index = 0;
s->dac_state = 0;
s->cursx = 0xf000; /* Put cursor off screen */
s->cursy = 0xf000;
}
static uint64_t tcx_dac_readl(void *opaque, hwaddr addr,
unsigned size)
{
TCXState *s = opaque;
uint32_t val = 0;
switch (s->dac_state) {
case 0:
val = s->r[s->dac_index] << 24;
s->dac_state++;
break;
case 1:
val = s->g[s->dac_index] << 24;
s->dac_state++;
break;
case 2:
val = s->b[s->dac_index] << 24;
s->dac_index = (s->dac_index + 1) & 0xff; /* Index autoincrement */
/* fall through */
default:
s->dac_state = 0;
break;
}
return val;
}
static void tcx_dac_writel(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TCXState *s = opaque;
unsigned index;
switch (addr) {
case 0: /* Address */
s->dac_index = val >> 24;
s->dac_state = 0;
break;
case 4: /* Pixel colours */
case 12: /* Overlay (cursor) colours */
if (addr & 8) {
index = (s->dac_index & 3) + 256;
} else {
index = s->dac_index;
}
switch (s->dac_state) {
case 0:
s->r[index] = val >> 24;
update_palette_entries(s, index, index + 1);
s->dac_state++;
break;
case 1:
s->g[index] = val >> 24;
update_palette_entries(s, index, index + 1);
s->dac_state++;
break;
case 2:
s->b[index] = val >> 24;
update_palette_entries(s, index, index + 1);
s->dac_index = (s->dac_index + 1) & 0xff; /* Index autoincrement */
/* fall through */
default:
s->dac_state = 0;
break;
}
break;
default: /* Control registers */
break;
}
}
static const MemoryRegionOps tcx_dac_ops = {
.read = tcx_dac_readl,
.write = tcx_dac_writel,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static uint64_t tcx_stip_readl(void *opaque, hwaddr addr,
unsigned size)
{
return 0;
}
static void tcx_stip_writel(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
TCXState *s = opaque;
int i;
uint32_t col;
if (!(addr & 4)) {
s->tmpblit = val;
} else {
addr = (addr >> 3) & 0xfffff;
col = cpu_to_be32(s->tmpblit);
if (s->depth == 24) {
for (i = 0; i < 32; i++) {
if (val & 0x80000000) {
s->vram[addr + i] = s->tmpblit;
s->vram24[addr + i] = col;
}
val <<= 1;
}
} else {
for (i = 0; i < 32; i++) {
if (val & 0x80000000) {
s->vram[addr + i] = s->tmpblit;
}
val <<= 1;
}
}
tcx_set_dirty(s, addr, 32);
}
}
static void tcx_rstip_writel(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
TCXState *s = opaque;
int i;
uint32_t col;
if (!(addr & 4)) {
s->tmpblit = val;
} else {
addr = (addr >> 3) & 0xfffff;
col = cpu_to_be32(s->tmpblit);
if (s->depth == 24) {
for (i = 0; i < 32; i++) {
if (val & 0x80000000) {
s->vram[addr + i] = s->tmpblit;
s->vram24[addr + i] = col;
s->cplane[addr + i] = col;
}
val <<= 1;
}
} else {
for (i = 0; i < 32; i++) {
if (val & 0x80000000) {
s->vram[addr + i] = s->tmpblit;
}
val <<= 1;
}
}
tcx_set_dirty(s, addr, 32);
}
}
static const MemoryRegionOps tcx_stip_ops = {
.read = tcx_stip_readl,
.write = tcx_stip_writel,
.endianness = DEVICE_NATIVE_ENDIAN,
hw/display/tcx: Allow 64-bit accesses to framebuffer stippler and blitter The S24/TCX datasheet is listed as "Unable to locate" on [1]. However the NetBSD revision 1.32 of the driver introduced 64-bit accesses to the stippler and blitter [2]. It is safe to assume these memory regions are 64-bit accessible. QEMU implementation is 32-bit, so fill the 'impl' fields. Michael Lorenz (author of the NetBSD code [2]) provided us with more information in [3]: > IIRC the real hardware *requires* 64bit accesses for stipple and > blitter operations to work. For stipples you write a 64bit word into > STIP space, the address defines where in the framebuffer you want to > draw, the data contain a 32bit bitmask, foreground colour and a ROP. > BLIT space works similarly, the 64bit word contains an offset were to > read pixels from, and how many you want to copy. > > One more thing since there seems to be some confusion - 64bit accesses > on the framebuffer are fine as well. TCX/S24 is *not* an SBus device, > even though its node says it is. > S24 is a card that plugs into a special slot on the SS5 mainboard, > which is shared with an SBus slot and looks a lot like a horizontal > UPA slot. Both S24 and TCX are accessed through the Micro/TurboSPARC's > AFX bus which is 64bit wide and intended for graphics. > Early FFB docs even mentioned connecting to both AFX and UPA, > no idea if that was ever realized in hardware though. [1] http://web.archive.org/web/20111209011516/http://wikis.sun.com/display/FOSSdocs/Home [2] http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/dev/sbus/tcx.c.diff?r1=1.31&r2=1.32 [3] https://www.mail-archive.com/qemu-devel@nongnu.org/msg734928.html Cc: qemu-stable@nongnu.org Reported-by: Andreas Gustafsson <gson@gson.org> Buglink: https://bugs.launchpad.net/bugs/1892540 Fixes: 55d7bfe2293 ("tcx: Implement hardware acceleration") Tested-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Andreas Gustafsson <gson@gson.org> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20201024205100.3623006-1-f4bug@amsat.org> Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
2020-10-24 22:51:00 +02:00
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
hw/display/tcx: Allow 64-bit accesses to framebuffer stippler and blitter The S24/TCX datasheet is listed as "Unable to locate" on [1]. However the NetBSD revision 1.32 of the driver introduced 64-bit accesses to the stippler and blitter [2]. It is safe to assume these memory regions are 64-bit accessible. QEMU implementation is 32-bit, so fill the 'impl' fields. Michael Lorenz (author of the NetBSD code [2]) provided us with more information in [3]: > IIRC the real hardware *requires* 64bit accesses for stipple and > blitter operations to work. For stipples you write a 64bit word into > STIP space, the address defines where in the framebuffer you want to > draw, the data contain a 32bit bitmask, foreground colour and a ROP. > BLIT space works similarly, the 64bit word contains an offset were to > read pixels from, and how many you want to copy. > > One more thing since there seems to be some confusion - 64bit accesses > on the framebuffer are fine as well. TCX/S24 is *not* an SBus device, > even though its node says it is. > S24 is a card that plugs into a special slot on the SS5 mainboard, > which is shared with an SBus slot and looks a lot like a horizontal > UPA slot. Both S24 and TCX are accessed through the Micro/TurboSPARC's > AFX bus which is 64bit wide and intended for graphics. > Early FFB docs even mentioned connecting to both AFX and UPA, > no idea if that was ever realized in hardware though. [1] http://web.archive.org/web/20111209011516/http://wikis.sun.com/display/FOSSdocs/Home [2] http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/dev/sbus/tcx.c.diff?r1=1.31&r2=1.32 [3] https://www.mail-archive.com/qemu-devel@nongnu.org/msg734928.html Cc: qemu-stable@nongnu.org Reported-by: Andreas Gustafsson <gson@gson.org> Buglink: https://bugs.launchpad.net/bugs/1892540 Fixes: 55d7bfe2293 ("tcx: Implement hardware acceleration") Tested-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Andreas Gustafsson <gson@gson.org> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20201024205100.3623006-1-f4bug@amsat.org> Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
2020-10-24 22:51:00 +02:00
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static const MemoryRegionOps tcx_rstip_ops = {
.read = tcx_stip_readl,
.write = tcx_rstip_writel,
.endianness = DEVICE_NATIVE_ENDIAN,
hw/display/tcx: Allow 64-bit accesses to framebuffer stippler and blitter The S24/TCX datasheet is listed as "Unable to locate" on [1]. However the NetBSD revision 1.32 of the driver introduced 64-bit accesses to the stippler and blitter [2]. It is safe to assume these memory regions are 64-bit accessible. QEMU implementation is 32-bit, so fill the 'impl' fields. Michael Lorenz (author of the NetBSD code [2]) provided us with more information in [3]: > IIRC the real hardware *requires* 64bit accesses for stipple and > blitter operations to work. For stipples you write a 64bit word into > STIP space, the address defines where in the framebuffer you want to > draw, the data contain a 32bit bitmask, foreground colour and a ROP. > BLIT space works similarly, the 64bit word contains an offset were to > read pixels from, and how many you want to copy. > > One more thing since there seems to be some confusion - 64bit accesses > on the framebuffer are fine as well. TCX/S24 is *not* an SBus device, > even though its node says it is. > S24 is a card that plugs into a special slot on the SS5 mainboard, > which is shared with an SBus slot and looks a lot like a horizontal > UPA slot. Both S24 and TCX are accessed through the Micro/TurboSPARC's > AFX bus which is 64bit wide and intended for graphics. > Early FFB docs even mentioned connecting to both AFX and UPA, > no idea if that was ever realized in hardware though. [1] http://web.archive.org/web/20111209011516/http://wikis.sun.com/display/FOSSdocs/Home [2] http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/dev/sbus/tcx.c.diff?r1=1.31&r2=1.32 [3] https://www.mail-archive.com/qemu-devel@nongnu.org/msg734928.html Cc: qemu-stable@nongnu.org Reported-by: Andreas Gustafsson <gson@gson.org> Buglink: https://bugs.launchpad.net/bugs/1892540 Fixes: 55d7bfe2293 ("tcx: Implement hardware acceleration") Tested-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Andreas Gustafsson <gson@gson.org> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20201024205100.3623006-1-f4bug@amsat.org> Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
2020-10-24 22:51:00 +02:00
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
hw/display/tcx: Allow 64-bit accesses to framebuffer stippler and blitter The S24/TCX datasheet is listed as "Unable to locate" on [1]. However the NetBSD revision 1.32 of the driver introduced 64-bit accesses to the stippler and blitter [2]. It is safe to assume these memory regions are 64-bit accessible. QEMU implementation is 32-bit, so fill the 'impl' fields. Michael Lorenz (author of the NetBSD code [2]) provided us with more information in [3]: > IIRC the real hardware *requires* 64bit accesses for stipple and > blitter operations to work. For stipples you write a 64bit word into > STIP space, the address defines where in the framebuffer you want to > draw, the data contain a 32bit bitmask, foreground colour and a ROP. > BLIT space works similarly, the 64bit word contains an offset were to > read pixels from, and how many you want to copy. > > One more thing since there seems to be some confusion - 64bit accesses > on the framebuffer are fine as well. TCX/S24 is *not* an SBus device, > even though its node says it is. > S24 is a card that plugs into a special slot on the SS5 mainboard, > which is shared with an SBus slot and looks a lot like a horizontal > UPA slot. Both S24 and TCX are accessed through the Micro/TurboSPARC's > AFX bus which is 64bit wide and intended for graphics. > Early FFB docs even mentioned connecting to both AFX and UPA, > no idea if that was ever realized in hardware though. [1] http://web.archive.org/web/20111209011516/http://wikis.sun.com/display/FOSSdocs/Home [2] http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/dev/sbus/tcx.c.diff?r1=1.31&r2=1.32 [3] https://www.mail-archive.com/qemu-devel@nongnu.org/msg734928.html Cc: qemu-stable@nongnu.org Reported-by: Andreas Gustafsson <gson@gson.org> Buglink: https://bugs.launchpad.net/bugs/1892540 Fixes: 55d7bfe2293 ("tcx: Implement hardware acceleration") Tested-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Andreas Gustafsson <gson@gson.org> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20201024205100.3623006-1-f4bug@amsat.org> Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
2020-10-24 22:51:00 +02:00
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static uint64_t tcx_blit_readl(void *opaque, hwaddr addr,
unsigned size)
{
return 0;
}
static void tcx_blit_writel(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
TCXState *s = opaque;
uint32_t adsr, len;
int i;
if (!(addr & 4)) {
s->tmpblit = val;
} else {
addr = (addr >> 3) & 0xfffff;
adsr = val & 0xffffff;
len = ((val >> 24) & 0x1f) + 1;
if (adsr == 0xffffff) {
memset(&s->vram[addr], s->tmpblit, len);
if (s->depth == 24) {
val = s->tmpblit & 0xffffff;
val = cpu_to_be32(val);
for (i = 0; i < len; i++) {
s->vram24[addr + i] = val;
}
}
} else {
memcpy(&s->vram[addr], &s->vram[adsr], len);
if (s->depth == 24) {
memcpy(&s->vram24[addr], &s->vram24[adsr], len * 4);
}
}
tcx_set_dirty(s, addr, len);
}
}
static void tcx_rblit_writel(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
TCXState *s = opaque;
uint32_t adsr, len;
int i;
if (!(addr & 4)) {
s->tmpblit = val;
} else {
addr = (addr >> 3) & 0xfffff;
adsr = val & 0xffffff;
len = ((val >> 24) & 0x1f) + 1;
if (adsr == 0xffffff) {
memset(&s->vram[addr], s->tmpblit, len);
if (s->depth == 24) {
val = s->tmpblit & 0xffffff;
val = cpu_to_be32(val);
for (i = 0; i < len; i++) {
s->vram24[addr + i] = val;
s->cplane[addr + i] = val;
}
}
} else {
memcpy(&s->vram[addr], &s->vram[adsr], len);
if (s->depth == 24) {
memcpy(&s->vram24[addr], &s->vram24[adsr], len * 4);
memcpy(&s->cplane[addr], &s->cplane[adsr], len * 4);
}
}
tcx_set_dirty(s, addr, len);
}
}
static const MemoryRegionOps tcx_blit_ops = {
.read = tcx_blit_readl,
.write = tcx_blit_writel,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static const MemoryRegionOps tcx_rblit_ops = {
.read = tcx_blit_readl,
.write = tcx_rblit_writel,
.endianness = DEVICE_NATIVE_ENDIAN,
hw/display/tcx: Allow 64-bit accesses to framebuffer stippler and blitter The S24/TCX datasheet is listed as "Unable to locate" on [1]. However the NetBSD revision 1.32 of the driver introduced 64-bit accesses to the stippler and blitter [2]. It is safe to assume these memory regions are 64-bit accessible. QEMU implementation is 32-bit, so fill the 'impl' fields. Michael Lorenz (author of the NetBSD code [2]) provided us with more information in [3]: > IIRC the real hardware *requires* 64bit accesses for stipple and > blitter operations to work. For stipples you write a 64bit word into > STIP space, the address defines where in the framebuffer you want to > draw, the data contain a 32bit bitmask, foreground colour and a ROP. > BLIT space works similarly, the 64bit word contains an offset were to > read pixels from, and how many you want to copy. > > One more thing since there seems to be some confusion - 64bit accesses > on the framebuffer are fine as well. TCX/S24 is *not* an SBus device, > even though its node says it is. > S24 is a card that plugs into a special slot on the SS5 mainboard, > which is shared with an SBus slot and looks a lot like a horizontal > UPA slot. Both S24 and TCX are accessed through the Micro/TurboSPARC's > AFX bus which is 64bit wide and intended for graphics. > Early FFB docs even mentioned connecting to both AFX and UPA, > no idea if that was ever realized in hardware though. [1] http://web.archive.org/web/20111209011516/http://wikis.sun.com/display/FOSSdocs/Home [2] http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/dev/sbus/tcx.c.diff?r1=1.31&r2=1.32 [3] https://www.mail-archive.com/qemu-devel@nongnu.org/msg734928.html Cc: qemu-stable@nongnu.org Reported-by: Andreas Gustafsson <gson@gson.org> Buglink: https://bugs.launchpad.net/bugs/1892540 Fixes: 55d7bfe2293 ("tcx: Implement hardware acceleration") Tested-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Andreas Gustafsson <gson@gson.org> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20201024205100.3623006-1-f4bug@amsat.org> Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
2020-10-24 22:51:00 +02:00
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
hw/display/tcx: Allow 64-bit accesses to framebuffer stippler and blitter The S24/TCX datasheet is listed as "Unable to locate" on [1]. However the NetBSD revision 1.32 of the driver introduced 64-bit accesses to the stippler and blitter [2]. It is safe to assume these memory regions are 64-bit accessible. QEMU implementation is 32-bit, so fill the 'impl' fields. Michael Lorenz (author of the NetBSD code [2]) provided us with more information in [3]: > IIRC the real hardware *requires* 64bit accesses for stipple and > blitter operations to work. For stipples you write a 64bit word into > STIP space, the address defines where in the framebuffer you want to > draw, the data contain a 32bit bitmask, foreground colour and a ROP. > BLIT space works similarly, the 64bit word contains an offset were to > read pixels from, and how many you want to copy. > > One more thing since there seems to be some confusion - 64bit accesses > on the framebuffer are fine as well. TCX/S24 is *not* an SBus device, > even though its node says it is. > S24 is a card that plugs into a special slot on the SS5 mainboard, > which is shared with an SBus slot and looks a lot like a horizontal > UPA slot. Both S24 and TCX are accessed through the Micro/TurboSPARC's > AFX bus which is 64bit wide and intended for graphics. > Early FFB docs even mentioned connecting to both AFX and UPA, > no idea if that was ever realized in hardware though. [1] http://web.archive.org/web/20111209011516/http://wikis.sun.com/display/FOSSdocs/Home [2] http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/dev/sbus/tcx.c.diff?r1=1.31&r2=1.32 [3] https://www.mail-archive.com/qemu-devel@nongnu.org/msg734928.html Cc: qemu-stable@nongnu.org Reported-by: Andreas Gustafsson <gson@gson.org> Buglink: https://bugs.launchpad.net/bugs/1892540 Fixes: 55d7bfe2293 ("tcx: Implement hardware acceleration") Tested-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Andreas Gustafsson <gson@gson.org> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20201024205100.3623006-1-f4bug@amsat.org> Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
2020-10-24 22:51:00 +02:00
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static void tcx_invalidate_cursor_position(TCXState *s)
{
int ymin, ymax, start, end;
/* invalidate only near the cursor */
ymin = s->cursy;
if (ymin >= s->height) {
return;
}
ymax = MIN(s->height, ymin + 32);
start = ymin * 1024;
end = ymax * 1024;
tcx_set_dirty(s, start, end - start);
}
static uint64_t tcx_thc_readl(void *opaque, hwaddr addr,
unsigned size)
{
TCXState *s = opaque;
uint64_t val;
if (addr == TCX_THC_MISC) {
val = s->thcmisc | 0x02000000;
} else {
val = 0;
}
return val;
}
static void tcx_thc_writel(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
TCXState *s = opaque;
if (addr == TCX_THC_CURSXY) {
tcx_invalidate_cursor_position(s);
s->cursx = val >> 16;
s->cursy = val;
tcx_invalidate_cursor_position(s);
} else if (addr >= TCX_THC_CURSMASK && addr < TCX_THC_CURSMASK + 128) {
s->cursmask[(addr - TCX_THC_CURSMASK) >> 2] = val;
tcx_invalidate_cursor_position(s);
} else if (addr >= TCX_THC_CURSBITS && addr < TCX_THC_CURSBITS + 128) {
s->cursbits[(addr - TCX_THC_CURSBITS) >> 2] = val;
tcx_invalidate_cursor_position(s);
} else if (addr == TCX_THC_MISC) {
s->thcmisc = val;
}
}
static const MemoryRegionOps tcx_thc_ops = {
.read = tcx_thc_readl,
.write = tcx_thc_writel,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static uint64_t tcx_dummy_readl(void *opaque, hwaddr addr,
unsigned size)
{
return 0;
}
static void tcx_dummy_writel(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
return;
}
static const MemoryRegionOps tcx_dummy_ops = {
.read = tcx_dummy_readl,
.write = tcx_dummy_writel,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const GraphicHwOps tcx_ops = {
.invalidate = tcx_invalidate_display,
.gfx_update = tcx_update_display,
};
static const GraphicHwOps tcx24_ops = {
.invalidate = tcx24_invalidate_display,
.gfx_update = tcx24_update_display,
};
static void tcx_initfn(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
TCXState *s = TCX(obj);
memory_region_init_rom_nomigrate(&s->rom, obj, "tcx.prom",
FCODE_MAX_ROM_SIZE, &error_fatal);
sysbus_init_mmio(sbd, &s->rom);
/* 2/STIP : Stippler */
memory_region_init_io(&s->stip, obj, &tcx_stip_ops, s, "tcx.stip",
TCX_STIP_NREGS);
sysbus_init_mmio(sbd, &s->stip);
/* 3/BLIT : Blitter */
memory_region_init_io(&s->blit, obj, &tcx_blit_ops, s, "tcx.blit",
TCX_BLIT_NREGS);
sysbus_init_mmio(sbd, &s->blit);
/* 5/RSTIP : Raw Stippler */
memory_region_init_io(&s->rstip, obj, &tcx_rstip_ops, s, "tcx.rstip",
TCX_RSTIP_NREGS);
sysbus_init_mmio(sbd, &s->rstip);
/* 6/RBLIT : Raw Blitter */
memory_region_init_io(&s->rblit, obj, &tcx_rblit_ops, s, "tcx.rblit",
TCX_RBLIT_NREGS);
sysbus_init_mmio(sbd, &s->rblit);
/* 7/TEC : ??? */
memory_region_init_io(&s->tec, obj, &tcx_dummy_ops, s, "tcx.tec",
TCX_TEC_NREGS);
sysbus_init_mmio(sbd, &s->tec);
/* 8/CMAP : DAC */
memory_region_init_io(&s->dac, obj, &tcx_dac_ops, s, "tcx.dac",
TCX_DAC_NREGS);
sysbus_init_mmio(sbd, &s->dac);
/* 9/THC : Cursor */
memory_region_init_io(&s->thc, obj, &tcx_thc_ops, s, "tcx.thc",
TCX_THC_NREGS);
sysbus_init_mmio(sbd, &s->thc);
/* 11/DHC : ??? */
memory_region_init_io(&s->dhc, obj, &tcx_dummy_ops, s, "tcx.dhc",
TCX_DHC_NREGS);
sysbus_init_mmio(sbd, &s->dhc);
/* 12/ALT : ??? */
memory_region_init_io(&s->alt, obj, &tcx_dummy_ops, s, "tcx.alt",
TCX_ALT_NREGS);
sysbus_init_mmio(sbd, &s->alt);
}
static void tcx_realizefn(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
TCXState *s = TCX(dev);
ram_addr_t vram_offset = 0;
int size, ret;
uint8_t *vram_base;
char *fcode_filename;
memory_region_init_ram_nomigrate(&s->vram_mem, OBJECT(s), "tcx.vram",
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 16:51:43 +02:00
s->vram_size * (1 + 4 + 4), &error_fatal);
vmstate_register_ram_global(&s->vram_mem);
memory_region_set_log(&s->vram_mem, true, DIRTY_MEMORY_VGA);
vram_base = memory_region_get_ram_ptr(&s->vram_mem);
/* 10/ROM : FCode ROM */
vmstate_register_ram_global(&s->rom);
fcode_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, TCX_ROM_FILE);
if (fcode_filename) {
ret = load_image_mr(fcode_filename, &s->rom);
g_free(fcode_filename);
if (ret < 0 || ret > FCODE_MAX_ROM_SIZE) {
warn_report("tcx: could not load prom '%s'", TCX_ROM_FILE);
}
}
/* 0/DFB8 : 8-bit plane */
s->vram = vram_base;
size = s->vram_size;
memory_region_init_alias(&s->vram_8bit, OBJECT(s), "tcx.vram.8bit",
&s->vram_mem, vram_offset, size);
sysbus_init_mmio(sbd, &s->vram_8bit);
vram_offset += size;
vram_base += size;
/* 1/DFB24 : 24bit plane */
size = s->vram_size * 4;
s->vram24 = (uint32_t *)vram_base;
s->vram24_offset = vram_offset;
memory_region_init_alias(&s->vram_24bit, OBJECT(s), "tcx.vram.24bit",
&s->vram_mem, vram_offset, size);
sysbus_init_mmio(sbd, &s->vram_24bit);
vram_offset += size;
vram_base += size;
/* 4/RDFB32 : Raw Framebuffer */
size = s->vram_size * 4;
s->cplane = (uint32_t *)vram_base;
s->cplane_offset = vram_offset;
memory_region_init_alias(&s->vram_cplane, OBJECT(s), "tcx.vram.cplane",
&s->vram_mem, vram_offset, size);
sysbus_init_mmio(sbd, &s->vram_cplane);
/* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
if (s->depth == 8) {
memory_region_init_io(&s->thc24, OBJECT(s), &tcx_dummy_ops, s,
"tcx.thc24", TCX_THC_NREGS);
sysbus_init_mmio(sbd, &s->thc24);
}
sysbus_init_irq(sbd, &s->irq);
if (s->depth == 8) {
s->con = graphic_console_init(dev, 0, &tcx_ops, s);
} else {
s->con = graphic_console_init(dev, 0, &tcx24_ops, s);
}
s->thcmisc = 0;
qemu_console_resize(s->con, s->width, s->height);
}
static Property tcx_properties[] = {
DEFINE_PROP_UINT32("vram_size", TCXState, vram_size, -1),
DEFINE_PROP_UINT16("width", TCXState, width, -1),
DEFINE_PROP_UINT16("height", TCXState, height, -1),
DEFINE_PROP_UINT16("depth", TCXState, depth, -1),
DEFINE_PROP_END_OF_LIST(),
};
static void tcx_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = tcx_realizefn;
dc->reset = tcx_reset;
dc->vmsd = &vmstate_tcx;
device_class_set_props(dc, tcx_properties);
}
static const TypeInfo tcx_info = {
.name = TYPE_TCX,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(TCXState),
.instance_init = tcx_initfn,
.class_init = tcx_class_init,
};
static void tcx_register_types(void)
{
type_register_static(&tcx_info);
}
type_init(tcx_register_types)