qemu-e2k/hw/block/pflash_cfi02.c

1024 lines
33 KiB
C
Raw Normal View History

/*
* CFI parallel flash with AMD command set emulation
*
* Copyright (c) 2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* For now, this code can emulate flashes of 1, 2 or 4 bytes width.
* Supported commands/modes are:
* - flash read
* - flash write
* - flash ID read
* - sector erase
* - chip erase
* - unlock bypass command
* - CFI queries
*
* It does not support flash interleaving.
* It does not implement software data protection as found in many real chips
*/
#include "qemu/osdep.h"
pflash: Require backend size to match device, improve errors We reject undersized backends with a rather enigmatic "failed to read the initial flash content" error. For instance: $ qemu-system-ppc64 -S -display none -M sam460ex -drive if=pflash,format=raw,file=eins.img qemu-system-ppc64: Initialization of device cfi.pflash02 failed: failed to read the initial flash content We happily accept oversized images, ignoring their tail. Throwing away parts of firmware that way is pretty much certain to end in an even more enigmatic failure to boot. Require the backend's size to match the device's size exactly. Report mismatch like this: qemu-system-ppc64: Initialization of device cfi.pflash01 failed: device requires 1048576 bytes, block backend provides 512 bytes Improve the error for actual read failures to "can't read block backend". To avoid duplicating even more code between the two pflash device models, do all that in new helper blk_check_size_and_read_all(). The error reporting can still be confusing. For instance: qemu-system-ppc64 -S -display none -M taihu -drive if=pflash,format=raw,file=eins.img -drive if=pflash,unit=1,format=raw,file=zwei.img qemu-system-ppc64: Initialization of device cfi.pflash02 failed: device requires 2097152 bytes, block backend provides 512 bytes Leaves the user guessing which of the two -drive is wrong. Mention the issue in a TODO comment. Suggested-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <20190319163551.32499-2-armbru@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2019-03-19 17:35:50 +01:00
#include "hw/block/block.h"
#include "hw/block/flash.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
2016-03-14 09:01:28 +01:00
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/bitmap.h"
#include "qemu/timer.h"
#include "sysemu/block-backend.h"
#include "qemu/host-utils.h"
#include "qemu/module.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "trace.h"
#define PFLASH_DEBUG false
#define DPRINTF(fmt, ...) \
do { \
if (PFLASH_DEBUG) { \
fprintf(stderr, "PFLASH: " fmt, ## __VA_ARGS__); \
} \
} while (0)
#define PFLASH_LAZY_ROMD_THRESHOLD 42
/*
* The size of the cfi_table indirectly depends on this and the start of the
* PRI table directly depends on it. 4 is the maximum size (and also what
* seems common) without changing the PRT table address.
*/
#define PFLASH_MAX_ERASE_REGIONS 4
/* Special write cycles for CFI queries. */
enum {
WCYCLE_CFI = 7,
WCYCLE_AUTOSELECT_CFI = 8,
};
struct PFlashCFI02 {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
BlockBackend *blk;
uint32_t uniform_nb_blocs;
uint32_t uniform_sector_len;
uint32_t total_sectors;
uint32_t nb_blocs[PFLASH_MAX_ERASE_REGIONS];
uint32_t sector_len[PFLASH_MAX_ERASE_REGIONS];
uint32_t chip_len;
uint8_t mappings;
uint8_t width;
uint8_t be;
int wcycle; /* if 0, the flash is read normally */
int bypass;
int ro;
uint8_t cmd;
uint8_t status;
/* FIXME: implement array device properties */
uint16_t ident0;
uint16_t ident1;
uint16_t ident2;
uint16_t ident3;
uint16_t unlock_addr0;
uint16_t unlock_addr1;
uint8_t cfi_table[0x4d];
QEMUTimer timer;
/* The device replicates the flash memory across its memory space. Emulate
* that by having a container (.mem) filled with an array of aliases
* (.mem_mappings) pointing to the flash memory (.orig_mem).
*/
MemoryRegion mem;
MemoryRegion *mem_mappings; /* array; one per mapping */
MemoryRegion orig_mem;
int rom_mode;
int read_counter; /* used for lazy switch-back to rom mode */
int sectors_to_erase;
uint64_t erase_time_remaining;
unsigned long *sector_erase_map;
char *name;
void *storage;
};
/*
* Toggle status bit DQ7.
*/
static inline void toggle_dq7(PFlashCFI02 *pfl)
{
pfl->status ^= 0x80;
}
/*
* Set status bit DQ7 to bit 7 of value.
*/
static inline void set_dq7(PFlashCFI02 *pfl, uint8_t value)
{
pfl->status &= 0x7F;
pfl->status |= value & 0x80;
}
/*
* Toggle status bit DQ6.
*/
static inline void toggle_dq6(PFlashCFI02 *pfl)
{
pfl->status ^= 0x40;
}
/*
* Turn on DQ3.
*/
static inline void assert_dq3(PFlashCFI02 *pfl)
{
pfl->status |= 0x08;
}
/*
* Turn off DQ3.
*/
static inline void reset_dq3(PFlashCFI02 *pfl)
{
pfl->status &= ~0x08;
}
/*
* Toggle status bit DQ2.
*/
static inline void toggle_dq2(PFlashCFI02 *pfl)
{
pfl->status ^= 0x04;
}
/*
* Set up replicated mappings of the same region.
*/
static void pflash_setup_mappings(PFlashCFI02 *pfl)
{
unsigned i;
hwaddr size = memory_region_size(&pfl->orig_mem);
memory_region_init(&pfl->mem, OBJECT(pfl), "pflash", pfl->mappings * size);
pfl->mem_mappings = g_new(MemoryRegion, pfl->mappings);
for (i = 0; i < pfl->mappings; ++i) {
memory_region_init_alias(&pfl->mem_mappings[i], OBJECT(pfl),
"pflash-alias", &pfl->orig_mem, 0, size);
memory_region_add_subregion(&pfl->mem, i * size, &pfl->mem_mappings[i]);
}
}
static void pflash_register_memory(PFlashCFI02 *pfl, int rom_mode)
{
memory_region_rom_device_set_romd(&pfl->orig_mem, rom_mode);
pfl->rom_mode = rom_mode;
}
static size_t pflash_regions_count(PFlashCFI02 *pfl)
{
return pfl->cfi_table[0x2c];
}
/*
* Returns the time it takes to erase the number of sectors scheduled for
* erasure based on CFI address 0x21 which is "Typical timeout per individual
* block erase 2^N ms."
*/
static uint64_t pflash_erase_time(PFlashCFI02 *pfl)
{
/*
* If there are no sectors to erase (which can happen if all of the sectors
* to be erased are protected), then erase takes 100 us. Protected sectors
* aren't supported so this should never happen.
*/
return ((1ULL << pfl->cfi_table[0x21]) * pfl->sectors_to_erase) * SCALE_US;
}
/*
* Returns true if the device is currently in erase suspend mode.
*/
static inline bool pflash_erase_suspend_mode(PFlashCFI02 *pfl)
{
return pfl->erase_time_remaining > 0;
}
static void pflash_timer(void *opaque)
{
PFlashCFI02 *pfl = opaque;
trace_pflash_timer_expired(pfl->cmd);
if (pfl->cmd == 0x30) {
/*
* Sector erase. If DQ3 is 0 when the timer expires, then the 50
* us erase timeout has expired so we need to start the timer for the
* sector erase algorithm. Otherwise, the erase completed and we should
* go back to read array mode.
*/
if ((pfl->status & 0x08) == 0) {
assert_dq3(pfl);
uint64_t timeout = pflash_erase_time(pfl);
timer_mod(&pfl->timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout);
DPRINTF("%s: erase timeout fired; erasing %d sectors\n",
__func__, pfl->sectors_to_erase);
return;
}
DPRINTF("%s: sector erase complete\n", __func__);
bitmap_zero(pfl->sector_erase_map, pfl->total_sectors);
pfl->sectors_to_erase = 0;
reset_dq3(pfl);
}
/* Reset flash */
toggle_dq7(pfl);
if (pfl->bypass) {
pfl->wcycle = 2;
} else {
pflash_register_memory(pfl, 1);
pfl->wcycle = 0;
}
pfl->cmd = 0;
}
/*
* Read data from flash.
*/
static uint64_t pflash_data_read(PFlashCFI02 *pfl, hwaddr offset,
unsigned int width)
{
uint8_t *p = (uint8_t *)pfl->storage + offset;
uint64_t ret = pfl->be ? ldn_be_p(p, width) : ldn_le_p(p, width);
trace_pflash_data_read(offset, width, ret);
return ret;
}
typedef struct {
uint32_t len;
uint32_t num;
} SectorInfo;
/*
* offset should be a byte offset of the QEMU device and _not_ a device
* offset.
*/
static SectorInfo pflash_sector_info(PFlashCFI02 *pfl, hwaddr offset)
{
assert(offset < pfl->chip_len);
hwaddr addr = 0;
uint32_t sector_num = 0;
for (int i = 0; i < pflash_regions_count(pfl); ++i) {
uint64_t region_size = (uint64_t)pfl->nb_blocs[i] * pfl->sector_len[i];
if (addr <= offset && offset < addr + region_size) {
return (SectorInfo) {
.len = pfl->sector_len[i],
.num = sector_num + (offset - addr) / pfl->sector_len[i],
};
}
sector_num += pfl->nb_blocs[i];
addr += region_size;
}
abort();
}
/*
* Returns true if the offset refers to a flash sector that is currently being
* erased.
*/
static bool pflash_sector_is_erasing(PFlashCFI02 *pfl, hwaddr offset)
{
long sector_num = pflash_sector_info(pfl, offset).num;
return test_bit(sector_num, pfl->sector_erase_map);
}
static uint64_t pflash_read(void *opaque, hwaddr offset, unsigned int width)
{
PFlashCFI02 *pfl = opaque;
hwaddr boff;
uint64_t ret;
/* Lazy reset to ROMD mode after a certain amount of read accesses */
if (!pfl->rom_mode && pfl->wcycle == 0 &&
++pfl->read_counter > PFLASH_LAZY_ROMD_THRESHOLD) {
pflash_register_memory(pfl, 1);
}
offset &= pfl->chip_len - 1;
boff = offset & 0xFF;
if (pfl->width == 2) {
boff = boff >> 1;
2019-07-04 14:12:21 +02:00
} else if (pfl->width == 4) {
boff = boff >> 2;
}
switch (pfl->cmd) {
default:
/* This should never happen : reset state & treat it as a read*/
DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
pfl->wcycle = 0;
pfl->cmd = 0;
/* fall through to the read code */
case 0x80: /* Erase (unlock) */
/* We accept reads during second unlock sequence... */
case 0x00:
if (pflash_erase_suspend_mode(pfl) &&
pflash_sector_is_erasing(pfl, offset)) {
/* Toggle bit 2, but not 6. */
toggle_dq2(pfl);
/* Status register read */
ret = pfl->status;
DPRINTF("%s: status %" PRIx64 "\n", __func__, ret);
break;
}
/* Flash area read */
ret = pflash_data_read(pfl, offset, width);
break;
case 0x90: /* flash ID read */
switch (boff) {
case 0x00:
case 0x01:
ret = boff & 0x01 ? pfl->ident1 : pfl->ident0;
break;
case 0x02:
ret = 0x00; /* Pretend all sectors are unprotected */
break;
case 0x0E:
case 0x0F:
ret = boff & 0x01 ? pfl->ident3 : pfl->ident2;
if (ret != (uint8_t)-1) {
break;
}
/* Fall through to data read. */
default:
ret = pflash_data_read(pfl, offset, width);
}
DPRINTF("%s: ID " TARGET_FMT_plx " %" PRIx64 "\n", __func__, boff, ret);
break;
case 0x10: /* Chip Erase */
case 0x30: /* Sector Erase */
/* Toggle bit 2 during erase, but not program. */
toggle_dq2(pfl);
/* fall through */
case 0xA0: /* Program */
/* Toggle bit 6 */
toggle_dq6(pfl);
/* Status register read */
ret = pfl->status;
DPRINTF("%s: status %" PRIx64 "\n", __func__, ret);
break;
case 0x98:
/* CFI query mode */
if (boff < sizeof(pfl->cfi_table)) {
ret = pfl->cfi_table[boff];
} else {
ret = 0;
}
break;
}
trace_pflash_io_read(offset, width, ret, pfl->cmd, pfl->wcycle);
return ret;
}
/* update flash content on disk */
static void pflash_update(PFlashCFI02 *pfl, int offset, int size)
{
int offset_end;
int ret;
if (pfl->blk) {
offset_end = offset + size;
/* widen to sector boundaries */
offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
ret = blk_pwrite(pfl->blk, offset, pfl->storage + offset,
offset_end - offset, 0);
if (ret < 0) {
/* TODO set error bit in status */
error_report("Could not update PFLASH: %s", strerror(-ret));
}
}
}
static void pflash_sector_erase(PFlashCFI02 *pfl, hwaddr offset)
{
SectorInfo sector_info = pflash_sector_info(pfl, offset);
uint64_t sector_len = sector_info.len;
offset &= ~(sector_len - 1);
DPRINTF("%s: start sector erase at %0*" PRIx64 "-%0*" PRIx64 "\n",
__func__, pfl->width * 2, offset,
pfl->width * 2, offset + sector_len - 1);
if (!pfl->ro) {
uint8_t *p = pfl->storage;
memset(p + offset, 0xff, sector_len);
pflash_update(pfl, offset, sector_len);
}
set_dq7(pfl, 0x00);
++pfl->sectors_to_erase;
set_bit(sector_info.num, pfl->sector_erase_map);
/* Set (or reset) the 50 us timer for additional erase commands. */
timer_mod(&pfl->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 50000);
}
static void pflash_write(void *opaque, hwaddr offset, uint64_t value,
unsigned int width)
{
PFlashCFI02 *pfl = opaque;
hwaddr boff;
uint8_t *p;
uint8_t cmd;
trace_pflash_io_write(offset, width, value, pfl->wcycle);
cmd = value;
if (pfl->cmd != 0xA0) {
/* Reset does nothing during chip erase and sector erase. */
if (cmd == 0xF0 && pfl->cmd != 0x10 && pfl->cmd != 0x30) {
if (pfl->wcycle == WCYCLE_AUTOSELECT_CFI) {
/* Return to autoselect mode. */
pfl->wcycle = 3;
pfl->cmd = 0x90;
return;
}
goto reset_flash;
}
}
offset &= pfl->chip_len - 1;
boff = offset;
if (pfl->width == 2) {
boff = boff >> 1;
2019-07-04 14:12:21 +02:00
} else if (pfl->width == 4) {
boff = boff >> 2;
}
/* Only the least-significant 11 bits are used in most cases. */
boff &= 0x7FF;
switch (pfl->wcycle) {
case 0:
/* Set the device in I/O access mode if required */
if (pfl->rom_mode)
pflash_register_memory(pfl, 0);
pfl->read_counter = 0;
/* We're in read mode */
check_unlock0:
if (boff == 0x55 && cmd == 0x98) {
/* Enter CFI query mode */
pfl->wcycle = WCYCLE_CFI;
pfl->cmd = 0x98;
return;
}
/* Handle erase resume in erase suspend mode, otherwise reset. */
if (cmd == 0x30) { /* Erase Resume */
if (pflash_erase_suspend_mode(pfl)) {
/* Resume the erase. */
timer_mod(&pfl->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
pfl->erase_time_remaining);
pfl->erase_time_remaining = 0;
pfl->wcycle = 6;
pfl->cmd = 0x30;
set_dq7(pfl, 0x00);
assert_dq3(pfl);
return;
}
goto reset_flash;
}
/* Ignore erase suspend. */
if (cmd == 0xB0) { /* Erase Suspend */
return;
}
if (boff != pfl->unlock_addr0 || cmd != 0xAA) {
DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
__func__, boff, cmd, pfl->unlock_addr0);
goto reset_flash;
}
DPRINTF("%s: unlock sequence started\n", __func__);
break;
case 1:
/* We started an unlock sequence */
check_unlock1:
if (boff != pfl->unlock_addr1 || cmd != 0x55) {
DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
boff, cmd);
goto reset_flash;
}
DPRINTF("%s: unlock sequence done\n", __func__);
break;
case 2:
/* We finished an unlock sequence */
if (!pfl->bypass && boff != pfl->unlock_addr0) {
DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
boff, cmd);
goto reset_flash;
}
switch (cmd) {
case 0x20:
pfl->bypass = 1;
goto do_bypass;
case 0x80: /* Erase */
case 0x90: /* Autoselect */
case 0xA0: /* Program */
pfl->cmd = cmd;
DPRINTF("%s: starting command %02x\n", __func__, cmd);
break;
default:
DPRINTF("%s: unknown command %02x\n", __func__, cmd);
goto reset_flash;
}
break;
case 3:
switch (pfl->cmd) {
case 0x80: /* Erase */
/* We need another unlock sequence */
goto check_unlock0;
case 0xA0: /* Program */
if (pflash_erase_suspend_mode(pfl) &&
pflash_sector_is_erasing(pfl, offset)) {
/* Ignore writes to erasing sectors. */
if (pfl->bypass) {
goto do_bypass;
}
goto reset_flash;
}
trace_pflash_data_write(offset, width, value, 0);
if (!pfl->ro) {
p = (uint8_t *)pfl->storage + offset;
if (pfl->be) {
uint64_t current = ldn_be_p(p, width);
stn_be_p(p, width, current & value);
} else {
uint64_t current = ldn_le_p(p, width);
stn_le_p(p, width, current & value);
}
pflash_update(pfl, offset, width);
}
/*
* While programming, status bit DQ7 should hold the opposite
* value from how it was programmed.
*/
set_dq7(pfl, ~value);
/* Let's pretend write is immediate */
if (pfl->bypass)
goto do_bypass;
goto reset_flash;
case 0x90: /* Autoselect */
if (pfl->bypass && cmd == 0x00) {
/* Unlock bypass reset */
goto reset_flash;
}
/*
* We can enter CFI query mode from autoselect mode, but we must
* return to autoselect mode after a reset.
*/
if (boff == 0x55 && cmd == 0x98) {
/* Enter autoselect CFI query mode */
pfl->wcycle = WCYCLE_AUTOSELECT_CFI;
pfl->cmd = 0x98;
return;
}
/* fall through */
default:
DPRINTF("%s: invalid write for command %02x\n",
__func__, pfl->cmd);
goto reset_flash;
}
case 4:
switch (pfl->cmd) {
case 0xA0: /* Program */
/* Ignore writes while flash data write is occurring */
/* As we suppose write is immediate, this should never happen */
return;
case 0x80: /* Erase */
goto check_unlock1;
default:
/* Should never happen */
DPRINTF("%s: invalid command state %02x (wc 4)\n",
__func__, pfl->cmd);
goto reset_flash;
}
break;
case 5:
if (pflash_erase_suspend_mode(pfl)) {
/* Erasing is not supported in erase suspend mode. */
goto reset_flash;
}
switch (cmd) {
case 0x10: /* Chip Erase */
if (boff != pfl->unlock_addr0) {
DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n",
__func__, offset);
goto reset_flash;
}
/* Chip erase */
DPRINTF("%s: start chip erase\n", __func__);
if (!pfl->ro) {
memset(pfl->storage, 0xff, pfl->chip_len);
pflash_update(pfl, 0, pfl->chip_len);
}
set_dq7(pfl, 0x00);
/* Wait the time specified at CFI address 0x22. */
timer_mod(&pfl->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(1ULL << pfl->cfi_table[0x22]) * SCALE_MS);
break;
case 0x30: /* Sector erase */
pflash_sector_erase(pfl, offset);
break;
default:
DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd);
goto reset_flash;
}
pfl->cmd = cmd;
break;
case 6:
switch (pfl->cmd) {
case 0x10: /* Chip Erase */
/* Ignore writes during chip erase */
return;
case 0x30: /* Sector erase */
if (cmd == 0xB0) {
/*
* If erase suspend happens during the erase timeout (so DQ3 is
* 0), then the device suspends erasing immediately. Set the
* remaining time to be the total time to erase. Otherwise,
* there is a maximum amount of time it can take to enter
* suspend mode. Let's ignore that and suspend immediately and
* set the remaining time to the actual time remaining on the
* timer.
*/
if ((pfl->status & 0x08) == 0) {
pfl->erase_time_remaining = pflash_erase_time(pfl);
} else {
int64_t delta = timer_expire_time_ns(&pfl->timer) -
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/* Make sure we have a positive time remaining. */
pfl->erase_time_remaining = delta <= 0 ? 1 : delta;
}
reset_dq3(pfl);
timer_del(&pfl->timer);
pfl->wcycle = 0;
pfl->cmd = 0;
return;
}
/*
* If DQ3 is 0, additional sector erase commands can be
* written and anything else (other than an erase suspend) resets
* the device.
*/
if ((pfl->status & 0x08) == 0) {
if (cmd == 0x30) {
pflash_sector_erase(pfl, offset);
} else {
goto reset_flash;
}
}
/* Ignore writes during the actual erase. */
return;
default:
/* Should never happen */
DPRINTF("%s: invalid command state %02x (wc 6)\n",
__func__, pfl->cmd);
goto reset_flash;
}
break;
/* Special values for CFI queries */
case WCYCLE_CFI:
case WCYCLE_AUTOSELECT_CFI:
DPRINTF("%s: invalid write in CFI query mode\n", __func__);
goto reset_flash;
default:
/* Should never happen */
DPRINTF("%s: invalid write state (wc 7)\n", __func__);
goto reset_flash;
}
pfl->wcycle++;
return;
/* Reset flash */
reset_flash:
trace_pflash_reset();
pfl->bypass = 0;
pfl->wcycle = 0;
pfl->cmd = 0;
return;
do_bypass:
pfl->wcycle = 2;
pfl->cmd = 0;
}
static const MemoryRegionOps pflash_cfi02_ops = {
.read = pflash_read,
.write = pflash_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void pflash_cfi02_realize(DeviceState *dev, Error **errp)
{
pflash: Use ERRP_GUARD() If we want to check error after errp-function call, we need to introduce local_err and then propagate it to errp. Instead, use the ERRP_GUARD() macro, benefits are: 1. No need of explicit error_propagate call 2. No need of explicit local_err variable: use errp directly 3. ERRP_GUARD() leaves errp as is if it's not NULL or &error_fatal, this means that we don't break error_abort (we'll abort on error_set, not on error_propagate) If we want to add some info to errp (by error_prepend() or error_append_hint()), we must use the ERRP_GUARD() macro. Otherwise, this info will not be added when errp == &error_fatal (the program will exit prior to the error_append_hint() or error_prepend() call). No such cases are being fixed here. This commit is generated by command sed -n '/^Parallel NOR Flash devices$/,/^$/{s/^F: //p}' \ MAINTAINERS | \ xargs git ls-files | grep '\.[hc]$' | \ xargs spatch \ --sp-file scripts/coccinelle/errp-guard.cocci \ --macro-file scripts/cocci-macro-file.h \ --in-place --no-show-diff --max-width 80 Reported-by: Kevin Wolf <kwolf@redhat.com> Reported-by: Greg Kurz <groug@kaod.org> Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> [Commit message tweaked] Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <20200707165037.1026246-5-armbru@redhat.com> [ERRP_AUTO_PROPAGATE() renamed to ERRP_GUARD(), and auto-propagated-errp.cocci to errp-guard.cocci. Commit message tweaked again.]
2020-07-07 18:50:33 +02:00
ERRP_GUARD();
PFlashCFI02 *pfl = PFLASH_CFI02(dev);
int ret;
if (pfl->uniform_sector_len == 0 && pfl->sector_len[0] == 0) {
error_setg(errp, "attribute \"sector-length\" not specified or zero.");
return;
}
if (pfl->uniform_nb_blocs == 0 && pfl->nb_blocs[0] == 0) {
error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
return;
}
if (pfl->name == NULL) {
error_setg(errp, "attribute \"name\" not specified.");
return;
}
int nb_regions;
pfl->chip_len = 0;
pfl->total_sectors = 0;
for (nb_regions = 0; nb_regions < PFLASH_MAX_ERASE_REGIONS; ++nb_regions) {
if (pfl->nb_blocs[nb_regions] == 0) {
break;
}
pfl->total_sectors += pfl->nb_blocs[nb_regions];
uint64_t sector_len_per_device = pfl->sector_len[nb_regions];
/*
* The size of each flash sector must be a power of 2 and it must be
* aligned at the same power of 2.
*/
if (sector_len_per_device & 0xff ||
sector_len_per_device >= (1 << 24) ||
!is_power_of_2(sector_len_per_device))
{
error_setg(errp, "unsupported configuration: "
"sector length[%d] per device = %" PRIx64 ".",
nb_regions, sector_len_per_device);
return;
}
if (pfl->chip_len & (sector_len_per_device - 1)) {
error_setg(errp, "unsupported configuration: "
"flash region %d not correctly aligned.",
nb_regions);
return;
}
pfl->chip_len += (uint64_t)pfl->sector_len[nb_regions] *
pfl->nb_blocs[nb_regions];
}
uint64_t uniform_len = (uint64_t)pfl->uniform_nb_blocs *
pfl->uniform_sector_len;
if (nb_regions == 0) {
nb_regions = 1;
pfl->nb_blocs[0] = pfl->uniform_nb_blocs;
pfl->sector_len[0] = pfl->uniform_sector_len;
pfl->chip_len = uniform_len;
pfl->total_sectors = pfl->uniform_nb_blocs;
} else if (uniform_len != 0 && uniform_len != pfl->chip_len) {
error_setg(errp, "\"num-blocks\"*\"sector-length\" "
"different from \"num-blocks0\"*\'sector-length0\" + ... + "
"\"num-blocks3\"*\"sector-length3\"");
return;
}
memory_region_init_rom_device(&pfl->orig_mem, OBJECT(pfl),
&pflash_cfi02_ops, pfl, pfl->name,
pflash: Use ERRP_GUARD() If we want to check error after errp-function call, we need to introduce local_err and then propagate it to errp. Instead, use the ERRP_GUARD() macro, benefits are: 1. No need of explicit error_propagate call 2. No need of explicit local_err variable: use errp directly 3. ERRP_GUARD() leaves errp as is if it's not NULL or &error_fatal, this means that we don't break error_abort (we'll abort on error_set, not on error_propagate) If we want to add some info to errp (by error_prepend() or error_append_hint()), we must use the ERRP_GUARD() macro. Otherwise, this info will not be added when errp == &error_fatal (the program will exit prior to the error_append_hint() or error_prepend() call). No such cases are being fixed here. This commit is generated by command sed -n '/^Parallel NOR Flash devices$/,/^$/{s/^F: //p}' \ MAINTAINERS | \ xargs git ls-files | grep '\.[hc]$' | \ xargs spatch \ --sp-file scripts/coccinelle/errp-guard.cocci \ --macro-file scripts/cocci-macro-file.h \ --in-place --no-show-diff --max-width 80 Reported-by: Kevin Wolf <kwolf@redhat.com> Reported-by: Greg Kurz <groug@kaod.org> Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> [Commit message tweaked] Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <20200707165037.1026246-5-armbru@redhat.com> [ERRP_AUTO_PROPAGATE() renamed to ERRP_GUARD(), and auto-propagated-errp.cocci to errp-guard.cocci. Commit message tweaked again.]
2020-07-07 18:50:33 +02:00
pfl->chip_len, errp);
if (*errp) {
return;
}
pfl->storage = memory_region_get_ram_ptr(&pfl->orig_mem);
if (pfl->blk) {
uint64_t perm;
pfl->ro = !blk_supports_write_perm(pfl->blk);
perm = BLK_PERM_CONSISTENT_READ | (pfl->ro ? 0 : BLK_PERM_WRITE);
ret = blk_set_perm(pfl->blk, perm, BLK_PERM_ALL, errp);
if (ret < 0) {
return;
}
} else {
pfl->ro = 0;
}
if (pfl->blk) {
if (!blk_check_size_and_read_all(pfl->blk, pfl->storage,
pfl->chip_len, errp)) {
vmstate_unregister_ram(&pfl->orig_mem, DEVICE(pfl));
return;
}
}
/* Only 11 bits are used in the comparison. */
pfl->unlock_addr0 &= 0x7FF;
pfl->unlock_addr1 &= 0x7FF;
/* Allocate memory for a bitmap for sectors being erased. */
pfl->sector_erase_map = bitmap_new(pfl->total_sectors);
pflash_setup_mappings(pfl);
pfl->rom_mode = 1;
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
timer_init_ns(&pfl->timer, QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
pfl->wcycle = 0;
pfl->cmd = 0;
pfl->status = 0;
/* Hardcoded CFI table (mostly from SG29 Spansion flash) */
const uint16_t pri_ofs = 0x40;
/* Standard "QRY" string */
pfl->cfi_table[0x10] = 'Q';
pfl->cfi_table[0x11] = 'R';
pfl->cfi_table[0x12] = 'Y';
/* Command set (AMD/Fujitsu) */
pfl->cfi_table[0x13] = 0x02;
pfl->cfi_table[0x14] = 0x00;
/* Primary extended table address */
pfl->cfi_table[0x15] = pri_ofs;
pfl->cfi_table[0x16] = pri_ofs >> 8;
/* Alternate command set (none) */
pfl->cfi_table[0x17] = 0x00;
pfl->cfi_table[0x18] = 0x00;
/* Alternate extended table (none) */
pfl->cfi_table[0x19] = 0x00;
pfl->cfi_table[0x1A] = 0x00;
/* Vcc min */
pfl->cfi_table[0x1B] = 0x27;
/* Vcc max */
pfl->cfi_table[0x1C] = 0x36;
/* Vpp min (no Vpp pin) */
pfl->cfi_table[0x1D] = 0x00;
/* Vpp max (no Vpp pin) */
pfl->cfi_table[0x1E] = 0x00;
/* Timeout per single byte/word write (128 ms) */
pfl->cfi_table[0x1F] = 0x07;
/* Timeout for min size buffer write (NA) */
pfl->cfi_table[0x20] = 0x00;
/* Typical timeout for block erase (512 ms) */
pfl->cfi_table[0x21] = 0x09;
/* Typical timeout for full chip erase (4096 ms) */
pfl->cfi_table[0x22] = 0x0C;
/* Reserved */
pfl->cfi_table[0x23] = 0x01;
/* Max timeout for buffer write (NA) */
pfl->cfi_table[0x24] = 0x00;
/* Max timeout for block erase */
pfl->cfi_table[0x25] = 0x0A;
/* Max timeout for chip erase */
pfl->cfi_table[0x26] = 0x0D;
/* Device size */
pfl->cfi_table[0x27] = ctz32(pfl->chip_len);
/* Flash device interface (8 & 16 bits) */
pfl->cfi_table[0x28] = 0x02;
pfl->cfi_table[0x29] = 0x00;
/* Max number of bytes in multi-bytes write */
/* XXX: disable buffered write as it's not supported */
// pfl->cfi_table[0x2A] = 0x05;
pfl->cfi_table[0x2A] = 0x00;
pfl->cfi_table[0x2B] = 0x00;
/* Number of erase block regions */
pfl->cfi_table[0x2c] = nb_regions;
/* Erase block regions */
for (int i = 0; i < nb_regions; ++i) {
uint32_t sector_len_per_device = pfl->sector_len[i];
pfl->cfi_table[0x2d + 4 * i] = pfl->nb_blocs[i] - 1;
pfl->cfi_table[0x2e + 4 * i] = (pfl->nb_blocs[i] - 1) >> 8;
pfl->cfi_table[0x2f + 4 * i] = sector_len_per_device >> 8;
pfl->cfi_table[0x30 + 4 * i] = sector_len_per_device >> 16;
}
assert(0x2c + 4 * nb_regions < pri_ofs);
/* Extended */
pfl->cfi_table[0x00 + pri_ofs] = 'P';
pfl->cfi_table[0x01 + pri_ofs] = 'R';
pfl->cfi_table[0x02 + pri_ofs] = 'I';
/* Extended version 1.0 */
pfl->cfi_table[0x03 + pri_ofs] = '1';
pfl->cfi_table[0x04 + pri_ofs] = '0';
/* Address sensitive unlock required. */
pfl->cfi_table[0x05 + pri_ofs] = 0x00;
/* Erase suspend to read/write. */
pfl->cfi_table[0x06 + pri_ofs] = 0x02;
/* Sector protect not supported. */
pfl->cfi_table[0x07 + pri_ofs] = 0x00;
/* Temporary sector unprotect not supported. */
pfl->cfi_table[0x08 + pri_ofs] = 0x00;
/* Sector protect/unprotect scheme. */
pfl->cfi_table[0x09 + pri_ofs] = 0x00;
/* Simultaneous operation not supported. */
pfl->cfi_table[0x0a + pri_ofs] = 0x00;
/* Burst mode not supported. */
pfl->cfi_table[0x0b + pri_ofs] = 0x00;
/* Page mode not supported. */
pfl->cfi_table[0x0c + pri_ofs] = 0x00;
assert(0x0c + pri_ofs < ARRAY_SIZE(pfl->cfi_table));
}
static Property pflash_cfi02_properties[] = {
DEFINE_PROP_DRIVE("drive", PFlashCFI02, blk),
DEFINE_PROP_UINT32("num-blocks", PFlashCFI02, uniform_nb_blocs, 0),
DEFINE_PROP_UINT32("sector-length", PFlashCFI02, uniform_sector_len, 0),
DEFINE_PROP_UINT32("num-blocks0", PFlashCFI02, nb_blocs[0], 0),
DEFINE_PROP_UINT32("sector-length0", PFlashCFI02, sector_len[0], 0),
DEFINE_PROP_UINT32("num-blocks1", PFlashCFI02, nb_blocs[1], 0),
DEFINE_PROP_UINT32("sector-length1", PFlashCFI02, sector_len[1], 0),
DEFINE_PROP_UINT32("num-blocks2", PFlashCFI02, nb_blocs[2], 0),
DEFINE_PROP_UINT32("sector-length2", PFlashCFI02, sector_len[2], 0),
DEFINE_PROP_UINT32("num-blocks3", PFlashCFI02, nb_blocs[3], 0),
DEFINE_PROP_UINT32("sector-length3", PFlashCFI02, sector_len[3], 0),
DEFINE_PROP_UINT8("width", PFlashCFI02, width, 0),
DEFINE_PROP_UINT8("mappings", PFlashCFI02, mappings, 0),
DEFINE_PROP_UINT8("big-endian", PFlashCFI02, be, 0),
DEFINE_PROP_UINT16("id0", PFlashCFI02, ident0, 0),
DEFINE_PROP_UINT16("id1", PFlashCFI02, ident1, 0),
DEFINE_PROP_UINT16("id2", PFlashCFI02, ident2, 0),
DEFINE_PROP_UINT16("id3", PFlashCFI02, ident3, 0),
DEFINE_PROP_UINT16("unlock-addr0", PFlashCFI02, unlock_addr0, 0),
DEFINE_PROP_UINT16("unlock-addr1", PFlashCFI02, unlock_addr1, 0),
DEFINE_PROP_STRING("name", PFlashCFI02, name),
DEFINE_PROP_END_OF_LIST(),
};
qdev: Unrealize must not fail Devices may have component devices and buses. Device realization may fail. Realization is recursive: a device's realize() method realizes its components, and device_set_realized() realizes its buses (which should in turn realize the devices on that bus, except bus_set_realized() doesn't implement that, yet). When realization of a component or bus fails, we need to roll back: unrealize everything we realized so far. If any of these unrealizes failed, the device would be left in an inconsistent state. Must not happen. device_set_realized() lets it happen: it ignores errors in the roll back code starting at label child_realize_fail. Since realization is recursive, unrealization must be recursive, too. But how could a partly failed unrealize be rolled back? We'd have to re-realize, which can fail. This design is fundamentally broken. device_set_realized() does not roll back at all. Instead, it keeps unrealizing, ignoring further errors. It can screw up even for a device with no buses: if the lone dc->unrealize() fails, it still unregisters vmstate, and calls listeners' unrealize() callback. bus_set_realized() does not roll back either. Instead, it stops unrealizing. Fortunately, no unrealize method can fail, as we'll see below. To fix the design error, drop parameter @errp from all the unrealize methods. Any unrealize method that uses @errp now needs an update. This leads us to unrealize() methods that can fail. Merely passing it to another unrealize method cannot cause failure, though. Here are the ones that do other things with @errp: * virtio_serial_device_unrealize() Fails when qbus_set_hotplug_handler() fails, but still does all the other work. On failure, the device would stay realized with its resources completely gone. Oops. Can't happen, because qbus_set_hotplug_handler() can't actually fail here. Pass &error_abort to qbus_set_hotplug_handler() instead. * hw/ppc/spapr_drc.c's unrealize() Fails when object_property_del() fails, but all the other work is already done. On failure, the device would stay realized with its vmstate registration gone. Oops. Can't happen, because object_property_del() can't actually fail here. Pass &error_abort to object_property_del() instead. * spapr_phb_unrealize() Fails and bails out when remove_drcs() fails, but other work is already done. On failure, the device would stay realized with some of its resources gone. Oops. remove_drcs() fails only when chassis_from_bus()'s object_property_get_uint() fails, and it can't here. Pass &error_abort to remove_drcs() instead. Therefore, no unrealize method can fail before this patch. device_set_realized()'s recursive unrealization via bus uses object_property_set_bool(). Can't drop @errp there, so pass &error_abort. We similarly unrealize with object_property_set_bool() elsewhere, always ignoring errors. Pass &error_abort instead. Several unrealize methods no longer handle errors from other unrealize methods: virtio_9p_device_unrealize(), virtio_input_device_unrealize(), scsi_qdev_unrealize(), ... Much of the deleted error handling looks wrong anyway. One unrealize methods no longer ignore such errors: usb_ehci_pci_exit(). Several realize methods no longer ignore errors when rolling back: v9fs_device_realize_common(), pci_qdev_unrealize(), spapr_phb_realize(), usb_qdev_realize(), vfio_ccw_realize(), virtio_device_realize(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-17-armbru@redhat.com>
2020-05-05 17:29:24 +02:00
static void pflash_cfi02_unrealize(DeviceState *dev)
{
PFlashCFI02 *pfl = PFLASH_CFI02(dev);
timer_del(&pfl->timer);
g_free(pfl->sector_erase_map);
}
static void pflash_cfi02_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = pflash_cfi02_realize;
dc->unrealize = pflash_cfi02_unrealize;
device_class_set_props(dc, pflash_cfi02_properties);
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
}
static const TypeInfo pflash_cfi02_info = {
.name = TYPE_PFLASH_CFI02,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PFlashCFI02),
.class_init = pflash_cfi02_class_init,
};
static void pflash_cfi02_register_types(void)
{
type_register_static(&pflash_cfi02_info);
}
type_init(pflash_cfi02_register_types)
PFlashCFI02 *pflash_cfi02_register(hwaddr base,
const char *name,
hwaddr size,
BlockBackend *blk,
uint32_t sector_len,
int nb_mappings, int width,
uint16_t id0, uint16_t id1,
uint16_t id2, uint16_t id3,
uint16_t unlock_addr0,
uint16_t unlock_addr1,
int be)
{
qdev: Convert uses of qdev_create() with Coccinelle This is the transformation explained in the commit before previous. Takes care of just one pattern that needs conversion. More to come in this series. Coccinelle script: @ depends on !(file in "hw/arm/highbank.c")@ expression bus, type_name, dev, expr; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr; identifier DOWN; @@ - dev = DOWN(qdev_create(bus, type_name)); + dev = DOWN(qdev_new(type_name)); ... when != dev = expr - qdev_init_nofail(DEVICE(dev)); + qdev_realize_and_unref(DEVICE(dev), bus, &error_fatal); @@ expression bus, type_name, expr; identifier dev; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr, errp; symbol true; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); @@ expression bus, type_name, expr, errp; identifier dev; symbol true; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); The first rule exempts hw/arm/highbank.c, because it matches along two control flow paths there, with different @type_name. Covered by the next commit's manual conversions. Missing #include "qapi/error.h" added manually. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-10-armbru@redhat.com> [Conflicts in hw/misc/empty_slot.c and hw/sparc/leon3.c resolved]
2020-06-10 07:31:58 +02:00
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI02);
if (blk) {
qdev_prop_set_drive(dev, "drive", blk);
}
assert(QEMU_IS_ALIGNED(size, sector_len));
qdev_prop_set_uint32(dev, "num-blocks", size / sector_len);
qdev_prop_set_uint32(dev, "sector-length", sector_len);
qdev_prop_set_uint8(dev, "width", width);
qdev_prop_set_uint8(dev, "mappings", nb_mappings);
qdev_prop_set_uint8(dev, "big-endian", !!be);
qdev_prop_set_uint16(dev, "id0", id0);
qdev_prop_set_uint16(dev, "id1", id1);
qdev_prop_set_uint16(dev, "id2", id2);
qdev_prop_set_uint16(dev, "id3", id3);
qdev_prop_set_uint16(dev, "unlock-addr0", unlock_addr0);
qdev_prop_set_uint16(dev, "unlock-addr1", unlock_addr1);
qdev_prop_set_string(dev, "name", name);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
return PFLASH_CFI02(dev);
}