The host kernel implements a KVM_REG_PPC_ARCH_COMPAT register which
this uses to enable a compatibility mode if any chosen.
This sets the KVM_REG_PPC_ARCH_COMPAT register in KVM. ppc_set_compat()
signals the caller if the mode cannot be enabled by the host kernel.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[agraf: fix TCG compat setting]
Signed-off-by: Alexander Graf <agraf@suse.de>
This puts a limit to the number of threads per core based on the current
compatibility mode. Although PowerISA specs do not specify the maximum
threads per core number, the linux guest still expects that
PowerISA2.05-compatible CPU supports only 2 threads per core as this
is what POWER6 (2.05 compliant CPU) implements, the same is for
POWER7 (2.06, 4 threads) and POWER8 (2.07, 8 threads).
This calls spapr_fixup_cpu_smt_dt() with the maximum allowed number of
threads which affects ibm,ppc-interrupt-server#s and
ibm,ppc-interrupt-gserver#s properties.
The number of CPU nodesremains unchanged.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
This introduces PCR mask for supported compatibility modes.
This will be used later by the ibm,client-architecture-support call.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds basic support for the "compat" CPU option. By specifying
the compat property, the user can manually switch guest CPU mode from
"raw" to "architected".
This defines feature disable bits which are not used yet as, for example,
PowerISA 2.07 says if 2.06 mode is selected, the TM bit does not matter -
transactional memory (TM) will be disabled because 2.06 does not define
it at all. The same is true for VSX and 2.05 mode. So just setting a mode
must be ok.
This does not change the existing behavior as the actual compatibility
mode support is coming in next patches.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[agraf: fix compilation on 32bit hosts]
Signed-off-by: Alexander Graf <agraf@suse.de>
PowerISA defines a compatibility mode for server POWERPC CPUs which
is supported by the PCR special register which is hypervisor privileged.
To support this mode for guests, SPAPR defines a set of virtual PVRs,
one per PowerISA spec version. When a hypervisor needs a guest to work in
a compatibility mode, it puts a virtual PVR value into @cpu-version
property of a CPU node.
This introduces a "compat" CPU option which defines maximal compatibility
mode enabled. The supported modes are power6/power7/power8.
This does not change the existing behaviour, new property will be used
by next patches.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
POWER7, POWER7+ and POWER8 families use the ILE bit of the LPCR
special purpose register to decide the endianness to use when
entering interrupt handlers. When running a Linux guest, this
provides a hint on the endianness used by the kernel. And when
it comes to dumping a guest, the information is needed to write
ELF headers using the kernel endianness.
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
[agraf: change subject line]
Signed-off-by: Alexander Graf <agraf@suse.de>
Fix ppc64 arch specific dump code to support all combinations of little/big
endian hosts/guests. FWIW the current code is broken for altivec registers
when guest and host have a different endianness: these 128-bit registers
are written to guest memory as a two 64-bit entities and we should also swap
them.
Unit testing was done with the following program provided by Tom Musta:
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
int main(int argc, char** argv)
{
__uint128_t v = ((__uint128_t)0x0001020304050607ull << 64) |
0x08090a0b0c0d0e0full;
register void * vptr asm ("r11");
vptr = &v;
for(;;)
asm volatile ("lvx 30,0,11" );
}
When sending SIGABRT to this program and examining the core file, we get:
- ppc64 : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
- ppc64le: 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
We expect to find the very same layout in the QEMU dump since they are
real core files. This is what we get:
- ppc64 host, ppc64 guest : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
- ppc64 host, ppc64le guest : 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
- x86_64 host, ppc64 guest : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
- x86_64 host, ppc64le guest: 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
We introduce a NoteFuncArg type to avoid adding extra arguments to all note
functions.
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
[ rebased on top of current master branch,
introduced NoteFuncArg,
use new cpu_to_dump{16,32,64} endian helpers,
fix altivec support,
Greg Kurz <gkurz@linux.vnet.ibm.com> ]
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This allows guests to have a different timebase origin from the host.
This is needed for migration, where a guest can migrate from one host
to another and the two hosts might have a different timebase origin.
However, the timebase seen by the guest must not go backwards, and
should go forwards only by a small amount corresponding to the time
taken for the migration.
This is only supported for recent POWER hardware which has the TBU40
(timebase upper 40 bits) register. That includes POWER6, 7, 8 but not
970.
This adds kvm_access_one_reg() to access a special register which is not
in env->spr. This requires kvm_set_one_reg/kvm_get_one_reg patch.
The feature must be present in the host kernel.
This bumps vmstate_spapr::version_id and enables new vmstate_ppc_timebase
only for it. Since the vmstate_spapr::minimum_version_id remains
unchanged, migration from older QEMU is supported but without
vmstate_ppc_timebase.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
The dcbtls instruction is able to lock data inside the L1 cache.
Unfortunately we don't emulate any caches, so we have to tell the guest
that its locking attempt failed.
However, by implementing the instruction we at least don't give the
guest a program exception which it definitely does not expect.
Signed-off-by: Alexander Graf <agraf@suse.de>
There are 2 L1 cache control registers - one for data (L1CSR0) and
one for instructions (L1CSR1).
Emulate both of them well enough to give the guest the illusion that
it could actually do anything about its caches.
Signed-off-by: Alexander Graf <agraf@suse.de>
In addition to the L1 data cache configuration register L1CFG0 there is
also another one for the L1 instruction cache called L1CFG1.
Emulate that one with the same values as the data one.
Signed-off-by: Alexander Graf <agraf@suse.de>
The L1CFG0 register on e200 and e500 is "User RO" according to the
specifications. So let's make it user readable and world unwritable.
Signed-off-by: Alexander Graf <agraf@suse.de>
Our pre-e500mc e500 CPU types didn't get instanciated with SVR information,
even though those systems do support the SVR register.
Spawn them with the SVR tag so that they don't get confused when someone tries
to read SPR_SVR.
Signed-off-by: Alexander Graf <agraf@suse.de>
When QEMU gets compiled with --enable-debug-tcg we can check for temporary
leakage. Implement the necessary target code for this and fail emulation
when we hit a leakage.
This hopefully ensures that we don't get new leaks.
Signed-off-by: Alexander Graf <agraf@suse.de>
We want to make sure that every instruction cleans up after itself and
clears every temporary it allocated.
While checking whether this is already the case, I came across a few
cases where it isn't. This patch fixes every translation I found that
doesn't free their allocated temporaries.
Signed-off-by: Alexander Graf <agraf@suse.de>
When we select a CPU type that does not support 1TB segments, we should
not expose 1TB just because KVM supports 1TB segments. User configuration
always wins over feature availability.
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch refactors the PowerPC Advanced Encryption Standard (AES) instructions
to use the common AES tables (include/qemu/aes.h).
Specifically:
- vsbox is recoded to use the AES_sbox table.
- vcipher, vcipherlast and vncipherlast are all recoded to use the optimized
AES_t[ed][0-4] tables.
- vncipher is recoded to use a combination of InvS-Box, InvShiftRows and
InvMixColumns tables. It was not possible to use AES_Td[0-4] due to a
slight difference in how PowerPC implements vncipher.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Shift Significand
Left Immediate (dscli[q][.]) and DFP Shift Significant Right Immediate
(dscri[q][.]) instructions.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Insert Biased
Exponent instructions diex[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Extract
Biased Exponent instructions dxex[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Encode Binary
Coded Decimal to Densely Packed Decimal instructions denbcd[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the Power PC Decimal Floating Point Decode
Densely Packed Decimal to Binary Coded Decimal instructions
ddedpd[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Convert to Fixed
instructions dctfix[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Convert to
Fixed instructions dctfix[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Round to DFP Short (drsp[.]) and Round to
DFP Long (drdpq[.]) instructions.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Convert to DFP Long (dctdp[.]) and
Convert to DFP Extended (dctqpq[.]) instructions.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point (DFP) Round
to FP Integer With Inexact (drintx[q][.]) and DFP Round to FP
Integer Without Inexact (drintn[q][.]) instructions.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Reround instructions
drrnd[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Quantize instructions
dquai[q][.] and dqua[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Test Significance
instructions dtstsf[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Test Exponent
instructions dtstex[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Test Data
Group instructions dtstdg[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Test Data Class
instructions dtstdc[q][.].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Compare instructions
dcmpu[q] and dcmpo[q].
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Divide instructions
ddiv[q][.]
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Multiply instructions
dmul[q][.]
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Subtract instructions
dsub[q][.]
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add emulation of the PowerPC Decimal Floating Point Add instructions dadd[q][.]
Various GCC unused annotations are removed since it is now safe to remove them.
Signed-off-by: Tom Musta <tommusta@gmail.com>
[agraf: move brace in function definition]
Signed-off-by: Alexander Graf <agraf@suse.de>
Add post-processing utilities to the PowerPC Decimal Floating Point
(DFP) helper code. Post-processors are small routines that execute
after a preliminary DFP result is computed. They are used, among other
things, to compute status bits.
This change defines a function type for post processors as well as a
generic routine to run a list (array) of post-processors.
Actual post-processor implementations will be added as needed by specific
DFP helpers in subsequent changes.
Some routines are annotated with the GCC unused attribute in order to
preserve build bisection. The annotation will be removed in subsequent
patches.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add a new file (dfp_helper.c) to the PowerPC implementation for Decimal Floating
Point (DFP) emulation. This first version of the file declares a structure that
will be used by DFP helpers. It also implements utilities that will initialize
such a structure for either a long (64 bit) DFP instruction or an extended (128
bit, aka "quad") instruction.
Some utility functions are annotated with the unused attribute in order to preserve
build bisection.
Signed-off-by: Tom Musta <tommusta@gmail.com>
[agraf: Add never reached assert on dfp_prepare_rounding_mode()]
Signed-off-by: Alexander Graf <agraf@suse.de>
Add decoder macros for the various Decimal Floating Point
instruction forms. Illegal instruction masks are used to not only
guard against reserved instruction field use, but also to catch
illegal quad word forms that use odd-numbered floating point registers.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Add general support for generators of PowerPC Decimal Floating Point helpers.
Some utilities are annotated with GCC attribute unused in order to preserve
build bisection. These annotations will be removed in later patches.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Define a floating pointer register pointer type in the PowerPC
helper header. The type will be used to pass FPR register operands
to Decimal Floating Point (DFP) helpers. A pointer is used because
the quad word forms of PowerPC DFP instructions operate on adjacent
pairs of floating point registers and thus can be thought of as
arrays of length 2.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently migration fails if CPU version (PVR register) is different
even a bit. This check is performed at the very end of migration when
device states are sent. This is too late for management software and
we need to provide a way for the user to make sure that migration
will succeed if QEMU is started with appropritate command line parameters.
This removes the PVR check.
This resets PVR to the default value as the existing VMSTATE record
for SPR array sends all 1024 registers unconditionally and overwrites
the destination PVR.
If the user wants some guarantees for migration to succeed, then
a CPU name or "host" CPU with a "compat" option (on its way to upsteam)
should be used and KVM or TCG is expected to fail on unsupported values
at the moment of QEMU start.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
Use MSR mnemonics from cpu.h instead of magic numbers for the CPUPPCState.msr_mask
initialization.
There is one bit in the 401x2 (and subsequent) model that I could not find any
documentation for. It is open coded at little endian bit position 20:
pcc->msr_mask = (1ull << 20) |
(1ull << MSR_KEY) |
(1ull << MSR_POW) |
(1ull << MSR_CE) |
...
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
At the moment there are 3 versions of POWER7 CPUs defined. However
we do not emulate these CPUs diffent and it does not make much
sense to keep them all.
This removes POWER7_v2.0 and POWER7_v2.1 and leaves just one versioned
CPU per family which is POWER7_v2.3 with POWER7 alias.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
This moves aliases lookup after CPU class lookup. This is to let new generic
CPU to be found first if it is present and only if it is not (TCG case), use
aliases.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
At the moment generic version-less CPUs are supported via hardcoded aliases.
For example, POWER7 is an alias for POWER7_v2.1. So when QEMU is started
with -cpu POWER7, the POWER7_v2.1 class instance is created.
This approach works for TCG and KVMs other than HV KVM. HV KVM cannot emulate
PVR value so the guest always sees the real PVR. HV KVM will not allow setting
PVR other that the host PVR because of that (the kernel patch for it is on
its way). So in most cases it is impossible to run QEMU with -cpu POWER7
unless the host PVR is exactly the same as the one from the alias (which
is now POWER7_v2.3). It was decided that under HV KVM QEMU should use
-cpu host.
Using "host" CPU type creates a problem for management tools such as libvirt
because they want to know in advance if the destination guest can possibly
run on the destination. Since the "host" type is really not a type and will
always work with any KVM, there is no way for libvirt to know if the migration
will success.
This registers additional CPU class derived from the host CPU family.
The name for it is taken from @desc field of the CPU family class.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch allows registers to be properly read from and written to
when using the gdbstub to debug a ppc guest running in little
endian mode.
Reviewed-by: Andreas Färber <afaerber@suse.de>
Signed-off-by: Thomas Falcon <tlfalcon@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch extracts the method to determine a register's size
into a separate function.
Reviewed-by: Andreas Färber <afaerber@suse.de>
Signed-off-by: Thomas Falcon <tlfalcon@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
After previous Peter patch, they are redundant. This way we don't
assign them except when needed. Once there, there were lots of case
where the ".fields" indentation was wrong:
.fields = (VMStateField []) {
and
.fields = (VMStateField []) {
Change all the combinations to:
.fields = (VMStateField[]){
The biggest problem (appart from aesthetics) was that checkpatch complained
when we copy&pasted the code from one place to another.
Signed-off-by: Juan Quintela <quintela@redhat.com>
Acked-by: Alexey Kardashevskiy <aik@ozlabs.ru>
This will collect all load and store helpers soon. For now
it is just a replacement for softmmu_exec.h, which this patch
stops including directly, but we also include it where this will
be necessary in order to simplify the next patch.
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
They do not need to be in op_helper.c. Because cputlb.c now includes
softmmu_template.h twice for each size, io_readX must be elided the
second time through.
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rather than include helper.h with N values of GEN_HELPER, include a
secondary file that sets up the macros to include helper.h. This
minimizes the files that must be rebuilt when changing the macros
for file N.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <rth@twiddle.net>
On the x86, some devices need access to the CPU reset pin (INIT#).
Provide a generic service to do this, using one of the internal
cpu_interrupt targets. Generalize the PPC-specific code for
CPU_INTERRUPT_RESET to other targets.
Since PPC does not support migration across QEMU versions (its
machine types are not versioned yet), I picked the value that
is used on x86, CPU_INTERRUPT_TGT_INT_1. Consequently, TGT_INT_2
and TGT_INT_3 are shifted down by one while keeping their value.
Reviewed-by: Anthony Liguori <aliguori@us.ibm.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that we have a CPU object with a reset method, it is better to
keep the KVM reset close to the CPU reset. Using qemu_register_reset
as we do now keeps them far apart.
With this patch, PPC no longer calls the kvm_arch_ function, so
it can get removed there. Other arches call it from their CPU
reset handler, and the function gets an ARMCPU/X86CPU/S390CPU.
Note that ARM- and s390-specific functions are called kvm_arm_*
and kvm_s390_*, while x86-specific functions are called kvm_arch_*.
That follows the convention used by the different architectures.
Changing that is the topic of a separate patch.
Reviewed-by: Gleb Natapov <gnatapov@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert existing users of KVM_ENABLE_CAP to new helper.
Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Book3s_64 guests expect the L1 cache size in device tree, so let's give
them proper values for all CPU types we support.
This fixes a "not compliant" warning with sles11 guests on -M pseries for me.
Signed-off-by: Alexander Graf <agraf@suse.de>
We were entering the power saving state even when interrupts (like an
external interrupt or a decrementer interrupt) were still in flight.
In case we find a pending interrupt, don't enter power saving state.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Tom Musta <tmusta@gmail.com>
There are 3 different variants of the decrementor for BookE and BookS.
The BookE variant sets TSR[DIS] to 1 when the DEC value becomes 1 or 0. TSR[DIS]
is then the indicator whether the decrementor interrupt line is asserted or not.
The old BookS variant treats DEC as an edge interrupt that gets triggered when
the DEC value's top bit turns 1 from 0.
The new BookS variant maintains the assertion bit inside DEC itself. Whenever
the DEC value becomes negative (top bit set) the DEC interrupt line is asserted.
So far we implemented mostly the old BookS variant. Let's do them all properly.
This fixes booting pseries ppc64 guest images in TCG mode for me.
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch corrects the VSX integer to floating point conversion instructions
by using the endian correct accessors. The auxiliary "j" index used by the
existing macros is now obsolete and is removed. The JOFFSET preprocessor
macro is also obsolete and removed.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Tested-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch corrects the VSX floating point to integer conversion
instructions by using the endian correct accessors. The auxiliary
"j" index used by the existing macros is now obsolete and is removed.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Tested-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This change corrects the VSX double precision to single precision and
single precision to double precisions conversion routines. The endian
correct accessors are now used. The auxiliary "j" index is no longer
necessary and is eliminated.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Tested-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This change fixes the VSX scalar compare instructions. The existing usage of "x.f64[0]"
is changed to "x.VsrD(0)".
Signed-off-by: Tom Musta <tommusta@gmail.com>
Tested-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
A common pattern in the VSX helper code macros is the use of "x.fld[i]" where
"x" is a VSR and "fld" is an argument to a macro ("f64" or "f32" is passed).
This is not always correct on LE hosts.
This change addresses all instances of this pattern to be "x.fld" where "fld" is:
- "VsrD(0)" for scalar instructions accessing 64-bit numbers
- "VsrD(i)" for vector instructions accessing 64-bit numbers
- "VsrW(i)" for vector instructions accessing 32-bit numbers
Note that there are no instances of this pattern where a scalar instruction
accesses a 32-bit number.
Note also that it would be correct to use "VsrD(i)" for scalar instructions since
the loop index is only ever "0". I have choosen to use "VsrD(0)" instead ... it
seems a little clearer.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Tested-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This change properly orders the doublewords of the VSRs 0-31. Because these
registers are constructed from separate doublewords, they must be inverted
on Little Endian hosts. The inversion is performed both when the VSR is read
and when it is written.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Tested-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This change defines accessors for VSR doubleword and word fields that
are correct from a host Endian perspective. This allows code to
use the Power ISA indexing numbers in code.
For example, the xscvdpsxws instruction has a target VSR that looks
like this:
0 32 64 127
+-----------+--------+-----------+-----------+
| undefined | SW | undefined | undefined |
+-----------+--------+-----------+-----------+
VSX helper code will use VsrW(1) to access this field.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Tested-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The various VSX Convert to Integer instructions should truncate the
floating point number to an integer value, which is equivalent to
a round-to-zero rounding mode. The existing VSX floating point to
integer conversion helpers are erroneously using the rounding mode set
int the PowerPC Floating Point Status and Control Register (FPSCR).
This change corrects this defect by using the appropriate
float*_to_*_round_to_zero() routines fro the softfloat library.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Tested-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Remove MSR_POW from the msr_mask for POWER7/7P/8.
Signed-off-by: Anton Blanchard <anton@samba.org>
Reviewed-by: Cédric Le Goater <clg@fr.ibm.com>
Tested-by: Cédric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
Without MSR_VSX we die early during a Linux boot.
Signed-off-by: Anton Blanchard <anton@samba.org>
Reviewed-by: Cédric Le Goater <clg@fr.ibm.com>
Tested-by: Cédric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
Add PPC_ISEL to insns_flags.
Signed-off-by: Anton Blanchard <anton@samba.org>
Reviewed-by: Cédric Le Goater <clg@fr.ibm.com>
Tested-by: Cédric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
Add MSR_LE to the msr_mask for POWER8.
Signed-off-by: Anton Blanchard <anton@samba.org>
Reviewed-by: Cédric Le Goater <clg@fr.ibm.com>
Tested-by: Cédric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
This flag will be used to decide whether to emulate some bits of
H_SET_MODE hypercall because some are POWER8-only.
While we are here, add 2.05 flag to POWER8 family too. POWER7/7+ already
have it.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
PowerPC kernel expects the number of SMT threads in a core to be a power
of 2. Since QEMU doesn't enforce this, it leads to an early guest kernel
crash if invalid threads count is specified.
Prevent this crash and make it a graceful exit from QEMU itself by
validating the user-supplied threads count.
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
create_new_table() should allocate 0x20 opc_handler_t pointers, but
actually allocates 0x20 opc_handler_t structs. Fix this.
Signed-off-by: Stuart Brady <sdb@zubnet.me.uk>
Reviewed-by: Tom Musta <tommusta@gmail.com>
Tested-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
This resets SPR values to defaults on CPU reset. This should help
with little-endian guests reboot issues.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
This fixes warnings from the static code analysis (smatch).
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Andreas Färber <afaerber@suse.de>
Codespell found and fixed these new typos:
* doesnt -> doesn't
* funtion -> function
* perfomance -> performance
* remaing -> remaining
A coding style issue (line too long) was fixed manually.
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Reviewed-by: Andreas Färber <afaerber@suse.de>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Most targets were using offsetof(CPUFooState, breakpoints) to determine
how much of CPUFooState to clear on reset. Use the next field after
CPU_COMMON instead, if any, or sizeof(CPUFooState) otherwise.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Note that while such functions may exist both for *-user and softmmu,
only *-user uses the CPUState hook, while softmmu reuses the prototype
for calling it directly.
Signed-off-by: Andreas Färber <afaerber@suse.de>
All targets using it gain the ability to set -cpu name,key=value,...
options via the default TYPE_CPU CPUClass::parse_features() implementation.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Default to false.
Tidy variable naming and inline cast uses while at it.
Tested-by: Jia Liu <proljc@gmail.com> (or32)
Signed-off-by: Andreas Färber <afaerber@suse.de>
Commits fdfba1a298,
ab1da85791,
f606604f1c and
2c17449b30 added usages of ENV_GET_CPU()
macro in target-specific code.
Use ppc_env_get_cpu() instead.
Cc: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Andreas Färber <afaerber@suse.de>
This makes use of @cpu_dt_id and related API in:
1. emulated XICS hypercall handlers as they receive fixed CPU indexes;
2. XICS-KVM to enable in-kernel XICS on right CPU;
3. device-tree renderer.
This removes @cpu_index fixup as @cpu_dt_id is used instead so QEMU monitor
can accept command-line CPU indexes again.
This changes kvm_arch_vcpu_id() to use ppc_get_vcpu_dt_id() as at the moment
KVM CPU id and device tree ID are calculated using the same algorithm.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Mike Day <ncmike@ncultra.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Normally CPUState::cpu_index is used to pick the right CPU for various
operations. However default consecutive numbering does not always work
for POWERPC.
These indexes are reflected in /proc/device-tree/cpus/PowerPC,POWER7@XX
and used to call KVM VCPU's ioctls. In order to achieve this,
kvmppc_fixup_cpu() was introduced. Roughly speaking, it multiplies
cpu_index by the number of threads per core.
This approach has disadvantages such as:
1. NUMA configuration stays broken after the fixup;
2. CPU-targeted commands from the QEMU Monitor do not work properly as
CPU indexes have been fixed and there is no clear way for the user to
know what the new CPU indexes are.
This introduces a @cpu_dt_id field in the CPUPPCState struct which
is initialized from @cpu_index by default and can be fixed later
to meet the device tree requirements.
This adds an API to handle @cpu_dt_id.
This removes kvmppc_fixup_cpu() as it is not more needed, @cpu_dt_id
is calculated in ppc_cpu_realize().
This will be used later in machine code.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Mike Day <ncmike@ncultra.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This support updating htab managed by the hypervisor. Currently we don't have
any user for this feature. This actually bring the store_hpte interface
in-line with the load_hpte one. We may want to use this when we want to
emulate henter hcall in qemu for HV kvm.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[ folded fix for the "warn_unused_result" build break in
kvmppc_hash64_write_pte(), Greg Kurz <gkurz@linux.vnet.ibm.com> ]
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
For updating in kernel htab we need to provide both pte0 and pte1, hence update
the interface to take pte0 and pte1 together
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[ ldq_phys() API change, Greg Kurz <gkurz@linux.vnet.ibm.com> ]
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
With kvm enabled, we store the hash page table information in the hypervisor.
Use ioctl to read the htab contents. Without this we get the below error when
trying to read the guest address
(gdb) x/10 do_fork
0xc000000000098660 <do_fork>: Cannot access memory at address 0xc000000000098660
(gdb)
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[ fixes for 32 bit build (casts!), ldq_phys() API change,
Greg Kurz <gkurz@linux.vnet.ibm.com ]
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Correctly update the htab_mask using the return value of
KVM_PPC_ALLOCATE_HTAB ioctl. Also we don't update sdr1
on GET_SREGS for HV. We check for external htab and if
found true, we don't need to update sdr1
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[ fixed pte group offset computation in ppc_hash64_htab_lookup() that
caused TCG to fail, Greg Kurz <gkurz@linux.vnet.ibm.com> ]
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Per Alex Graf's suggestion, the recently added case to gen_conditional_store
for stqcx should use an additional temporary when accessing the second
doubleword. This avoids the mutation of the EA argument to the function,
which is counter intuitive.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch fixes 64 bit constants that were erroneously declared as "ul" instead of
"ull". The preferred form "ULL" is used.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
64 bit constants need the "ULL" suffix, not just "UL", because
on 32 bit platforms 'long' is not large enough and this will
cause a compiler warning.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Permuate and Exclusive OR (vpermxor)
instruction introduced in Power ISA Version 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector SHA Sigma instructions introduced in Power
ISA Version 2.07:
- Vector SHA-512 Sigma Doubleword (vshasigmad)
- Vector SHA-256 Sigma Word (vshasigmaw)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector AES instructions introduced in Power ISA
Version 2.07:
- Vector AES Cipher (vcipher)
- Vector AES Cipher Last (vcipherlast)
- Vector AES Inverse Cipher (vncipher)
- Vector AES Inverse Cipher Last (vncipherlast)
- Vector AES SubBytes (vsbox)
Note that the implementation of vncipher deviates from the RTL in
ISA V2.07. However it does match the verbal description in the
third paragraph. The RTL will be fixed in ISA V2.07B. The
implementation here has been tested against actual P8 hardware.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch add the Binary Coded Decimal instructions bcdadd. and
bcdsub.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vectory Polynomial Multiply Sum instructions
introduced in Power ISA Version 2.07:
- Vectory Polynomial Multiply Sum Byte (vpmsumb)
- Vectory Polynomial Multiply Sum Halfword (vpmsumh)
- Vectory Polynomial Multiply Sum Word (vpmsumw)
- Vectory Polynomial Multiply Sum Doubleword (vpmsumd)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Gather Bits by Bytes Doubleword (vgbbd)
instruction which is introduced in Power ISA Version 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Compare Doubleword instructions introduced
by Power ISA Version 2.07:
- Vector Compare Equal to Unsigned Doubleword (vcmpequd)
- Vector Compare Greater Than Signed Doubleword (vcmpgtsd)
- Vector Compare Greater Than Unsigned Doubleword (vcmpgtud)
These instructions are encoded with bit 31 set to 1 and so are duals with
vcmpeqfp, vcmpgtfp and vcmpbfp respectively.
The helper macro for integer compares is enhanced to account for 64-bit
operands.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Bit Permute Quadword (vbpermq) instruction
introduced in Power ISA Version 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the vector doublword rotate and shift instructions
introduced in Power ISA Version 2.07:
- Vector Rotate Left Doubleword instruction (vrld)
- Vector Shift Left Doubleword (vsld)
- Vector Shift Right Doubleword (vsrd)
- Vector Shift Right Algegbraic Doubleword (vsrad)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Existing code in the VROTATE, VSL and VSR macros for the Altivec rotate and shift
helpers uses a formula to compute a bit mask used to extract the rotate/shift
amount from the VRB register. What is desired is:
mask = (1 << (3 + log2(sizeof(element)))) - 1
but what is implemented is:
mask = (1 << (3 + (sizeof(element)/2))) - 1
This produces correct answers when "element" is uint8_t, uint16_t or uint_32t. But
it breaks down when element is uint64_t.
This patch corrects the situation. Since the mask is known at compile time, the
macros are changed to simply accept the mask as an argument.
Subsequent patches in this series will add double-word variants of rotates and
shifts and thus take advantage of this fix.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Merge Even Word (vmrgew) and Vector
Merge Odd Word (vmrgow) instructions introduced in Power ISA
Version 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Unpack Signed Word instructions introduced in
Power ISA Version 2.07:
- Vector Unpack High Signed Word (vupkusw)
- Vector Unpack Low Signed Word (vupklsw)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Pack Doubleword instructions introduced in
Power ISA Version 2.07:
- Vector Pack Signed Doubleword Signed Saturate (vpksdss)
- Vector Pack Signed Doubleword Unsigned Saturate (vpksdus)
- Vector Pack Unsigned Doubleword Unsigned Modulo (vpkudum)
- Vector Pack Unsigned Doubleword Unsigned Saturate (vpkudus)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Minimum and Maximum Doubleword instructions
that are introduced in Power ISA Version 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Population Count instructions introduced in Power
ISA Version 2.07: vpopcntb, vpopcnth, vpopcntw and vpopcntd.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Count Leading Zeroes instructions introduced
in Power ISA Version 2.07 - vclzb, vclzh, vclzw and vclzd.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Multiply Unsigned Word Modulo (vmuluwm)
instruction.
The existing VARITH_DO macro is re-used to (trivially) instantiate
the helper code.
Since bits 21-31 of any vmuluwm instruction is 137, the instruction
is coded as a dual to vmulouw (bits 21-31 = 136).
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Multilpy Even/Odd Word instructions that are introduced
in Power ISA Version 2.07:
- Vector Multiply Even Unsigned Word (vmuleuw)
- Vector Multiply Even Signed Word (vmulesw)
- Vector Multiply Odd Unsigned Word (vmulouw)
- Vector Multiply Odd Signed Word (vmulosw)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This VMUL_DO macro provides support for the various vmule* and vmulo*
instructions. These instructions multiply vector elements, producing
products that are one size larger; e.g. vmuleub multiplies unsigned 8-bit
elements and produces a 16 bit unsigned element.
The existing macro works correctly for the existing instructions (8-bit,
and 16-bit source elements) but does not work correctly for 32-bit
source elements.
This patch adds an explicit cast to the multiplicands, forcing them to be
of the target element type. This is required for the forthcoming patches
that add the vmul[eo][us]w instructions.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds two Altivec unsigned doublword modulo instructions that
are introduced in Power ISA Version V2.07:
- vaddudm : Vector Add Unsigned Doubleword Modulo
- vsubudm : Vector Subtrace Unsigned Doubleword Modulo
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Vector Logical Instructions that are introduced
in Power ISA Version 2.07: veqv, vnand and vorc.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Some Alitvec instructions introduced in Power ISA Version 2.07 use bit 31
(aka the "Rc" bit) as an opcode but also use bit 21 as an actual Rc
bit. QEMU for PowerPC typically uses bits 0-5 and 21-30 for opcodes.
This patch introduces a generator macro that injects an auxiliary handler
which decodes both bits 21 and 31 and invokes one of four standard
handlers. Since the instructions are not, in general, from the same version
of the ISA, two sets of PPC_*/PPC2_* flags are supported.
This patch also introduces a macro to insert two entries into the opcode
table -- one for bit 21 equal to 0 and one for bit 21 equal to 1.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds a macro to insert an entry into the opcode table for Altivec
Power ISA Version 2.07 instructions. The macro is similar to the GEN_VXFORM macro
except that it tags the entry with the PPC2_ALTIVEC_207 flag rather than
PPC_ALTIVEC.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Some Alitvec instructions introduced in Power ISA Version 2.07 use bit 31
(aka the "Rc" bit) as an opcode bit. However, QEMU for PowerPC uses
bits 0-5 and 21-30 for opcodes and not bit 31.
This patch introduces macros that will handle this situation by injecting
an auxiliary handler which decodes bit 31 in invokes one of two standard
handlers. Since the instructions are not, in general, from the same version
of the ISA, two sets of PPC_*/PPC2_* instruction tags are supported.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds generator macro for Altivec instructions that have 3
source AVR operands. The macro is similar to the 2 operand form.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch updates the ppc_avr_t data structure to include elements for
signed 64-bit integers and (conditionally) unsigned 128 bit integers.
These elements will be in instructions models later on in this patch series.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds a flag that will be used to tag the Altivec instructions
introduced in Power ISA Version 2.07.
The flag is added to Power8 model since P8 supports these instructions.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Store Quadword Conditionl (stqcx.) instruction
which is introduced in Power ISA 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
[agraf: fix compile error when !TARGET_PPC64]
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Load Quadword and Reserve (lqarx) instruction,
which is new in Power ISA 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds support for the Store Quadword instruction in user mode. Prior
to Power ISA 2.07, stq was legal only in privileged mode. Support for Little
Endian mode is also new in ISA 2.07.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Book I (user space) Load Quadword (lq) instruction.
This instruction was introduced into Book I in Power ISA V2.07. Previous
versions of the architecture supported this as a privileged instruction.
Previous versions of the architecture also did not support Little Endian
mode.
Note that this patch also adds the PPC_64BX flag to the Power8 model,
which enables the lq instruction.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds a boolean function is_user_mode that can be re-used
in translation code that is sensitive to the MSR[PR] (user-mode)
state.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds a flag to identify the load/store quadword instructions
that are introduced with Power ISA 2.07.
The flag is added to the Power8 model since P8 supports these
instructions.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Branch Conditional to Address Register (bctar)
instruction.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds support for the Target Address Register (TAR) to the Power8
model.
Because supported SPRs are typically identified in an init_proc_*()
function and because the Power8 model is currently just using the
init_proc_POWER7() function, a new init_proc_POWER8() function
is added and plugged into the P8 model.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds a flag for the bctar instruction. This instruction
is being introduced via Power ISA 2.07.
Also, the flag is added to the Power8 machine model since the P8
processor supports this instruction.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The existing implementation of xxpermdi is defective if the target
VSR is also a source VSR. This patch fixes the defect in this case
but also preserves the simpler, two TCG operation implementation
when the target is not once of the two sources.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
PR KVM lacks support of many SPRs in set/get one register API but it does
really break PR KVM. So convert them to switchable traces for now.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
When ppc_store_slb() is called from kvm_arch_get_registers(), it stores
a SLB in CPUPPCState::slb[slot]. However it drops the slot number from
ESID so when kvm_arch_put_registers() puts SLBs back to KVM, they do not
have correct "index" field anymore. This broke migration with LPCR_AIR
enabled as now the guest is handling interrupts in virtual mode and unable
to reconstruct correct SLBs anymore.
This adds "index" field for valid SLBs when putting them to KVM.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: qemu-stable@nongnu.org
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Load Floating Point as Integer Word and
Zero Indexed (lfiwzx) instruction which was introduced in
Power ISA 2.06.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
The frsqrtes instruction was introduced prior to ISA 2.06 and is
support on both the Power7 and Power8 processors. However, this
instruction is handled as illegal in the current QEMU emulation
machines. This patch enables the existing implemention of frsqrtes
in the P7 and P8 machines.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Floating Point Test for Square Root instruction
which was introduced in Power ISA 2.06.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Floating Point Test for Divide instruction which
was introduced in Power ISA 2.06B.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds a flag for Floating Point Test instructions that were
introduced in Power ISA V2.06B.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
The fri* series of instructions was introduced prior to ISA 2.06 and
is supported on Power7 and Power8 hardware. However, the instruction
is still considered illegal in the P7 and P8 QEMU emulation models.
This patch enables these instructions for the P7 and P8 machines.
Also, the existing helper is modified to correctly handle some of
the boundary cases (NaNs and the inexact flag).
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the fcfids, fcfidu and fcfidus instructions which
were introduced in Power ISA 2.06B. A common macro is provided to
eliminate repetitious code, and the existing fcfid instruction is
refactored to use this macro.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the four floating point to integer conversion instructions
introduced by Power ISA V2.06:
- Floating Convert to Integer Word Unsigned (fctiwu)
- Floating Convert to Integer Word Unsigned with Round Toward
Zero (fctiwuz)
- Floating Convert to Integer Doubleword Unsigned (fctidu)
- Floating Convert to Integer Doubleword Unsigned with Round
Toward Zero (fctiduz)
A common macro is developed to eliminate repetitious code. Existing instructions
are also refactoried to use this macro (fctiw, fctiwz, fctid, fctidz).
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds a flag for the floating point conversion instructions
introduced in Power ISA 2.06B.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the byte and halfword variants of the Store Conditional
instructions. A common macro is introduced and the existing implementations
of stwcx. and stdcx. are refactored to use this macro.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the byte and halfword variants of the Load and
Reserve instructions. Since there is much commonality among
all forms of Load and Reserve, a macro is provided and the existing
implementations of lwarx and ldarx are refactoried to use this
macro.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds a flag for the atomic instructions introduced
in Power ISA V2.06B.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch addes the signed Divide Word Extended instructions
which were introduced in Power ISA 2.06B.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch addes the Unsigned Divide Word Extended instructions
which were introduced in Power ISA 2.06B.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Divide Doubleword Extended instructions.
The implementation builds on the unsigned helper provided in
the previous patch.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Divide Doubleword Extended Unsigned
instructions. This instruction requires dividing a 128-bit
value by a 64 bit value. Since 128 bit integer division is
not supported in TCG, a helper is used. An architecture
independent 128-bit division routine is added to host-utils.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
[agraf: use ||]
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds a flag for the Divide Extended instructions that
were introduced in Power ISA V2.06B. The flag is added to the
Power7 and Power8 models.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Bit Permute Doubleword (bpermd) instruction,
which was introduced in Power ISA 2.06 as part of the base 64-bit
architecture.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the non-signalling scalar conversion instructions:
- VSX Scalar Convert Single Precision to Double Precision
Non-Signalling (xscvspdpn)
- VSX Scalar Convert Double Precision to Single Precision
Non-Signalling (xscvdpspn)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX Scalar Round to Single Precision (xsrsp)
instruction.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Floating Merge Even Word (fmrgew) and Floating
Merge Odd Word (fmrgow) instructions.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Move To VSR instructions (mfvsrd, mfvsrwz)
and Move From VSR instructions (mtvsrd, mtvsrwa, mtvsrwz). These
instructions are unusual in that they are considered a floating
point instruction if the indexed VSR is in the first half of the
array (0-31) but they are considered vector instructions if the
indexed VSR is in the second half of the array (32-63).
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patchs adds the VSX Logical instructions that are new with
ISA V2.07:
- VSX Logical Equivalence (xxleqv)
- VSX Logical NAND (xxlnand)
- VSX Logical ORC (xxlorc)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX Scalar Convert Unsigned Integer Doubleword
to Floating Point Format and Round to Single Precision (xscvuxdsp)
and VSX Scalar Convert Signed Integer Douglbeword to Floating Point
Format and Round to Single Precision (xscvsxdsp) instructions.
The existing integer to floating point conversion macro (VSX_CVT_INT_TO_FP)
is modified to support the rounding of the intermediate floating point
result to single precision.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the Single Precision VSX Scalar Fused Multiply-Add
instructions: xsmaddasp, xsmaddmsp, xssubasp, xssubmsp, xsnmaddasp,
xsnmaddmsp, xsnmsubasp, xsnmsubmsp.
The existing VSX_MADD() macro is modified to support rounding of the
intermediate double precision result to single precision.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX Scalar Reciprocal Square Root Estimate
Single Precision (xsrsqrtesp) instruction.
The existing VSX_RSQRTE() macro is modified to support rounding
of the intermediate double-precision result to single precision.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX Scalar Square Root Single Precision (xssqrtsp)
instruction.
The existing VSX_SQRT() macro is modified to support rounding of the
intermediate double-precision result to single-precision.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX Scalar Reciprocal Estimate Single Precision
(xsresp) instruction.
The existing VSX_RE macro is modified to support rounding of the
intermediate double precision result to single precision.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX Scalar Divide Single Precision (xsdivsp)
instruction.
The existing VSX_DIV macro is modified to support rounding of the
intermediate double precision result to single precision.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX Scalar Multiply Single-Precision (xsmulsp)
instruction.
The existing VSX_MUL macro is modified to support rounding of the
intermediate result to single precision.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX Scalar Add Single-Precision (xsaddsp) and
VSX Scalar Subtract Single-Precision (xssubsp) instructions.
The existing VSX_ADD_SUB macro is modified to support the rounding
of the (intermediate) result to single-precision.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds two store scalar instructions:
- Store VSX Scalar as Integer Word Indexed (stxsiwx)
- Store VSX Scalar Single-Precision Indexed (stxsspx)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch refactors the stxsdx instruction. Reusable code is
extracted into a macro which will be used in subsequent patches
in this series.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the scalar load instructions introduced in ISA
V2.07:
- Load VSX Scalar as Integer Word Algebraic Indexd (lxsiwax)
- Load VSX Scalar as Integer Word and Zero Indexed (lxsiwzx)
- Load VSX Scalar Single-Precision Indexed (lxsspx)
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch refactors the lxsdx generator. Resuable code is isolated
into a macro. The macro will be used in subsequent patches in this
series to implement other scalar load instructions.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds a flag to identify those VSX instructions that are
new to Power ISA V2.07. The flag is added to the Power 8 processor
initialization so that the P8 models understand how to decode and
emulate instructions in this category.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX instructions that convert between floating
point formats: xscvdpsp, xscvspdp, xvcvdpsp, xvcvspdp.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX floating point compare vector instructions:
- xvcmpeqdp[.], xvcmpgedp[.], xvcmpgtdp[.]
- xvcmpeqsp[.], xvcmpgesp[.], xvcmpgtsp[.]
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX floating point maximum and minimum
instructions:
- xsmaxdp, xvmaxdp, xvmaxsp
- xsmindp, xvmindp, xvminsp
Because of the Power ISA definitions of maximum and minimum
on various boundary cases, the standard softfloat comparison
routines (e.g. float64_lt) do not work as well as one might
think. Therefore specific routines for comparing 64 and 32
bit floating point numbers are implemented in the PowerPC
helper code.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX scalar floating point compare ordered
and unordered instructions.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX floating point test for software square
root instructions defined by V2.06 of the PowerPC ISA: xstsqrtdp,
xvtsqrtdp, xvtsqrtsp.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX floating point test for software divide
instructions defined by V2.06 of the PowerPC ISA: xstdivdp, xvtdivdp,
and xvtdivsp.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX floating point reciprocal square root
estimate instructions defined by V2.06 of the PowerPC ISA: xsrsqrtedp,
xvrsqrtedp, xvrsqrtesp.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX floating point square root instructions
defined by V2.06 of the PowerPC ISA: xssqrtdp, xvsqrtdp, xvsqrtsp.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX floating point reciprocal estimate instructions
defined by V2.06 of the PowerPC ISA: xsredp, xvredp, xvresp.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX floating point divide instructions defined
by V2.06 of the PowerPC ISA: xsdivdp, xvdivdp, xvdivsp.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the VSX floating point multiply instructions defined
by V2.06 of the PowerPC ISA: xsmuldp, xvmuldp, xvmulsp.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the floating point addition and subtraction
instructions defined by V2.06 of the PowerPC ISA: xssubdp,
xvsubdp and xvsubsp.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds general support that will be used by the VSX helper
routines:
- a union describing the various VSR subfields.
- access routines to get and set VSRs
- VSX decoders
- a general routine to generate a handler that invokes a VSX
helper.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
The fload_invalid_op_excp() function sets assorted invalid
operation status bits. However, it also implicitly modifies
the FPRF field of the PowerPC FPSCR. Many VSX instructions
set invalid operation bits but do not alter FPRF. Thus the
function is more generally useful if the setting of the FPRF
field is made conditional via a parameter.
All invocations of this routine in existing instructions are
modified to pass 1 and thus retain their current behavior.
Signed-off-by: Tom Musta <tommusta@gmail.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
The Figure 17 "SPR encodings" of the PowerISA 2.07 describes CTRL SPR as:
priviledged
# spr5-9 spr0-4 name mtspr mfspr len cat
136 00100 01000 CTRL - no 32 S
152 00100 11000 CTRL yes - 32 S
According to this chart, the hypervisor's CTRL (#152) does not support
reading, the user-space's CTRL (UCTRL, #136) does not support writing.
This replaces unsupported operations with the default SPR_NOACCESS hook.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alexander Graf <agraf@suse.de>
The LPCR special purpose register was introduced with the PowerPC 970MP family.
This patch initializes LPCR for the following families:
- 970 MP
- POWER5+
- POWER7
- POWER8
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Due to missing @one_reg_id assignment in _spr_register(),
the kvm_get_one_reg/kvm_set_one_reg API has never really been working.
This reenables the API by assigning the @one_reg_id field in the SPR
descriptor.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>