Consider the test-case from this patch, compiled with O0.
The executable segfaults, and generates a core dump:
...
$ ./a.out
Segmentation fault (core dumped)
...
When loading the core file, limiting stack size to 4MB, gdb crashes:
...
$ ulimit -s 4096
$ gdb -batch ./a.out core.saved
[New LWP 19379]
Segmentation fault (core dumped)
...
The crash originates here in linux_vsyscall_range_raw, where we call alloca
with phdrs_size == 4194112 (roughly 4MB):
...
phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
...
While for this test-case gdb runs fine with the system default stack limit of
8MB, there are cases reported of 12MB phdrs_size where gdb also crashes with
the system default stack limit.
Fix this by using xmalloc instead of alloca, which prevents the crash provided
the stack limit is at least 112kb.
Build and reg-tested on x86_64-linux.
2018-11-06 Tom de Vries <tdevries@suse.de>
* linux-tdep.c (linux_vsyscall_range_raw): Use xmalloc to allocate
program headers.
* gdb.base/many-headers.c: New test.
* gdb.base/many-headers.exp: New file.
RISC-V puts a global variable in .sdata by default, which causes the
add-symbol-file commands with -s .data to fail as there is no .data section.
This fixes 3 testsuite failures.
gdb/testsuite/
* gdb.base/code_elim.exp: For riscv, set additional_flags
to include -msmall-data-limit=0.
gdb/
2018-11-06 Max Filippov <jcmvbkbc@gmail.com>
* configure.tgt (xtensa*-*-linux*): Change to xtensa*-*-*linux*
so that it applies to uclinux as well.
GDB tries to dereference the frame pointer in arm_scan_prologue as a
last resort to create frame information.
However, the more recent AAPCS ABI does not make use of a frame pointer.
This patch checks whether the specified arm_abi is AAPCS before
dereferencing the "frame pointer". If so, just return as efforts to use
it for restoring frame information won't work.
gdb/ChangeLog
2018-11-06 Marius Muench <marius.muench@eurecom.fr>
* arm-tdep.c (arm_scan_prologue): Don't dereference FP reg
when on AAPCS.
This permits reading the value of the SSTATUS CSR returned by ptrace()
for live FreeBSD/riscv processes.
* riscv-fbsd-nat.c (getregs_supplies): Return true for
RISCV_CSR_SSTATUS_REGNUM.
Add --enable-x86-feature and --disable-x86-feature options to elfedit
to set and clear the IBT and SHSTK bits in program property in ELF
executables and shared objects.
binutils/
* doc/binutils.texi: Document --enable-x86-feature and
--disable-x86-feature options for elfedit.
* elfedit.c: Include "config.h" and <sys/mman.h>.
(enable_x86_features): New.
(disable_x86_features): Likewise.
(update_gnu_property): Likewise.
(elf_x86_feature): Likewise.
(process_file): Call update_gnu_property on ET_EXEC or ET_DYN
file.
(command_line_switch): Add OPTION_ENABLE_X86_FEATURE and
OPTION_DISABLE_X86_FEATURE.
(options): Add--enable-x86-feature and --disable-x86-feature.
(usage): Likewise.
(main): Handle OPTION_ENABLE_X86_FEATURE and
OPTION_DISABLE_X86_FEATURE.
ld/
* testsuite/config/default.exp (ELFEDIT): New.
* testsuite/ld-elf/linux-x86.exp (elfedit_test): New proc.
Run elfedit tests.
* testsuite/ld-elf/x86-feature-1a.rd: New file.
* testsuite/ld-elf/x86-feature-1b.rd: Likewise.
* testsuite/ld-elf/x86-feature-1c.rd: Likewise.
* testsuite/ld-elf/x86-feature-1d.rd: Likewise.
* testsuite/ld-elf/x86-feature-1e.rd: Likewise.
The PE target can insert NOP's for padding to 4 byte alignment.
This was causing a testcase failure, this commit fixes the testcase.
This commit also escapes some full-stops in the testcase regexp.
2018-11-06 Matthew Malcomson <matthew.malcomson@arm.com>
* testsuite/gas/arm/neon-cond-bad_t2.d: Fix testcase for PE
target.
VCVT between f16 and f32 is an Advanced SIMD instruction.
Not all the VCVT alternatives need neon, hence the check for neon is in
the encode function.
The check on neon for VCVT.f16.f32 (and vice versa) is missing.
vshcmd: > echo 'vcvt.f16.f32 d1, q1' | gas/as-new -mfpu=vfpxd -march=armv8.5-a -
testdir [15:59:10] $
Also, the handling of the condition code behaves differently to other
SIMD instructions -- no error message is produced when assembling an
instruction with a condition code suffix despite the arm encoding not
allowing a condition code. (n.b. the actual binary produced is
independent of the suffix).
The instruction should be treated similarly to VSUBL that has the same
caveat of "must be unconditional" describing the {<c>} symbol. vcvt
half-precision to single precision found in F6.1.58 in the ARM
Architecture Reference Manual issue C.a, vsubl found in F6.1.240 in
the ARM Architecture Reference Manual issue C.a
2018-11-06 Matthew Malcomson <matthew.malcomson@arm.com>
* config/tc-arm.c (do_neon_cvt_1): Add check for neon and condition
codes to half-precision conversion.
* testsuite/gas/arm/neon-cond-bad-inc.s: Check vcvteq disallowed.
* testsuite/gas/arm/neon-cond-bad.l: Likewise.
* testsuite/gas/arm/neon-cond-bad_t2.d: Check vcvteq allowed in IT
block.
* testsuite/gas/arm/vfp-bad.l: Ensure vcvt doesn't work without neon.
* testsuite/gas/arm/vfp-bad.s: Likewise.
This patch addresses the following
1) Adding ARMv8.5-A in select_arm_features.
2) Updating the feature macro so that the new ARM_EXT2_* features for
Armv8.5-A are moved to ARM_AEXT2_V8_5A.
*** opcodes/ChangeLog ***
2018-11-06 Sudakshina Das <sudi.das@arm.com>
* arm-dis.c (select_arm_features): Update bfd_mach_arm_8
with Armv8.5-A. Remove reduntant ARM_EXT2_FP16_FML.
*** include/ChangeLog ***
2018-11-06 Sudakshina Das <sudi.das@arm.com>
* opcode/arm.h (ARM_ARCH_V8_5A): Move ARM_EXT2_PREDRES and
ARM_EXT2_SB to ...
(ARM_AEXT2_V8_5A): Here.
The instruction mask bits should never overlap any of the operands,
nor should operand bits overlap, but some operands weren't checked.
This patch arranges to check the omitted operands, using a mask
returned by the operand->insert function. Some tweaking of various
insert functions is needed to support this: The error case must set
field bits.
Since I was looking at the insert functions, I tidied some dead code
and simplified some of the powerpc_operands entries.
gas/
* config/tc-ppc.c (insn_validate): Don't ignore mask in
PPC_OPSHIFT_INV case. Call the insert function to calculate
a mask.
opcodes/
* ppc-opc.c (insert_arx, insert_ary, insert_rx, insert_ry, insert_ls),
(insert_evuimm1_ex0, insert_evuimm2_ex0, insert_evuimm4_ex0),
(insert_evuimm8_ex0, insert_evuimm_lt8, insert_evuimm_lt16),
(insert_rD_rS_even, insert_off_lsp, insert_off_spe2, insert_Ddd):
Don't return zero on error, insert mask bits instead.
(insert_sd4h, extract_sd4h, insert_sd4w, extract_sd4w): Delete.
(insert_sh6, extract_sh6): Delete dead code.
(insert_sprbat, insert_sprg): Use unsigned comparisions.
(powerpc_operands <OIMM>): Set shift count rather than using
PPC_OPSHIFT_INV.
<SE_SDH, SE_SDW>: Likewise. Don't use insert/extract functions.
This adds another check that might have saved me a little time
recently if it had been present.
* config/tc-ppc.c (insn_validate): Check that optional operands
are not followed by non-optional operands.
For the flavors having a GPR operand EVEX.W is ignored outside of 64-bit
mode. The mnemonic should therefore not be KMOVQ, the GPR operand should
not name a non-existing 64-bit register, just like is already the case
for the AVX counterparts, and the Disp8 scaling factor should be 4
rather than 8.
PEXTR{B,W} and PINSR{B,W}, just like for AVX512BW, are WIG, no matter
that the SDM uses a nonstandard description of that fact.
PEXTRD, even with EVEX.W set, ignores that bit outside of 64-bit mode,
just like its AVX counterpart.
Many VEX-/EVEX-encoded instructions accessing GPRs become WIG outside of
64-bit mode. The respective templates should specify neither VexWIG nor
VexW0, but instead the setting of the bit should be determined from
- REX.W in 64-bit mode,
- the setting established through -mvexwig= / -mevexwig= otherwise.
This implies that the evex-wig2 testcase needs to go away, as being
wrong altogether.
A few test additions desirable here will only happen in later patches,
as the disassembler needs adjustments first.
Once again SSE2AVX templates are left alone, for it being unclear what
the behavior there should be.
Quite a few templates were marked LIG while really the insns aren't.
Introduce descriptive shorthands once again, instead of continuing to
use the less legible original forms.
The 0F C5 encoding is indeed a load type one (just that memory operands
are not permitted), while the 0F 3A 15 encoding is obviously a store.
Allow the pseudo prefixes to be used to select between them.
Also move (without any change) the secondary AVX512BW templates next to
the primary one.
Commits 6865c0435a ("x86: Support VEX/EVEX WIG encoding") and 6fa52824c3
("x86: Replace VexW=3 with VexWIG") omitted quite a few templates, oddly
enough in some cases despite testcases getting added (which then were
recorded with wrong expected output).
Also adjust VPMAXUB's attributes in the AVX512BW case to match ordering
of that of neighboring templates.
For the moment SSE2AVX templates are left alone, as it isn't clear
whether they were intentionally left untouched by the original commits
(the descriptions don't say either way).
In this context I question the decision in commit 0375113302 ("x86: Add
-mvexwig=[0|1] option to assembler") to move the logic to determine the
value of the W bit ahead of the decision whether to use 2-byte VEX:
While I can see this as one possible interpretation of -mvexwig=, the
other alternative (setting the value of the bit only if it actually
exists in the encoding) looks as reasonable to me, and perhaps even more
in line with us generally trying to pick the shortest encoding.
When current function changes after a next/step, GDB shows a message such as:
(gdb) s
info_fun1 ()
at /bd/home/philippe/gdb/git/build_smallthing/gdb/testsuite/../../../smallthing/gdb/testsuite/gdb.base/info_qt.c:41
41 info_qt_inc++;
(gdb)
Valgrind reports a 4K definite leak for each such message (full stacktrace of
the leak below).
This patch fixes this leak, by transferring the current s->fullname to the
unique_xmalloc_ptr fullname given to find_and_open_source.
Note that I do not understand why find_and_open_source always tries to
re-execute the substitution rules on the provided fullname, as source.c
symtab_to_fullname just blindly returns a non NULL s->fullname, counting on
forget_cached_source_info to be called if search dir or substitution rules are
changed. Similarly, psymtab_to_fullname also just returns a non NULL
ps->fullname.
==15309== VALGRIND_GDB_ERROR_BEGIN
==15309== 69,632 bytes in 17 blocks are definitely lost in loss record 3,158 of 3,186
==15309== at 0x4C2BE2D: malloc (vg_replace_malloc.c:299)
==15309== by 0x5BF0987: realpath@@GLIBC_2.3 (canonicalize.c:78)
==15309== by 0x41F713: gdb_realpath(char const*) (pathstuff.c:72)
==15309== by 0x608833: openp(char const*, enum_flags<openp_flag>, char const*, int, std::unique_ptr<char, gdb::xfree_deleter<char> >*) (source.c:861)
==15309== by 0x608B89: find_and_open_source(char const*, char const*, std::unique_ptr<char, gdb::xfree_deleter<char> >*) (source.c:1049)
==15309== by 0x608D0B: open_source_file(symtab*) (source.c:1074)
==15309== by 0x609101: print_source_lines_base(symtab*, int, int, enum_flags<print_source_lines_flag>) (source.c:1291)
==15309== by 0x614ADF: print_frame_info(frame_info*, int, print_what, int, int) (stack.c:911)
==15309== by 0x614C45: print_stack_frame(frame_info*, int, print_what, int) (stack.c:181)
==15309== by 0x511D5E: print_stop_location (infrun.c:8044)
==15309== by 0x511D5E: print_stop_event(ui_out*) (infrun.c:8061)
==15309== by 0x40DD6D: cli_on_normal_stop(bpstats*, int) (cli-interp.c:145)
==15309== by 0x512409: operator() (functional:2127)
==15309== by 0x512409: notify (observable.h:106)
==15309== by 0x512409: normal_stop() (infrun.c:8334)
==15309== by 0x5156D8: fetch_inferior_event(void*) (infrun.c:3955)
==15309== by 0x4B3EEC: gdb_wait_for_event(int) (event-loop.c:859)
==15309== by 0x4B3FF6: gdb_do_one_event() [clone .part.4] (event-loop.c:322)
==15309== by 0x4B41B4: gdb_do_one_event (common-exceptions.h:219)
==15309== by 0x4B41B4: start_event_loop() (event-loop.c:371)
==15309== by 0x551217: captured_command_loop() (main.c:330)
==15309== by 0x55220C: captured_main (main.c:1177)
==15309== by 0x55220C: gdb_main(captured_main_args*) (main.c:1193)
==15309== by 0x29B4F7: main (gdb.c:32)
==15309==
==15309== VALGRIND_GDB_ERROR_END
gdb/ChangeLog
2018-11-04 Philippe Waroquiers <philippe.waroquiers@skynet.be>
* source.c (open_source_file): Fix leak by transferring the
current s->fullname to the unique_xmalloc_ptr fullname given
to find_and_open_source.
commit e60f4d3bdac25f02875afe36b7436bc2dfbbb978
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Mon Nov 5 09:01:26 2018 -0800
x86: Disable GOT relaxation with data prefix
Since linker GOT relaxation isn't valid for 16-bit GOT access, we should
disable GOT relaxation with data prefix.
Valgrind detected a leak for the line:
type = xstrdup ("auto");
as the compile probably dropped the type variable completely, as its
only usage was this initialization.
So, remove the useless variable.
Add AC_FUNC_MMAP to configure.ac so that HAVE_MMAP will be checked in
objdump.c and mmap is used if available.
* configure.ac (AC_FUNC_MMAP): New.
* config.in: Regenerated.
* configure: Likewise.
This patch adds support for debugging Ravenscar tasks, similar to what
is done for ppc and sparc.
gdb/ChangeLog:
* aarch64-ravenscar-thread.h, aarch64-ravenscar-thread.c:
New files.
* aarch64-tdep.c: #include "aarch64-ravenscar-thread.h".
(aarch64_gdbarch_init): Add call to register_aarch64_ravenscar_ops.
* Makefile.in (ALL_64_TARGET_OBS): Add aarch64-ravenscar-thread.o.
(HFILES_NO_SRCDIR): Add aarch64-ravenscar-thread.h.
(ALLDEPFILES): Add aarch64-ravenscar-thread.c.
* configure.tgt (cpu_obs) [aarch64*-*-*]: Add ravenscar-thread.o
and aarch64-ravenscar-thread.o.
* NEWS: Add entry documenting Ravenscar tasking support
on AArch64 ELF.
Cleans a few more test files.
* Makefile.am (MOSTLYCLEANFILES): Define.
* Makefile.in: Regnerate.
* testsuite/Makefile.am (MOSTLYCLEANFILES): Add ver_test_14 and
gnu_property_test.
* testsuite/Makefile.in: Regnerate.
On readelf examining a static executable built with current glibc,
we get a silly warning.
Section Headers:
[Nr] Name Type Address Off Size ES Flg Lk Inf Al
[ 0] NULL 0000000000000000 000000 000000 00 0 0 0
[ 1] .note.ABI-tag NOTE 0000000000400190 000190 000020 00 A 0 0 4
[ 2] .note.gnu.build-id NOTE 00000000004001b0 0001b0 000024 00 A 0 0 4
readelf: Warning: [ 3]: Link field (0) should index a symtab section.
[ 3] .rela.plt RELA 00000000004001d8 0001d8 000228 18 AI 0 20 8
This .rela.plt section contains only IRELATIVE relocations (which have
symbol index zero), so it isn't appropriate to warn. A zero sh_link
section is deliberately chosen for such a section (see PR10337 and
PR23850).
So this patch disables the SHT_REL* sh_link warning. I've also
removed the .rel.dyn/.rela.dyn section name test to disable the
sh_info warning for SHT_REL* sections. While relocation sections in
an executable need not specify the section they relocate (the
relocation sh_offset field is an address, not a section offset), that
isn't true in a relocatable file where sh_offset is relative to a
section. If .rela.dyn happens to exist in an ET_REL object it must
specify a valid section.
* readelf.c (process_section_headers): Don't warn on a zero
sh_info or sh_link for any reloc section in an executable or
shared library. Do warn for .rel.dyn/.rela.dyn in ET_REL.
strip/objcopy can't deal with alloc reloc sections, not .rela.dyn or
.rela.plt in a dynamic executable, or .rela.plt/.rela.iplt in a static
executable. So, don't have BFD treat them as side-channel data
associated with the section they are relocating.
PR 23850
* elf.c (bfd_section_from_shdr): Treat SHF_ALLOC SHT_REL* sections
in an executable or shared library as normal sections.
Some hardware doesn't support unaligned accesses, and a bare metal target
may not have an unaligned access trap handler. So if the PC is 2-byte
aligned, then use a 2-byte breakpoint to avoid unaligned accesses.
Tested on native RV64GC Linux with gdb testsuite and cross on spike
simulator and openocd with riscv-tests/debug.
gdb/
* riscv-tdep.c (riscv_breakpoint_kind_from_pc): New local unaligned_p.
Set if pcptr if unaligned. Return 2 if unaligned_p true. Update
debugging messages.
The "watch -l EXPR" command with the language set to Ada currently
fails with the following error:
(gdb) watch -l global_var
Error in expression, near ` 0x000000000062d2d8'.
The error occurs because GDB internally translate the request into
a watchpoint on a different expression: "* (TYPE *) ADDR" where
TYPE and ADDR are the type and the address of the object returned
by the expression's evaluation (resp.). So, in the example above,
global_var being an integer stored at 0x000000000062d2d8, GDB tries
to set a watchpoint on "* (integer *) 0x000000000062d2d8", which
fails, because we try to parse this expression with Ada, when
in fact it is not valid.
This patch fixes the issue by implementing the la_watch_location_expression
language method, using a syntax that the Ada parser recognizes
("{TYPE} ADDR").
gdb/ChangeLog:
* ada-lang.c (ada_watch_location_expression): New function.
(ada_language_defn): Set la_watch_location_expression to
ada_watch_location_expression.
gdb/testsuite/ChangeLog:
* gdb.ada/watch_minus_l: New testcase.
the rs6000-tdep.c::skip_prologue function has the following code:
unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
/* Not a recognized prologue instruction.
Handle optimizer code motions into the prologue by continuing
the search if we have no valid frame yet or if the return
address is not yet saved in the frame. Also skip instructions
if some of the GPRs expected to be saved are not yet saved. */
if (fdata->frameless == 0 && fdata->nosavedpc == 0
&& (fdata->gpr_mask & all_mask) == all_mask)
break;
The problem is that fdata->saved_gpr is initialized to -1, and so,
if no instruction is found in the function's prologue that causes us
to set that field to a non-negative value, the sanitizer crashes
with the following message:
rs6000-tdep.c:1965:34: runtime error: shift exponent -1 is negative
This patch fixes the issue the by only doing the shift if saved_gpr
is not negative. When saved_gpr is negative, we actually don't need
the shift.
gdb/ChangeLog:
* rs6000-tdep.c (skip_prologue): Fix potential negative left
shifting.
Tested on ppc-linux native.
Also tested on ppc-elf (baremetal) using AdaCore's testsuite.
On ARM, PikeOS does not support hardware single step, causing various
semi-random errors when trying to next/step over some user code. So
this patch changes this target to use software-single-step instead.
The challenge is that, up to now, the PikeOS target was in all respects
identical to a baremetal target as far as GDB was concerned, meaning
we were using the baremetal osabi for this target too. This is no longer
possible, and we need to introduce a new OSABI variant. Unfortunately,
there isn't anything in the object file that would allow us to
differentiate between the two platforms. So we have to rely on a
heuristic instead, where we look for some known symbols that are
required in a PikeOS application (these symbols are expected to be
defined by the default linker script, and correspond to routines used
to allocate the application stack).
For the long run, the hope is that the stub implementation provided
by PikeOS is enhanced so that it includes vContSupported+ to the
$qSupported query, and then that the reply to the "vCont?" query
only return support for "continue" operations (thus exclusing "step"
operations). We could then use that information to reliably determine
at connection time that the target does not support single-stepping
and therefore automatically turn software single-stepping automatically
based on it.
gdb/ChangeLog:
* defs.h (enum gdb_osabi): Add GDB_OSABI_PIKEOS.
* osabi.c (gdb_osabi_names): Add name for GDB_OSABI_PIKEOS.
* arm-pikeos-tdep.c: New file.
* configure.tgt: Add arm-pikeos-tdep.o to the case of ARM
embedded system.
* Makefile.in (ALL_TARGET_OBS): Add arm-pikeos-tdep.o.
Tested on arm-pikeos and arm-elf using AdaCore's testsuite.
We also evaluated it on armhf-linux as a cross platform.