legacy mouse event handlers are registered in the new core,
so they receive events submitted to the new input core.
legacy kbd_mouse_event() continues to use the old code paths.
So new-core event handlers wouldn't see events submitted via
kbd_mouse_event.
This leads to the constrain that we we must transition all
kbd_mouse_event() users first to keep things working. But
that is easier to handle than translating legacy mouse events
into new-core mouse events ;)
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Transform absolute mouse events according to graphic_rotate.
Legacy input code does it for both absolute and relative events,
but the logic is broken for relative coordinates, so this is
most likely not used anyway.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Likewise a bunch of helper functions to manage mouse button
and movement events, again to make life easier for the ui code.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
legacy kbd event handlers are registered in the new core,
so they receive events from the new input core code.
keycode -> scancode translation needed here.
legacy kbd_put_keycode() sends events to the new core.
scancode -> keycode translation needed here.
So with this patch the new input core is fully functional
for keyboard events. New + legacy interfaces can be mixed
in any way.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
A bunch of helper functions to manage keyboard events,
to make life simpler for the ui code when submitting
keyboard events.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Define input event types, using qapi. So we get nicely autogenerated
types for our input events. And when it comes to qmp support some day
things will be a lot easier.
Types are modeled after the linux input layer. There are separate
event types for each value. There is a sync to indicate the end
of a event group.
Mouse events are split into motion events (one for each axis) and
button events, which are grouped by sync.
Keyboard events are using the existing KeyValue type.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Handle the new CCW_CMD_SET_IND_ADAPTER command enabling adapter interrupts
on guest request. When active, host->guest notifications will be handled
via global_indicator -> queue indicators instead of queue indicators +
subchannel I/O interrupt. Indicators for virtqueues may be present at an
offset.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
This makes use of @cpu_dt_id and related API in:
1. emulated XICS hypercall handlers as they receive fixed CPU indexes;
2. XICS-KVM to enable in-kernel XICS on right CPU;
3. device-tree renderer.
This removes @cpu_index fixup as @cpu_dt_id is used instead so QEMU monitor
can accept command-line CPU indexes again.
This changes kvm_arch_vcpu_id() to use ppc_get_vcpu_dt_id() as at the moment
KVM CPU id and device tree ID are calculated using the same algorithm.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Mike Day <ncmike@ncultra.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Normally CPUState::cpu_index is used to pick the right CPU for various
operations. However default consecutive numbering does not always work
for POWERPC.
These indexes are reflected in /proc/device-tree/cpus/PowerPC,POWER7@XX
and used to call KVM VCPU's ioctls. In order to achieve this,
kvmppc_fixup_cpu() was introduced. Roughly speaking, it multiplies
cpu_index by the number of threads per core.
This approach has disadvantages such as:
1. NUMA configuration stays broken after the fixup;
2. CPU-targeted commands from the QEMU Monitor do not work properly as
CPU indexes have been fixed and there is no clear way for the user to
know what the new CPU indexes are.
This introduces a @cpu_dt_id field in the CPUPPCState struct which
is initialized from @cpu_index by default and can be fixed later
to meet the device tree requirements.
This adds an API to handle @cpu_dt_id.
This removes kvmppc_fixup_cpu() as it is not more needed, @cpu_dt_id
is calculated in ppc_cpu_realize().
This will be used later in machine code.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Mike Day <ncmike@ncultra.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch introduces the hypervisor call H_GET_TCE which is basically the
reverse of H_PUT_TCE, as defined in the Power Architecture Platform
Requirements (PAPR).
The hcall H_GET_TCE is required by the kdump kernel which is calling it to
retrieve the TCE set up by the panicing kernel.
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This support updating htab managed by the hypervisor. Currently we don't have
any user for this feature. This actually bring the store_hpte interface
in-line with the load_hpte one. We may want to use this when we want to
emulate henter hcall in qemu for HV kvm.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[ folded fix for the "warn_unused_result" build break in
kvmppc_hash64_write_pte(), Greg Kurz <gkurz@linux.vnet.ibm.com> ]
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
For updating in kernel htab we need to provide both pte0 and pte1, hence update
the interface to take pte0 and pte1 together
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[ ldq_phys() API change, Greg Kurz <gkurz@linux.vnet.ibm.com> ]
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
With kvm enabled, we store the hash page table information in the hypervisor.
Use ioctl to read the htab contents. Without this we get the below error when
trying to read the guest address
(gdb) x/10 do_fork
0xc000000000098660 <do_fork>: Cannot access memory at address 0xc000000000098660
(gdb)
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[ fixes for 32 bit build (casts!), ldq_phys() API change,
Greg Kurz <gkurz@linux.vnet.ibm.com ]
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Correctly update the htab_mask using the return value of
KVM_PPC_ALLOCATE_HTAB ioctl. Also we don't update sdr1
on GET_SREGS for HV. We check for external htab and if
found true, we don't need to update sdr1
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[ fixed pte group offset computation in ppc_hash64_htab_lookup() that
caused TCG to fail, Greg Kurz <gkurz@linux.vnet.ibm.com> ]
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Per Alex Graf's suggestion, the recently added case to gen_conditional_store
for stqcx should use an additional temporary when accessing the second
doubleword. This avoids the mutation of the EA argument to the function,
which is counter intuitive.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch fixes 64 bit constants that were erroneously declared as "ul" instead of
"ull". The preferred form "ULL" is used.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
We currently size the msi window trap page according to the host's page
size so that we poke a working hole into a memory slot in case we overlap.
However, this is only ever necessary with KVM active. Without KVM, we should
rather try to be host platform agnostic and use a constant size: 4k.
This fixes a build breakage on win32 hosts.
Signed-off-by: Alexander Graf <agraf@suse.de>
64 bit constants need the "ULL" suffix, not just "UL", because
on 32 bit platforms 'long' is not large enough and this will
cause a compiler warning.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
When the guests adds buffers to receive queue, the network device
should flush its queue of pending packets. This is done with
qemu_flush_queued_packets.
This adds a call to qemu_flush_queued_packets() which wakes up the main
loop and let QEMU update the network device status which now is "can
receive". The patch basically does the same thing as e8b4c68 does.
Suggested-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Permuate and Exclusive OR (vpermxor)
instruction introduced in Power ISA Version 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector SHA Sigma instructions introduced in Power
ISA Version 2.07:
- Vector SHA-512 Sigma Doubleword (vshasigmad)
- Vector SHA-256 Sigma Word (vshasigmaw)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector AES instructions introduced in Power ISA
Version 2.07:
- Vector AES Cipher (vcipher)
- Vector AES Cipher Last (vcipherlast)
- Vector AES Inverse Cipher (vncipher)
- Vector AES Inverse Cipher Last (vncipherlast)
- Vector AES SubBytes (vsbox)
Note that the implementation of vncipher deviates from the RTL in
ISA V2.07. However it does match the verbal description in the
third paragraph. The RTL will be fixed in ISA V2.07B. The
implementation here has been tested against actual P8 hardware.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch add the Binary Coded Decimal instructions bcdadd. and
bcdsub.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vectory Polynomial Multiply Sum instructions
introduced in Power ISA Version 2.07:
- Vectory Polynomial Multiply Sum Byte (vpmsumb)
- Vectory Polynomial Multiply Sum Halfword (vpmsumh)
- Vectory Polynomial Multiply Sum Word (vpmsumw)
- Vectory Polynomial Multiply Sum Doubleword (vpmsumd)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Gather Bits by Bytes Doubleword (vgbbd)
instruction which is introduced in Power ISA Version 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Compare Doubleword instructions introduced
by Power ISA Version 2.07:
- Vector Compare Equal to Unsigned Doubleword (vcmpequd)
- Vector Compare Greater Than Signed Doubleword (vcmpgtsd)
- Vector Compare Greater Than Unsigned Doubleword (vcmpgtud)
These instructions are encoded with bit 31 set to 1 and so are duals with
vcmpeqfp, vcmpgtfp and vcmpbfp respectively.
The helper macro for integer compares is enhanced to account for 64-bit
operands.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Bit Permute Quadword (vbpermq) instruction
introduced in Power ISA Version 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the vector doublword rotate and shift instructions
introduced in Power ISA Version 2.07:
- Vector Rotate Left Doubleword instruction (vrld)
- Vector Shift Left Doubleword (vsld)
- Vector Shift Right Doubleword (vsrd)
- Vector Shift Right Algegbraic Doubleword (vsrad)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Existing code in the VROTATE, VSL and VSR macros for the Altivec rotate and shift
helpers uses a formula to compute a bit mask used to extract the rotate/shift
amount from the VRB register. What is desired is:
mask = (1 << (3 + log2(sizeof(element)))) - 1
but what is implemented is:
mask = (1 << (3 + (sizeof(element)/2))) - 1
This produces correct answers when "element" is uint8_t, uint16_t or uint_32t. But
it breaks down when element is uint64_t.
This patch corrects the situation. Since the mask is known at compile time, the
macros are changed to simply accept the mask as an argument.
Subsequent patches in this series will add double-word variants of rotates and
shifts and thus take advantage of this fix.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Merge Even Word (vmrgew) and Vector
Merge Odd Word (vmrgow) instructions introduced in Power ISA
Version 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Unpack Signed Word instructions introduced in
Power ISA Version 2.07:
- Vector Unpack High Signed Word (vupkusw)
- Vector Unpack Low Signed Word (vupklsw)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Pack Doubleword instructions introduced in
Power ISA Version 2.07:
- Vector Pack Signed Doubleword Signed Saturate (vpksdss)
- Vector Pack Signed Doubleword Unsigned Saturate (vpksdus)
- Vector Pack Unsigned Doubleword Unsigned Modulo (vpkudum)
- Vector Pack Unsigned Doubleword Unsigned Saturate (vpkudus)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Minimum and Maximum Doubleword instructions
that are introduced in Power ISA Version 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Population Count instructions introduced in Power
ISA Version 2.07: vpopcntb, vpopcnth, vpopcntw and vpopcntd.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Count Leading Zeroes instructions introduced
in Power ISA Version 2.07 - vclzb, vclzh, vclzw and vclzd.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>