qemu-e2k/target/sparc/cpu.h

843 lines
25 KiB
C
Raw Normal View History

#ifndef SPARC_CPU_H
#define SPARC_CPU_H
#include "qemu/bswap.h"
#include "cpu-qom.h"
#include "exec/cpu-defs.h"
#if !defined(TARGET_SPARC64)
#define TARGET_DPREGS 16
#else
#define TARGET_DPREGS 32
#endif
/*#define EXCP_INTERRUPT 0x100*/
/* Windowed register indexes. */
enum {
WREG_O0,
WREG_O1,
WREG_O2,
WREG_O3,
WREG_O4,
WREG_O5,
WREG_O6,
WREG_O7,
WREG_L0,
WREG_L1,
WREG_L2,
WREG_L3,
WREG_L4,
WREG_L5,
WREG_L6,
WREG_L7,
WREG_I0,
WREG_I1,
WREG_I2,
WREG_I3,
WREG_I4,
WREG_I5,
WREG_I6,
WREG_I7,
WREG_SP = WREG_O6,
WREG_FP = WREG_I6,
};
/* trap definitions */
#ifndef TARGET_SPARC64
#define TT_TFAULT 0x01
#define TT_ILL_INSN 0x02
#define TT_PRIV_INSN 0x03
#define TT_NFPU_INSN 0x04
#define TT_WIN_OVF 0x05
#define TT_WIN_UNF 0x06
#define TT_UNALIGNED 0x07
#define TT_FP_EXCP 0x08
#define TT_DFAULT 0x09
#define TT_TOVF 0x0a
#define TT_EXTINT 0x10
#define TT_CODE_ACCESS 0x21
#define TT_UNIMP_FLUSH 0x25
#define TT_DATA_ACCESS 0x29
#define TT_DIV_ZERO 0x2a
#define TT_NCP_INSN 0x24
#define TT_TRAP 0x80
#else
#define TT_POWER_ON_RESET 0x01
#define TT_TFAULT 0x08
#define TT_CODE_ACCESS 0x0a
#define TT_ILL_INSN 0x10
#define TT_UNIMP_FLUSH TT_ILL_INSN
#define TT_PRIV_INSN 0x11
#define TT_NFPU_INSN 0x20
#define TT_FP_EXCP 0x21
#define TT_TOVF 0x23
#define TT_CLRWIN 0x24
#define TT_DIV_ZERO 0x28
#define TT_DFAULT 0x30
#define TT_DATA_ACCESS 0x32
#define TT_UNALIGNED 0x34
#define TT_PRIV_ACT 0x37
#define TT_INSN_REAL_TRANSLATION_MISS 0x3e
#define TT_DATA_REAL_TRANSLATION_MISS 0x3f
#define TT_EXTINT 0x40
#define TT_IVEC 0x60
#define TT_TMISS 0x64
#define TT_DMISS 0x68
#define TT_DPROT 0x6c
#define TT_SPILL 0x80
#define TT_FILL 0xc0
#define TT_WOTHER (1 << 5)
#define TT_TRAP 0x100
#define TT_HTRAP 0x180
#endif
#define PSR_NEG_SHIFT 23
#define PSR_NEG (1 << PSR_NEG_SHIFT)
#define PSR_ZERO_SHIFT 22
#define PSR_ZERO (1 << PSR_ZERO_SHIFT)
#define PSR_OVF_SHIFT 21
#define PSR_OVF (1 << PSR_OVF_SHIFT)
#define PSR_CARRY_SHIFT 20
#define PSR_CARRY (1 << PSR_CARRY_SHIFT)
#define PSR_ICC (PSR_NEG|PSR_ZERO|PSR_OVF|PSR_CARRY)
#if !defined(TARGET_SPARC64)
#define PSR_EF (1<<12)
#define PSR_PIL 0xf00
#define PSR_S (1<<7)
#define PSR_PS (1<<6)
#define PSR_ET (1<<5)
#define PSR_CWP 0x1f
#endif
#define CC_SRC (env->cc_src)
#define CC_SRC2 (env->cc_src2)
#define CC_DST (env->cc_dst)
#define CC_OP (env->cc_op)
/* Even though lazy evaluation of CPU condition codes tends to be less
* important on RISC systems where condition codes are only updated
* when explicitly requested, SPARC uses it to update 32-bit and 64-bit
* condition codes.
*/
enum {
CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */
CC_OP_FLAGS, /* all cc are back in status register */
CC_OP_DIV, /* modify N, Z and V, C = 0*/
CC_OP_ADD, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_ADDX, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_TADD, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_TADDTV, /* modify all flags except V, CC_DST = res, CC_SRC = src1 */
CC_OP_SUB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_SUBX, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_TSUB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_TSUBTV, /* modify all flags except V, CC_DST = res, CC_SRC = src1 */
CC_OP_LOGIC, /* modify N and Z, C = V = 0, CC_DST = res */
CC_OP_NB,
};
/* Trap base register */
#define TBR_BASE_MASK 0xfffff000
#if defined(TARGET_SPARC64)
#define PS_TCT (1<<12) /* UA2007, impl.dep. trap on control transfer */
#define PS_IG (1<<11) /* v9, zero on UA2007 */
#define PS_MG (1<<10) /* v9, zero on UA2007 */
#define PS_CLE (1<<9) /* UA2007 */
#define PS_TLE (1<<8) /* UA2007 */
#define PS_RMO (1<<7)
#define PS_RED (1<<5) /* v9, zero on UA2007 */
#define PS_PEF (1<<4) /* enable fpu */
#define PS_AM (1<<3) /* address mask */
#define PS_PRIV (1<<2)
#define PS_IE (1<<1)
#define PS_AG (1<<0) /* v9, zero on UA2007 */
linux-user/sparc: Correct sparc64_get/set_context() FPU handling The handling of the FPU state in sparc64_get_context() and sparc64_set_context() is not the same as what the kernel actually does: we unconditionally read and write the FP registers and the FSR, GSR and FPRS, but the kernel logic is more complicated: * in get_context the kernel has code for saving FPU registers, but it is hidden inside an "if (fenab) condition and the fenab flag is always set to 0 (inside an "#if 1" which has been in the kernel for over 15 years). So the effect is that the FPU state part is always written as zeroes. * in set_context the kernel looks at the fenab field in the structure from the guest, and only restores the state if it is set; it also looks at the structure's FPRS to see whether either the upper or lower or both halves of the register file have valid data. Bring our implementations into line with the kernel: * in get_context: - clear the entire target_ucontext at the top of the function (as the kernel does) - then don't write the FPU state, so those fields remain zero - this fixes Coverity issue CID 1432305 by deleting the code it was complaining about * in set_context: - check the fenab and the fpsr to decide which parts of the FPU data to restore, if any - instead of setting the FPU registers by doing two 32-bit loads and filling in the .upper and .lower parts of the CPU_Double union separately, just do a 64-bit load of the whole register at once. This fixes Coverity issue CID 1432303 because we now access the dregs[] part of the mcfpu_fregs union rather than the sregs[] part (which is not large enough to actually cover the whole of the data, so we were accessing off the end of sregs[]) We change both functions in a single commit to avoid potentially breaking bisection. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20201106152738.26026-2-peter.maydell@linaro.org> [lv: fix FPRS_DU loop s/31/32/] Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-11-06 16:27:35 +01:00
#define FPRS_DL (1 << 0)
#define FPRS_DU (1 << 1)
#define FPRS_FEF (1 << 2)
#define HS_PRIV (1<<2)
#endif
/* Fcc */
#define FSR_RD1 (1ULL << 31)
#define FSR_RD0 (1ULL << 30)
#define FSR_RD_MASK (FSR_RD1 | FSR_RD0)
#define FSR_RD_NEAREST 0
#define FSR_RD_ZERO FSR_RD0
#define FSR_RD_POS FSR_RD1
#define FSR_RD_NEG (FSR_RD1 | FSR_RD0)
#define FSR_NVM (1ULL << 27)
#define FSR_OFM (1ULL << 26)
#define FSR_UFM (1ULL << 25)
#define FSR_DZM (1ULL << 24)
#define FSR_NXM (1ULL << 23)
#define FSR_TEM_MASK (FSR_NVM | FSR_OFM | FSR_UFM | FSR_DZM | FSR_NXM)
#define FSR_NVA (1ULL << 9)
#define FSR_OFA (1ULL << 8)
#define FSR_UFA (1ULL << 7)
#define FSR_DZA (1ULL << 6)
#define FSR_NXA (1ULL << 5)
#define FSR_AEXC_MASK (FSR_NVA | FSR_OFA | FSR_UFA | FSR_DZA | FSR_NXA)
#define FSR_NVC (1ULL << 4)
#define FSR_OFC (1ULL << 3)
#define FSR_UFC (1ULL << 2)
#define FSR_DZC (1ULL << 1)
#define FSR_NXC (1ULL << 0)
#define FSR_CEXC_MASK (FSR_NVC | FSR_OFC | FSR_UFC | FSR_DZC | FSR_NXC)
#define FSR_FTT2 (1ULL << 16)
#define FSR_FTT1 (1ULL << 15)
#define FSR_FTT0 (1ULL << 14)
//gcc warns about constant overflow for ~FSR_FTT_MASK
//#define FSR_FTT_MASK (FSR_FTT2 | FSR_FTT1 | FSR_FTT0)
#ifdef TARGET_SPARC64
#define FSR_FTT_NMASK 0xfffffffffffe3fffULL
#define FSR_FTT_CEXC_NMASK 0xfffffffffffe3fe0ULL
#define FSR_LDFSR_OLDMASK 0x0000003f000fc000ULL
#define FSR_LDXFSR_MASK 0x0000003fcfc00fffULL
#define FSR_LDXFSR_OLDMASK 0x00000000000fc000ULL
#else
#define FSR_FTT_NMASK 0xfffe3fffULL
#define FSR_FTT_CEXC_NMASK 0xfffe3fe0ULL
#define FSR_LDFSR_OLDMASK 0x000fc000ULL
#endif
#define FSR_LDFSR_MASK 0xcfc00fffULL
#define FSR_FTT_IEEE_EXCP (1ULL << 14)
#define FSR_FTT_UNIMPFPOP (3ULL << 14)
#define FSR_FTT_SEQ_ERROR (4ULL << 14)
#define FSR_FTT_INVAL_FPR (6ULL << 14)
#define FSR_FCC1_SHIFT 11
#define FSR_FCC1 (1ULL << FSR_FCC1_SHIFT)
#define FSR_FCC0_SHIFT 10
#define FSR_FCC0 (1ULL << FSR_FCC0_SHIFT)
/* MMU */
#define MMU_E (1<<0)
#define MMU_NF (1<<1)
#define PTE_ENTRYTYPE_MASK 3
#define PTE_ACCESS_MASK 0x1c
#define PTE_ACCESS_SHIFT 2
#define PTE_PPN_SHIFT 7
#define PTE_ADDR_MASK 0xffffff00
#define PG_ACCESSED_BIT 5
#define PG_MODIFIED_BIT 6
#define PG_CACHE_BIT 7
#define PG_ACCESSED_MASK (1 << PG_ACCESSED_BIT)
#define PG_MODIFIED_MASK (1 << PG_MODIFIED_BIT)
#define PG_CACHE_MASK (1 << PG_CACHE_BIT)
/* 3 <= NWINDOWS <= 32. */
#define MIN_NWINDOWS 3
#define MAX_NWINDOWS 32
#ifdef TARGET_SPARC64
typedef struct trap_state {
uint64_t tpc;
uint64_t tnpc;
uint64_t tstate;
uint32_t tt;
} trap_state;
#endif
#define TARGET_INSN_START_EXTRA_WORDS 1
struct sparc_def_t {
const char *name;
target_ulong iu_version;
uint32_t fpu_version;
uint32_t mmu_version;
uint32_t mmu_bm;
uint32_t mmu_ctpr_mask;
uint32_t mmu_cxr_mask;
uint32_t mmu_sfsr_mask;
uint32_t mmu_trcr_mask;
uint32_t mxcc_version;
uint32_t features;
uint32_t nwindows;
uint32_t maxtl;
};
#define CPU_FEATURE_FLOAT (1 << 0)
#define CPU_FEATURE_FLOAT128 (1 << 1)
#define CPU_FEATURE_SWAP (1 << 2)
#define CPU_FEATURE_MUL (1 << 3)
#define CPU_FEATURE_DIV (1 << 4)
#define CPU_FEATURE_FLUSH (1 << 5)
#define CPU_FEATURE_FSQRT (1 << 6)
#define CPU_FEATURE_FMUL (1 << 7)
#define CPU_FEATURE_VIS1 (1 << 8)
#define CPU_FEATURE_VIS2 (1 << 9)
#define CPU_FEATURE_FSMULD (1 << 10)
#define CPU_FEATURE_HYPV (1 << 11)
#define CPU_FEATURE_CMT (1 << 12)
#define CPU_FEATURE_GL (1 << 13)
#define CPU_FEATURE_TA0_SHUTDOWN (1 << 14) /* Shutdown on "ta 0x0" */
#define CPU_FEATURE_ASR17 (1 << 15)
#define CPU_FEATURE_CACHE_CTRL (1 << 16)
#define CPU_FEATURE_POWERDOWN (1 << 17)
#define CPU_FEATURE_CASA (1 << 18)
#ifndef TARGET_SPARC64
#define CPU_DEFAULT_FEATURES (CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | \
CPU_FEATURE_MUL | CPU_FEATURE_DIV | \
CPU_FEATURE_FLUSH | CPU_FEATURE_FSQRT | \
CPU_FEATURE_FMUL | CPU_FEATURE_FSMULD)
#else
#define CPU_DEFAULT_FEATURES (CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | \
CPU_FEATURE_MUL | CPU_FEATURE_DIV | \
CPU_FEATURE_FLUSH | CPU_FEATURE_FSQRT | \
CPU_FEATURE_FMUL | CPU_FEATURE_VIS1 | \
CPU_FEATURE_VIS2 | CPU_FEATURE_FSMULD | \
CPU_FEATURE_CASA)
enum {
mmu_us_12, // Ultrasparc < III (64 entry TLB)
mmu_us_3, // Ultrasparc III (512 entry TLB)
mmu_us_4, // Ultrasparc IV (several TLBs, 32 and 256MB pages)
mmu_sun4v, // T1, T2
};
#endif
#define TTE_VALID_BIT (1ULL << 63)
#define TTE_NFO_BIT (1ULL << 60)
#define TTE_IE_BIT (1ULL << 59)
#define TTE_USED_BIT (1ULL << 41)
#define TTE_LOCKED_BIT (1ULL << 6)
#define TTE_SIDEEFFECT_BIT (1ULL << 3)
#define TTE_PRIV_BIT (1ULL << 2)
#define TTE_W_OK_BIT (1ULL << 1)
#define TTE_GLOBAL_BIT (1ULL << 0)
#define TTE_NFO_BIT_UA2005 (1ULL << 62)
#define TTE_USED_BIT_UA2005 (1ULL << 47)
#define TTE_LOCKED_BIT_UA2005 (1ULL << 61)
#define TTE_SIDEEFFECT_BIT_UA2005 (1ULL << 11)
#define TTE_PRIV_BIT_UA2005 (1ULL << 8)
#define TTE_W_OK_BIT_UA2005 (1ULL << 6)
#define TTE_IS_VALID(tte) ((tte) & TTE_VALID_BIT)
#define TTE_IS_NFO(tte) ((tte) & TTE_NFO_BIT)
#define TTE_IS_IE(tte) ((tte) & TTE_IE_BIT)
#define TTE_IS_USED(tte) ((tte) & TTE_USED_BIT)
#define TTE_IS_LOCKED(tte) ((tte) & TTE_LOCKED_BIT)
#define TTE_IS_SIDEEFFECT(tte) ((tte) & TTE_SIDEEFFECT_BIT)
#define TTE_IS_SIDEEFFECT_UA2005(tte) ((tte) & TTE_SIDEEFFECT_BIT_UA2005)
#define TTE_IS_PRIV(tte) ((tte) & TTE_PRIV_BIT)
#define TTE_IS_W_OK(tte) ((tte) & TTE_W_OK_BIT)
#define TTE_IS_NFO_UA2005(tte) ((tte) & TTE_NFO_BIT_UA2005)
#define TTE_IS_USED_UA2005(tte) ((tte) & TTE_USED_BIT_UA2005)
#define TTE_IS_LOCKED_UA2005(tte) ((tte) & TTE_LOCKED_BIT_UA2005)
#define TTE_IS_SIDEEFFECT_UA2005(tte) ((tte) & TTE_SIDEEFFECT_BIT_UA2005)
#define TTE_IS_PRIV_UA2005(tte) ((tte) & TTE_PRIV_BIT_UA2005)
#define TTE_IS_W_OK_UA2005(tte) ((tte) & TTE_W_OK_BIT_UA2005)
#define TTE_IS_GLOBAL(tte) ((tte) & TTE_GLOBAL_BIT)
#define TTE_SET_USED(tte) ((tte) |= TTE_USED_BIT)
#define TTE_SET_UNUSED(tte) ((tte) &= ~TTE_USED_BIT)
#define TTE_PGSIZE(tte) (((tte) >> 61) & 3ULL)
#define TTE_PGSIZE_UA2005(tte) ((tte) & 7ULL)
#define TTE_PA(tte) ((tte) & 0x1ffffffe000ULL)
/* UltraSPARC T1 specific */
#define TLB_UST1_IS_REAL_BIT (1ULL << 9) /* Real translation entry */
#define TLB_UST1_IS_SUN4V_BIT (1ULL << 10) /* sun4u/sun4v TTE format switch */
#define SFSR_NF_BIT (1ULL << 24) /* JPS1 NoFault */
#define SFSR_TM_BIT (1ULL << 15) /* JPS1 TLB Miss */
#define SFSR_FT_VA_IMMU_BIT (1ULL << 13) /* USIIi VA out of range (IMMU) */
#define SFSR_FT_VA_DMMU_BIT (1ULL << 12) /* USIIi VA out of range (DMMU) */
#define SFSR_FT_NFO_BIT (1ULL << 11) /* NFO page access */
#define SFSR_FT_ILL_BIT (1ULL << 10) /* illegal LDA/STA ASI */
#define SFSR_FT_ATOMIC_BIT (1ULL << 9) /* atomic op on noncacheable area */
#define SFSR_FT_NF_E_BIT (1ULL << 8) /* NF access on side effect area */
#define SFSR_FT_PRIV_BIT (1ULL << 7) /* privilege violation */
#define SFSR_PR_BIT (1ULL << 3) /* privilege mode */
#define SFSR_WRITE_BIT (1ULL << 2) /* write access mode */
#define SFSR_OW_BIT (1ULL << 1) /* status overwritten */
#define SFSR_VALID_BIT (1ULL << 0) /* status valid */
#define SFSR_ASI_SHIFT 16 /* 23:16 ASI value */
#define SFSR_ASI_MASK (0xffULL << SFSR_ASI_SHIFT)
#define SFSR_CT_PRIMARY (0ULL << 4) /* 5:4 context type */
#define SFSR_CT_SECONDARY (1ULL << 4)
#define SFSR_CT_NUCLEUS (2ULL << 4)
#define SFSR_CT_NOTRANS (3ULL << 4)
#define SFSR_CT_MASK (3ULL << 4)
/* Leon3 cache control */
/* Cache control: emulate the behavior of cache control registers but without
any effect on the emulated */
#define CACHE_STATE_MASK 0x3
#define CACHE_DISABLED 0x0
#define CACHE_FROZEN 0x1
#define CACHE_ENABLED 0x3
/* Cache Control register fields */
#define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */
#define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */
#define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */
#define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */
#define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */
#define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */
#define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */
#define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */
#define CONVERT_BIT(X, SRC, DST) \
(SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
typedef struct SparcTLBEntry {
uint64_t tag;
uint64_t tte;
} SparcTLBEntry;
struct CPUTimer
{
const char *name;
uint32_t frequency;
uint32_t disabled;
uint64_t disabled_mask;
uint32_t npt;
uint64_t npt_mask;
int64_t clock_offset;
QEMUTimer *qtimer;
};
typedef struct CPUTimer CPUTimer;
typedef struct CPUSPARCState CPUSPARCState;
#if defined(TARGET_SPARC64)
typedef union {
uint64_t mmuregs[16];
struct {
uint64_t tsb_tag_target;
uint64_t mmu_primary_context;
uint64_t mmu_secondary_context;
uint64_t sfsr;
uint64_t sfar;
uint64_t tsb;
uint64_t tag_access;
uint64_t virtual_watchpoint;
uint64_t physical_watchpoint;
uint64_t sun4v_ctx_config[2];
uint64_t sun4v_tsb_pointers[4];
};
} SparcV9MMU;
#endif
struct CPUSPARCState {
target_ulong gregs[8]; /* general registers */
target_ulong *regwptr; /* pointer to current register window */
target_ulong pc; /* program counter */
target_ulong npc; /* next program counter */
target_ulong y; /* multiply/divide register */
/* emulator internal flags handling */
target_ulong cc_src, cc_src2;
target_ulong cc_dst;
uint32_t cc_op;
target_ulong cond; /* conditional branch result (XXX: save it in a
temporary register when possible) */
uint32_t psr; /* processor state register */
target_ulong fsr; /* FPU state register */
CPU_DoubleU fpr[TARGET_DPREGS]; /* floating point registers */
uint32_t cwp; /* index of current register window (extracted
from PSR) */
#if !defined(TARGET_SPARC64) || defined(TARGET_ABI32)
uint32_t wim; /* window invalid mask */
#endif
target_ulong tbr; /* trap base register */
#if !defined(TARGET_SPARC64)
int psrs; /* supervisor mode (extracted from PSR) */
int psrps; /* previous supervisor mode */
int psret; /* enable traps */
#endif
uint32_t psrpil; /* interrupt blocking level */
uint32_t pil_in; /* incoming interrupt level bitmap */
#if !defined(TARGET_SPARC64)
int psref; /* enable fpu */
#endif
int interrupt_index;
/* NOTE: we allow 8 more registers to handle wrapping */
target_ulong regbase[MAX_NWINDOWS * 16 + 8];
/* Fields up to this point are cleared by a CPU reset */
struct {} end_reset_fields;
/* Fields from here on are preserved across CPU reset. */
target_ulong version;
uint32_t nwindows;
/* MMU regs */
#if defined(TARGET_SPARC64)
uint64_t lsu;
#define DMMU_E 0x8
#define IMMU_E 0x4
SparcV9MMU immu;
SparcV9MMU dmmu;
SparcTLBEntry itlb[64];
SparcTLBEntry dtlb[64];
uint32_t mmu_version;
#else
uint32_t mmuregs[32];
uint64_t mxccdata[4];
uint64_t mxccregs[8];
uint32_t mmubpctrv, mmubpctrc, mmubpctrs;
uint64_t mmubpaction;
uint64_t mmubpregs[4];
uint64_t prom_addr;
#endif
/* temporary float registers */
float128 qt0, qt1;
float_status fp_status;
#if defined(TARGET_SPARC64)
#define MAXTL_MAX 8
#define MAXTL_MASK (MAXTL_MAX - 1)
trap_state ts[MAXTL_MAX];
uint32_t xcc; /* Extended integer condition codes */
uint32_t asi;
uint32_t pstate;
uint32_t tl;
uint32_t maxtl;
uint32_t cansave, canrestore, otherwin, wstate, cleanwin;
uint64_t agregs[8]; /* alternate general registers */
uint64_t bgregs[8]; /* backup for normal global registers */
uint64_t igregs[8]; /* interrupt general registers */
uint64_t mgregs[8]; /* mmu general registers */
uint64_t glregs[8 * MAXTL_MAX];
uint64_t fprs;
uint64_t tick_cmpr, stick_cmpr;
CPUTimer *tick, *stick;
#define TICK_NPT_MASK 0x8000000000000000ULL
#define TICK_INT_DIS 0x8000000000000000ULL
uint64_t gsr;
uint32_t gl; // UA2005
/* UA 2005 hyperprivileged registers */
uint64_t hpstate, htstate[MAXTL_MAX], hintp, htba, hver, hstick_cmpr, ssr;
uint64_t scratch[8];
CPUTimer *hstick; // UA 2005
/* Interrupt vector registers */
uint64_t ivec_status;
uint64_t ivec_data[3];
uint32_t softint;
#define SOFTINT_TIMER 1
#define SOFTINT_STIMER (1 << 16)
#define SOFTINT_INTRMASK (0xFFFE)
#define SOFTINT_REG_MASK (SOFTINT_STIMER|SOFTINT_INTRMASK|SOFTINT_TIMER)
#endif
sparc_def_t def;
void *irq_manager;
void (*qemu_irq_ack)(CPUSPARCState *env, void *irq_manager, int intno);
/* Leon3 cache control */
uint32_t cache_control;
};
/**
* SPARCCPU:
* @env: #CPUSPARCState
*
* A SPARC CPU.
*/
struct SPARCCPU {
/*< private >*/
CPUState parent_obj;
/*< public >*/
CPUNegativeOffsetState neg;
CPUSPARCState env;
};
#ifndef CONFIG_USER_ONLY
extern const VMStateDescription vmstate_sparc_cpu;
#endif
void sparc_cpu_do_interrupt(CPUState *cpu);
void sparc_cpu_dump_state(CPUState *cpu, FILE *f, int flags);
hwaddr sparc_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
int sparc_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int sparc_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx,
uintptr_t retaddr);
void cpu_raise_exception_ra(CPUSPARCState *, int, uintptr_t) QEMU_NORETURN;
#ifndef NO_CPU_IO_DEFS
/* cpu_init.c */
void cpu_sparc_set_id(CPUSPARCState *env, unsigned int cpu);
void sparc_cpu_list(void);
/* mmu_helper.c */
bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev);
void dump_mmu(CPUSPARCState *env);
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
int sparc_cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
uint8_t *buf, int len, bool is_write);
#endif
/* translate.c */
void sparc_tcg_init(void);
/* cpu-exec.c */
/* win_helper.c */
target_ulong cpu_get_psr(CPUSPARCState *env1);
void cpu_put_psr(CPUSPARCState *env1, target_ulong val);
void cpu_put_psr_raw(CPUSPARCState *env1, target_ulong val);
#ifdef TARGET_SPARC64
void cpu_change_pstate(CPUSPARCState *env1, uint32_t new_pstate);
void cpu_gl_switch_gregs(CPUSPARCState *env, uint32_t new_gl);
#endif
int cpu_cwp_inc(CPUSPARCState *env1, int cwp);
int cpu_cwp_dec(CPUSPARCState *env1, int cwp);
void cpu_set_cwp(CPUSPARCState *env1, int new_cwp);
/* sun4m.c, sun4u.c */
void cpu_check_irqs(CPUSPARCState *env);
#if defined (TARGET_SPARC64)
static inline int compare_masked(uint64_t x, uint64_t y, uint64_t mask)
{
return (x & mask) == (y & mask);
}
#define MMU_CONTEXT_BITS 13
#define MMU_CONTEXT_MASK ((1 << MMU_CONTEXT_BITS) - 1)
static inline int tlb_compare_context(const SparcTLBEntry *tlb,
uint64_t context)
{
return compare_masked(context, tlb->tag, MMU_CONTEXT_MASK);
}
#endif
#endif
/* cpu-exec.c */
#if !defined(CONFIG_USER_ONLY)
void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr);
#if defined(TARGET_SPARC64)
hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
int mmu_idx);
#endif
#endif
int cpu_sparc_signal_handler(int host_signum, void *pinfo, void *puc);
#define SPARC_CPU_TYPE_SUFFIX "-" TYPE_SPARC_CPU
#define SPARC_CPU_TYPE_NAME(model) model SPARC_CPU_TYPE_SUFFIX
#define CPU_RESOLVING_TYPE TYPE_SPARC_CPU
#define cpu_signal_handler cpu_sparc_signal_handler
#define cpu_list sparc_cpu_list
/* MMU modes definitions */
#if defined (TARGET_SPARC64)
#define MMU_USER_IDX 0
#define MMU_USER_SECONDARY_IDX 1
#define MMU_KERNEL_IDX 2
#define MMU_KERNEL_SECONDARY_IDX 3
#define MMU_NUCLEUS_IDX 4
#define MMU_PHYS_IDX 5
#else
#define MMU_USER_IDX 0
#define MMU_KERNEL_IDX 1
#define MMU_PHYS_IDX 2
#endif
#if defined (TARGET_SPARC64)
static inline int cpu_has_hypervisor(CPUSPARCState *env1)
{
return env1->def.features & CPU_FEATURE_HYPV;
}
static inline int cpu_hypervisor_mode(CPUSPARCState *env1)
{
return cpu_has_hypervisor(env1) && (env1->hpstate & HS_PRIV);
}
static inline int cpu_supervisor_mode(CPUSPARCState *env1)
{
return env1->pstate & PS_PRIV;
}
#else
static inline int cpu_supervisor_mode(CPUSPARCState *env1)
{
return env1->psrs;
}
#endif
static inline int cpu_mmu_index(CPUSPARCState *env, bool ifetch)
{
#if defined(CONFIG_USER_ONLY)
return MMU_USER_IDX;
#elif !defined(TARGET_SPARC64)
if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */
return MMU_PHYS_IDX;
} else {
return env->psrs;
}
#else
/* IMMU or DMMU disabled. */
if (ifetch
? (env->lsu & IMMU_E) == 0 || (env->pstate & PS_RED) != 0
: (env->lsu & DMMU_E) == 0) {
return MMU_PHYS_IDX;
} else if (cpu_hypervisor_mode(env)) {
return MMU_PHYS_IDX;
} else if (env->tl > 0) {
return MMU_NUCLEUS_IDX;
} else if (cpu_supervisor_mode(env)) {
return MMU_KERNEL_IDX;
} else {
return MMU_USER_IDX;
}
#endif
}
static inline int cpu_interrupts_enabled(CPUSPARCState *env1)
{
#if !defined (TARGET_SPARC64)
if (env1->psret != 0)
return 1;
#else
if ((env1->pstate & PS_IE) && !cpu_hypervisor_mode(env1)) {
return 1;
}
#endif
return 0;
}
static inline int cpu_pil_allowed(CPUSPARCState *env1, int pil)
{
#if !defined(TARGET_SPARC64)
/* level 15 is non-maskable on sparc v8 */
return pil == 15 || pil > env1->psrpil;
#else
return pil > env1->psrpil;
#endif
}
typedef CPUSPARCState CPUArchState;
typedef SPARCCPU ArchCPU;
#include "exec/cpu-all.h"
#ifdef TARGET_SPARC64
/* sun4u.c */
void cpu_tick_set_count(CPUTimer *timer, uint64_t count);
uint64_t cpu_tick_get_count(CPUTimer *timer);
void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit);
trap_state* cpu_tsptr(CPUSPARCState* env);
#endif
#define TB_FLAG_MMU_MASK 7
#define TB_FLAG_FPU_ENABLED (1 << 4)
#define TB_FLAG_AM_ENABLED (1 << 5)
#define TB_FLAG_SUPER (1 << 6)
#define TB_FLAG_HYPER (1 << 7)
#define TB_FLAG_ASI_SHIFT 24
static inline void cpu_get_tb_cpu_state(CPUSPARCState *env, target_ulong *pc,
target_ulong *cs_base, uint32_t *pflags)
{
uint32_t flags;
*pc = env->pc;
*cs_base = env->npc;
flags = cpu_mmu_index(env, false);
#ifndef CONFIG_USER_ONLY
if (cpu_supervisor_mode(env)) {
flags |= TB_FLAG_SUPER;
}
#endif
#ifdef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY
if (cpu_hypervisor_mode(env)) {
flags |= TB_FLAG_HYPER;
}
#endif
if (env->pstate & PS_AM) {
flags |= TB_FLAG_AM_ENABLED;
}
if ((env->def.features & CPU_FEATURE_FLOAT)
&& (env->pstate & PS_PEF)
&& (env->fprs & FPRS_FEF)) {
flags |= TB_FLAG_FPU_ENABLED;
}
flags |= env->asi << TB_FLAG_ASI_SHIFT;
#else
if ((env->def.features & CPU_FEATURE_FLOAT) && env->psref) {
flags |= TB_FLAG_FPU_ENABLED;
}
#endif
*pflags = flags;
}
static inline bool tb_fpu_enabled(int tb_flags)
{
#if defined(CONFIG_USER_ONLY)
return true;
#else
return tb_flags & TB_FLAG_FPU_ENABLED;
#endif
}
static inline bool tb_am_enabled(int tb_flags)
{
#ifndef TARGET_SPARC64
return false;
#else
return tb_flags & TB_FLAG_AM_ENABLED;
#endif
}
#ifdef TARGET_SPARC64
/* win_helper.c */
target_ulong cpu_get_ccr(CPUSPARCState *env1);
void cpu_put_ccr(CPUSPARCState *env1, target_ulong val);
target_ulong cpu_get_cwp64(CPUSPARCState *env1);
void cpu_put_cwp64(CPUSPARCState *env1, int cwp);
static inline uint64_t sparc64_tstate(CPUSPARCState *env)
{
uint64_t tstate = (cpu_get_ccr(env) << 32) |
((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
cpu_get_cwp64(env);
if (env->def.features & CPU_FEATURE_GL) {
tstate |= (env->gl & 7ULL) << 40;
}
return tstate;
}
#endif
#endif