qemu-e2k/hw/ppc_prep.c

740 lines
21 KiB
C
Raw Normal View History

/*
* QEMU PPC PREP hardware System Emulator
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "nvram.h"
#include "pc.h"
#include "fdc.h"
#include "net.h"
#include "sysemu.h"
#include "isa.h"
#include "pci.h"
#include "prep_pci.h"
#include "usb-ohci.h"
#include "ppc.h"
#include "boards.h"
#include "qemu-log.h"
#include "ide.h"
#include "loader.h"
#include "mc146818rtc.h"
#include "blockdev.h"
#include "exec-memory.h"
//#define HARD_DEBUG_PPC_IO
//#define DEBUG_PPC_IO
/* SMP is not enabled, for now */
#define MAX_CPUS 1
#define MAX_IDE_BUS 2
#define BIOS_SIZE (1024 * 1024)
#define BIOS_FILENAME "ppc_rom.bin"
#define KERNEL_LOAD_ADDR 0x01000000
#define INITRD_LOAD_ADDR 0x01800000
#if defined (HARD_DEBUG_PPC_IO) && !defined (DEBUG_PPC_IO)
#define DEBUG_PPC_IO
#endif
#if defined (HARD_DEBUG_PPC_IO)
#define PPC_IO_DPRINTF(fmt, ...) \
do { \
if (qemu_loglevel_mask(CPU_LOG_IOPORT)) { \
qemu_log("%s: " fmt, __func__ , ## __VA_ARGS__); \
} else { \
printf("%s : " fmt, __func__ , ## __VA_ARGS__); \
} \
} while (0)
#elif defined (DEBUG_PPC_IO)
#define PPC_IO_DPRINTF(fmt, ...) \
qemu_log_mask(CPU_LOG_IOPORT, fmt, ## __VA_ARGS__)
#else
#define PPC_IO_DPRINTF(fmt, ...) do { } while (0)
#endif
/* Constants for devices init */
static const int ide_iobase[2] = { 0x1f0, 0x170 };
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
static const int ide_irq[2] = { 13, 13 };
#define NE2000_NB_MAX 6
static uint32_t ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 };
static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
//static ISADevice *pit;
/* ISA IO ports bridge */
#define PPC_IO_BASE 0x80000000
#if 0
/* Speaker port 0x61 */
static int speaker_data_on;
static int dummy_refresh_clock;
#endif
static void speaker_ioport_write (void *opaque, uint32_t addr, uint32_t val)
{
#if 0
speaker_data_on = (val >> 1) & 1;
pit_set_gate(pit, 2, val & 1);
#endif
}
static uint32_t speaker_ioport_read (void *opaque, uint32_t addr)
{
#if 0
int out;
out = pit_get_out(pit, 2, qemu_get_clock_ns(vm_clock));
dummy_refresh_clock ^= 1;
return (speaker_data_on << 1) | pit_get_gate(pit, 2) | (out << 5) |
(dummy_refresh_clock << 4);
#endif
return 0;
}
/* PCI intack register */
/* Read-only register (?) */
static void PPC_intack_write (void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
#if 0
printf("%s: 0x" TARGET_FMT_plx " => 0x%08" PRIx64 "\n", __func__, addr,
value);
#endif
}
static uint64_t PPC_intack_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
uint32_t retval = 0;
if ((addr & 0xf) == 0)
retval = pic_read_irq(isa_pic);
#if 0
printf("%s: 0x" TARGET_FMT_plx " <= %08" PRIx32 "\n", __func__, addr,
retval);
#endif
return retval;
}
static const MemoryRegionOps PPC_intack_ops = {
.read = PPC_intack_read,
.write = PPC_intack_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
/* PowerPC control and status registers */
#if 0 // Not used
static struct {
/* IDs */
uint32_t veni_devi;
uint32_t revi;
/* Control and status */
uint32_t gcsr;
uint32_t xcfr;
uint32_t ct32;
uint32_t mcsr;
/* General purpose registers */
uint32_t gprg[6];
/* Exceptions */
uint32_t feen;
uint32_t fest;
uint32_t fema;
uint32_t fecl;
uint32_t eeen;
uint32_t eest;
uint32_t eecl;
uint32_t eeint;
uint32_t eemck0;
uint32_t eemck1;
/* Error diagnostic */
} XCSR;
static void PPC_XCSR_writeb (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
printf("%s: 0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", __func__, addr,
value);
}
static void PPC_XCSR_writew (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
printf("%s: 0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", __func__, addr,
value);
}
static void PPC_XCSR_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
printf("%s: 0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", __func__, addr,
value);
}
static uint32_t PPC_XCSR_readb (void *opaque, target_phys_addr_t addr)
{
uint32_t retval = 0;
printf("%s: 0x" TARGET_FMT_plx " <= %08" PRIx32 "\n", __func__, addr,
retval);
return retval;
}
static uint32_t PPC_XCSR_readw (void *opaque, target_phys_addr_t addr)
{
uint32_t retval = 0;
printf("%s: 0x" TARGET_FMT_plx " <= %08" PRIx32 "\n", __func__, addr,
retval);
return retval;
}
static uint32_t PPC_XCSR_readl (void *opaque, target_phys_addr_t addr)
{
uint32_t retval = 0;
printf("%s: 0x" TARGET_FMT_plx " <= %08" PRIx32 "\n", __func__, addr,
retval);
return retval;
}
static const MemoryRegionOps PPC_XCSR_ops = {
.old_mmio = {
.read = { PPC_XCSR_readb, PPC_XCSR_readw, PPC_XCSR_readl, },
.write = { PPC_XCSR_writeb, PPC_XCSR_writew, PPC_XCSR_writel, },
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
#endif
/* Fake super-io ports for PREP platform (Intel 82378ZB) */
typedef struct sysctrl_t {
qemu_irq reset_irq;
M48t59State *nvram;
uint8_t state;
uint8_t syscontrol;
uint8_t fake_io[2];
int contiguous_map;
int endian;
} sysctrl_t;
enum {
STATE_HARDFILE = 0x01,
};
static sysctrl_t *sysctrl;
static void PREP_io_write (void *opaque, uint32_t addr, uint32_t val)
{
sysctrl_t *sysctrl = opaque;
PPC_IO_DPRINTF("0x%08" PRIx32 " => 0x%02" PRIx32 "\n", addr - PPC_IO_BASE,
val);
sysctrl->fake_io[addr - 0x0398] = val;
}
static uint32_t PREP_io_read (void *opaque, uint32_t addr)
{
sysctrl_t *sysctrl = opaque;
PPC_IO_DPRINTF("0x%08" PRIx32 " <= 0x%02" PRIx32 "\n", addr - PPC_IO_BASE,
sysctrl->fake_io[addr - 0x0398]);
return sysctrl->fake_io[addr - 0x0398];
}
static void PREP_io_800_writeb (void *opaque, uint32_t addr, uint32_t val)
{
sysctrl_t *sysctrl = opaque;
PPC_IO_DPRINTF("0x%08" PRIx32 " => 0x%02" PRIx32 "\n",
addr - PPC_IO_BASE, val);
switch (addr) {
case 0x0092:
/* Special port 92 */
/* Check soft reset asked */
if (val & 0x01) {
qemu_irq_raise(sysctrl->reset_irq);
} else {
qemu_irq_lower(sysctrl->reset_irq);
}
/* Check LE mode */
if (val & 0x02) {
sysctrl->endian = 1;
} else {
sysctrl->endian = 0;
}
break;
case 0x0800:
/* Motorola CPU configuration register : read-only */
break;
case 0x0802:
/* Motorola base module feature register : read-only */
break;
case 0x0803:
/* Motorola base module status register : read-only */
break;
case 0x0808:
/* Hardfile light register */
if (val & 1)
sysctrl->state |= STATE_HARDFILE;
else
sysctrl->state &= ~STATE_HARDFILE;
break;
case 0x0810:
/* Password protect 1 register */
if (sysctrl->nvram != NULL)
m48t59_toggle_lock(sysctrl->nvram, 1);
break;
case 0x0812:
/* Password protect 2 register */
if (sysctrl->nvram != NULL)
m48t59_toggle_lock(sysctrl->nvram, 2);
break;
case 0x0814:
/* L2 invalidate register */
// tlb_flush(first_cpu, 1);
break;
case 0x081C:
/* system control register */
sysctrl->syscontrol = val & 0x0F;
break;
case 0x0850:
/* I/O map type register */
sysctrl->contiguous_map = val & 0x01;
break;
default:
printf("ERROR: unaffected IO port write: %04" PRIx32
" => %02" PRIx32"\n", addr, val);
break;
}
}
static uint32_t PREP_io_800_readb (void *opaque, uint32_t addr)
{
sysctrl_t *sysctrl = opaque;
uint32_t retval = 0xFF;
switch (addr) {
case 0x0092:
/* Special port 92 */
retval = 0x00;
break;
case 0x0800:
/* Motorola CPU configuration register */
retval = 0xEF; /* MPC750 */
break;
case 0x0802:
/* Motorola Base module feature register */
retval = 0xAD; /* No ESCC, PMC slot neither ethernet */
break;
case 0x0803:
/* Motorola base module status register */
retval = 0xE0; /* Standard MPC750 */
break;
case 0x080C:
/* Equipment present register:
* no L2 cache
* no upgrade processor
* no cards in PCI slots
* SCSI fuse is bad
*/
retval = 0x3C;
break;
case 0x0810:
/* Motorola base module extended feature register */
retval = 0x39; /* No USB, CF and PCI bridge. NVRAM present */
break;
case 0x0814:
/* L2 invalidate: don't care */
break;
case 0x0818:
/* Keylock */
retval = 0x00;
break;
case 0x081C:
/* system control register
* 7 - 6 / 1 - 0: L2 cache enable
*/
retval = sysctrl->syscontrol;
break;
case 0x0823:
/* */
retval = 0x03; /* no L2 cache */
break;
case 0x0850:
/* I/O map type register */
retval = sysctrl->contiguous_map;
break;
default:
printf("ERROR: unaffected IO port: %04" PRIx32 " read\n", addr);
break;
}
PPC_IO_DPRINTF("0x%08" PRIx32 " <= 0x%02" PRIx32 "\n",
addr - PPC_IO_BASE, retval);
return retval;
}
static inline target_phys_addr_t prep_IO_address(sysctrl_t *sysctrl,
target_phys_addr_t addr)
{
if (sysctrl->contiguous_map == 0) {
/* 64 KB contiguous space for IOs */
addr &= 0xFFFF;
} else {
/* 8 MB non-contiguous space for IOs */
addr = (addr & 0x1F) | ((addr & 0x007FFF000) >> 7);
}
return addr;
}
static void PPC_prep_io_writeb (void *opaque, target_phys_addr_t addr,
uint32_t value)
{
sysctrl_t *sysctrl = opaque;
addr = prep_IO_address(sysctrl, addr);
cpu_outb(addr, value);
}
static uint32_t PPC_prep_io_readb (void *opaque, target_phys_addr_t addr)
{
sysctrl_t *sysctrl = opaque;
uint32_t ret;
addr = prep_IO_address(sysctrl, addr);
ret = cpu_inb(addr);
return ret;
}
static void PPC_prep_io_writew (void *opaque, target_phys_addr_t addr,
uint32_t value)
{
sysctrl_t *sysctrl = opaque;
addr = prep_IO_address(sysctrl, addr);
PPC_IO_DPRINTF("0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", addr, value);
cpu_outw(addr, value);
}
static uint32_t PPC_prep_io_readw (void *opaque, target_phys_addr_t addr)
{
sysctrl_t *sysctrl = opaque;
uint32_t ret;
addr = prep_IO_address(sysctrl, addr);
ret = cpu_inw(addr);
PPC_IO_DPRINTF("0x" TARGET_FMT_plx " <= 0x%08" PRIx32 "\n", addr, ret);
return ret;
}
static void PPC_prep_io_writel (void *opaque, target_phys_addr_t addr,
uint32_t value)
{
sysctrl_t *sysctrl = opaque;
addr = prep_IO_address(sysctrl, addr);
PPC_IO_DPRINTF("0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", addr, value);
cpu_outl(addr, value);
}
static uint32_t PPC_prep_io_readl (void *opaque, target_phys_addr_t addr)
{
sysctrl_t *sysctrl = opaque;
uint32_t ret;
addr = prep_IO_address(sysctrl, addr);
ret = cpu_inl(addr);
PPC_IO_DPRINTF("0x" TARGET_FMT_plx " <= 0x%08" PRIx32 "\n", addr, ret);
return ret;
}
static const MemoryRegionOps PPC_prep_io_ops = {
.old_mmio = {
.read = { PPC_prep_io_readb, PPC_prep_io_readw, PPC_prep_io_readl },
.write = { PPC_prep_io_writeb, PPC_prep_io_writew, PPC_prep_io_writel },
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
#define NVRAM_SIZE 0x2000
static void cpu_request_exit(void *opaque, int irq, int level)
{
CPUState *env = cpu_single_env;
if (env && level) {
cpu_exit(env);
}
}
/* PowerPC PREP hardware initialisation */
static void ppc_prep_init (ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
MemoryRegion *sysmem = get_system_memory();
CPUState *env = NULL;
char *filename;
nvram_t nvram;
M48t59State *m48t59;
MemoryRegion *PPC_io_memory = g_new(MemoryRegion, 1);
MemoryRegion *intack = g_new(MemoryRegion, 1);
#if 0
MemoryRegion *xcsr = g_new(MemoryRegion, 1);
#endif
int linux_boot, i, nb_nics1, bios_size;
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *bios = g_new(MemoryRegion, 1);
uint32_t kernel_base, initrd_base;
long kernel_size, initrd_size;
PCIBus *pci_bus;
qemu_irq *i8259;
qemu_irq *cpu_exit_irq;
int ppc_boot_device;
DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
DriveInfo *fd[MAX_FD];
sysctrl = g_malloc0(sizeof(sysctrl_t));
linux_boot = (kernel_filename != NULL);
/* init CPUs */
if (cpu_model == NULL)
cpu_model = "602";
for (i = 0; i < smp_cpus; i++) {
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find PowerPC CPU definition\n");
exit(1);
}
if (env->flags & POWERPC_FLAG_RTC_CLK) {
/* POWER / PowerPC 601 RTC clock frequency is 7.8125 MHz */
cpu_ppc_tb_init(env, 7812500UL);
} else {
/* Set time-base frequency to 100 Mhz */
cpu_ppc_tb_init(env, 100UL * 1000UL * 1000UL);
}
qemu_register_reset((QEMUResetHandler*)&cpu_reset, env);
}
/* allocate RAM */
memory_region_init_ram(ram, NULL, "ppc_prep.ram", ram_size);
memory_region_add_subregion(sysmem, 0, ram);
/* allocate and load BIOS */
memory_region_init_ram(bios, NULL, "ppc_prep.bios", BIOS_SIZE);
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
if (bios_size > 0 && bios_size <= BIOS_SIZE) {
target_phys_addr_t bios_addr;
bios_size = (bios_size + 0xfff) & ~0xfff;
bios_addr = (uint32_t)(-bios_size);
memory_region_set_readonly(bios, true);
memory_region_add_subregion(sysmem, bios_addr, bios);
bios_size = load_image_targphys(filename, bios_addr, bios_size);
}
if (bios_size < 0 || bios_size > BIOS_SIZE) {
hw_error("qemu: could not load PPC PREP bios '%s'\n", bios_name);
}
if (filename) {
g_free(filename);
}
if (linux_boot) {
kernel_base = KERNEL_LOAD_ADDR;
/* now we can load the kernel */
kernel_size = load_image_targphys(kernel_filename, kernel_base,
ram_size - kernel_base);
if (kernel_size < 0) {
hw_error("qemu: could not load kernel '%s'\n", kernel_filename);
exit(1);
}
/* load initrd */
if (initrd_filename) {
initrd_base = INITRD_LOAD_ADDR;
initrd_size = load_image_targphys(initrd_filename, initrd_base,
ram_size - initrd_base);
if (initrd_size < 0) {
hw_error("qemu: could not load initial ram disk '%s'\n",
initrd_filename);
}
} else {
initrd_base = 0;
initrd_size = 0;
}
ppc_boot_device = 'm';
} else {
kernel_base = 0;
kernel_size = 0;
initrd_base = 0;
initrd_size = 0;
ppc_boot_device = '\0';
/* For now, OHW cannot boot from the network. */
for (i = 0; boot_device[i] != '\0'; i++) {
if (boot_device[i] >= 'a' && boot_device[i] <= 'f') {
ppc_boot_device = boot_device[i];
break;
}
}
if (ppc_boot_device == '\0') {
fprintf(stderr, "No valid boot device for Mac99 machine\n");
exit(1);
}
}
isa_mem_base = 0xc0000000;
if (PPC_INPUT(env) != PPC_FLAGS_INPUT_6xx) {
hw_error("Only 6xx bus is supported on PREP machine\n");
}
/* Hmm, prep has no pci-isa bridge ??? */
isa_bus_new(NULL, get_system_io());
i8259 = i8259_init(first_cpu->irq_inputs[PPC6xx_INPUT_INT]);
pci_bus = pci_prep_init(i8259, get_system_memory(), get_system_io());
isa_bus_irqs(i8259);
// pci_bus = i440fx_init();
/* Register 8 MB of ISA IO space (needed for non-contiguous map) */
memory_region_init_io(PPC_io_memory, &PPC_prep_io_ops, sysctrl,
"ppc-io", 0x00800000);
memory_region_add_subregion(sysmem, 0x80000000, PPC_io_memory);
/* init basic PC hardware */
pci_vga_init(pci_bus);
// openpic = openpic_init(0x00000000, 0xF0000000, 1);
// pit = pit_init(0x40, 0);
rtc_init(2000, NULL);
if (serial_hds[0])
serial_isa_init(0, serial_hds[0]);
nb_nics1 = nb_nics;
if (nb_nics1 > NE2000_NB_MAX)
nb_nics1 = NE2000_NB_MAX;
for(i = 0; i < nb_nics1; i++) {
if (nd_table[i].model == NULL) {
nd_table[i].model = g_strdup("ne2k_isa");
}
if (strcmp(nd_table[i].model, "ne2k_isa") == 0) {
isa_ne2000_init(ne2000_io[i], ne2000_irq[i], &nd_table[i]);
} else {
pci_nic_init_nofail(&nd_table[i], "ne2k_pci", NULL);
}
}
ide_drive_get(hd, MAX_IDE_BUS);
for(i = 0; i < MAX_IDE_BUS; i++) {
isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
hd[2 * i],
hd[2 * i + 1]);
}
isa_create_simple("i8042");
cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
DMA_init(1, cpu_exit_irq);
// SB16_init();
for(i = 0; i < MAX_FD; i++) {
fd[i] = drive_get(IF_FLOPPY, 0, i);
}
fdctrl_init_isa(fd);
/* Register speaker port */
register_ioport_read(0x61, 1, 1, speaker_ioport_read, NULL);
register_ioport_write(0x61, 1, 1, speaker_ioport_write, NULL);
/* Register fake IO ports for PREP */
sysctrl->reset_irq = first_cpu->irq_inputs[PPC6xx_INPUT_HRESET];
register_ioport_read(0x398, 2, 1, &PREP_io_read, sysctrl);
register_ioport_write(0x398, 2, 1, &PREP_io_write, sysctrl);
/* System control ports */
register_ioport_read(0x0092, 0x01, 1, &PREP_io_800_readb, sysctrl);
register_ioport_write(0x0092, 0x01, 1, &PREP_io_800_writeb, sysctrl);
register_ioport_read(0x0800, 0x52, 1, &PREP_io_800_readb, sysctrl);
register_ioport_write(0x0800, 0x52, 1, &PREP_io_800_writeb, sysctrl);
/* PCI intack location */
memory_region_init_io(intack, &PPC_intack_ops, NULL, "ppc-intack", 4);
memory_region_add_subregion(sysmem, 0xBFFFFFF0, intack);
/* PowerPC control and status register group */
#if 0
memory_region_init_io(xcsr, &PPC_XCSR_ops, NULL, "ppc-xcsr", 0x1000);
memory_region_add_subregion(sysmem, 0xFEFF0000, xcsr);
#endif
if (usb_enabled) {
usb_ohci_init_pci(pci_bus, -1);
}
m48t59 = m48t59_init(i8259[8], 0, 0x0074, NVRAM_SIZE, 59);
if (m48t59 == NULL)
return;
sysctrl->nvram = m48t59;
/* Initialise NVRAM */
nvram.opaque = m48t59;
nvram.read_fn = &m48t59_read;
nvram.write_fn = &m48t59_write;
PPC_NVRAM_set_params(&nvram, NVRAM_SIZE, "PREP", ram_size, ppc_boot_device,
kernel_base, kernel_size,
kernel_cmdline,
initrd_base, initrd_size,
/* XXX: need an option to load a NVRAM image */
0,
graphic_width, graphic_height, graphic_depth);
/* Special port to get debug messages from Open-Firmware */
register_ioport_write(0x0F00, 4, 1, &PPC_debug_write, NULL);
}
static QEMUMachine prep_machine = {
.name = "prep",
.desc = "PowerPC PREP platform",
.init = ppc_prep_init,
.max_cpus = MAX_CPUS,
};
static void prep_machine_init(void)
{
qemu_register_machine(&prep_machine);
}
machine_init(prep_machine_init);